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Abstract: Human activity recognition (HAR) is an important research problem in computer vision.
This problem is widely applied to building applications in human–machine interactions, monitoring,
etc. Especially, HAR based on the human skeleton creates intuitive applications. Therefore, deter-
mining the current results of these studies is very important in selecting solutions and developing
commercial products. In this paper, we perform a full survey on using deep learning to recognize
human activity based on three-dimensional (3D) human skeleton data as input. Our research is
based on four types of deep learning networks for activity recognition based on extracted feature
vectors: Recurrent Neural Network (RNN) using extracted activity sequence features; Convolutional
Neural Network (CNN) uses feature vectors extracted based on the projection of the skeleton into the
image space; Graph Convolution Network (GCN) uses features extracted from the skeleton graph
and the temporal–spatial function of the skeleton; Hybrid Deep Neural Network (Hybrid–DNN)
uses many other types of features in combination. Our survey research is fully implemented from
models, databases, metrics, and results from 2019 to March 2023, and they are presented in ascending
order of time. In particular, we also carried out a comparative study on HAR based on a 3D human
skeleton on the KLHA3D 102 and KLYOGA3D datasets. At the same time, we performed analysis
and discussed the obtained results when applying CNN-based, GCN-based, and Hybrid–DNN-based
deep learning networks.

Keywords: human activity recognition; 3D human pose/skeleton; deep neural networks; recurrent
neural networks (RNN); convolutional neural networks (CNN); graph convolution networks (GCN);
KLHA3D 102 dataset; KLYoga3D dataset

1. Introduction

HAR is an important research problem in computer vision. It is applied in many fields,
such as human–machine interaction [1], video surveillance [2,3], and fashion and retail [4].
It has been of research interest for nearly a decade, and studies are often based on human
pose to perform the activity recognition process, where especially 3D human pose-based
activity recognition provides real-world-like visualization.

Despite much research interest and impressive results, HAR still contains many real
challenges in the implementation process. In Islam et al. [5]’s study, the following challenges
were presented. Firstly, the skeleton data of commonly seen daily activities such as walking,
running, and sitting down are often recognizable and rich in data. However, data on the
skeleton of concurrent or aggregate actions on these actions are sorely lacking. Secondly,
the datasets of 3D human skeletons currently used to train recognition models are often
in a scene with only one person (a skeleton); in real-life operations, there are often many
people performing many activities, such as queuing in a store, walking, or jogging. In
particular, information about the context of people’s activities is still lacking. Since human
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activity recognition is very closely related to understanding human behavior, context plays
a huge role in HAR. Thirdly, human skeleton datasets for HAR can be collected from many
different types of sensors, different objects, and different contexts. Although they perform
the same activity, some people are taller or shorter, the method of execution is not the same
for each person, etc., and has not been standardized. Especially, 3D human skeleton data
can be represented in spatial and temporal models; the number of dimensions of the data is
too large because the data of the 3D human skeleton has many degrees of freedom, or due
to the exploitation of different operations, movement is located on only a small part of the
human body.

In the studies of Xing et al. [6], Ren et al. [7], and Arshad et al. [8], they conducted a
full survey of HAR based on a 3D human skeleton, in which the research is also surveyed
and divided into three approaches: RNN-based, CNN-based, and GCN-based. In these
two survey studies, the challenges of HAR based on the 3D human skeleton have not been
presented and analyzed. Islam et al. [5] only conducts the survey using CNN-based HAR.

In this paper, we conduct a survey on deep learning-based methods, datasets, and
HAR results based on 3D human poses as input data. From there, we propose and analyze
the challenges in recognizing human activities based on the 3D human pose.

Previous studies on HAR often applied to datasets with a small number of 3D joints,
namely from 20 to 31 points as the HDM05 dataset [9] (31 3D joints), CMU dataset (22 3D
joints) [10], NTU RGB-D dataset (25 3D joints) [11,12], MSRA Action3D dataset (20 3D
joints) [13], as presented in Figure 1 of Kumar et al. [14]’s research. With a low number of
representative points, the low dimensionality of the data is provided, but the lack of enough
information to distinguish actions also occurs. As illustrated in Figure 1, the number of
joints is large and has many degrees of freedom, which makes the dimensionality of the data
very large, especially when the skeleton moves in the 3D space and follows the temporal
model. Another problem is that in the KLHA3D-102 [14] dataset, there are many similar
actions such as “drink water” and “drink tea” and “golf swing pitch shot” and “golf swing
short shot”.

Figure 1. Illustrating 3D human skeleton data of the KLHA3D102 [14] and KLYOGA3D [14] datasets.

In the study of Kumar et al. [14], the problem of human activity recognition was
researched on the HDM05, CMU, NTU RGB-D, MSRA Action3D, KLHA3D102 [14], and
KLYOGA3D [14] datasets. At the same time, we also perform experiments on activity recog-
nition on the DDNet, Res-GCN, and PA Res-GCN models with the KLHA3D102 [14],
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and KLYOGA3D [14] datasets. To scrutinize the results of HAR based on the latest
deep learning models (DLM), we have performed a comparative study on HAR on the
KLHA3D102 [14] and KLYOGA3D [14] datasets.

The main contributions of the paper are as follows:

• We present an overview of the HAR problem based on the 3D human pose as the
input, with four types of DNN to perform the estimation: RNN-based, CNN-based,
GCN-based, and Hybrid–DNN-based.

• A full survey of HAR based on the 3D human pose is elaborated in detail from
methods, datasets, and recognition results. More specifically, our survey provided
about 250 results of the HAR across more than 70 valuable studies from 2019 to March
2023. The results are listed in ascending order of the year and are all evaluated on the
accuracy measure.

• We performed a study comparing HAR on the KLHA3D 102 [14] and KLYOGA3D [14]
datasets with the GCN-based and Hybrid–DNN-based neural models.

• Analysis of challenges in HAR based on the 3D skeleton of the whole body is presented.
The analysis of the challenges of implementing HAR with two main contents is the
number of dimensions of the data and the insufficient information to distinguish
actions with a limited number of reference points.

The content of this paper is organized as follows. Section 1 introduces the applications
and difficulties of HAR based on 3D human skeleton input data. Section 2 discusses related
research in HAR. Section 3 presents a full survey of HAR methods based on 3D human
skeleton data input. Section 4 presents a comparative study of HAR on the KLHA3D
102 [14] and KLYOGA3D [14] datasets. Section 5 concludes the contributions and presents
future works.

2. Related Works

HAR is based on computer vision with RGB, skeletal, and depth input representation.
Wang et al. [15] surveyed on HAR based on input data can be the skeleton, RGB, RGB + D,
optical flow, etc. In the study, the authors only present and analyze the ST-GCN (Spatial
Temporal Graph Convolutional Networks) [16] and 3D CNNs (3D Convolutional Neural
Networks) hybrid with some architecture [17,18]. HAR results were not presented in
this study.

Morshed et al. [19] conducted a comprehensive survey of HAR with three methods of
input data types: depth-based methods, skeleton-based methods, and hybrid feature-based
methods. They showed that the approaches using depth information could use more RGB
images to extract features such as Histogram of Gradients (HOG) to generate Depth Motion
Maps (DMM) and to train HAR models. With skeleton-based methods, the trajectory-based
method used is based on the trajectory that investigates the spatial and temporal movement
of the human body’s skeleton to extract different features. The human skeleton can be
a 2D skeleton or a 3D skeleton. At the same time, the volume-based methods usually
compute features like texture, color, pose, histograms of optical flow, histograms of directed
gradients, and other features to represent human activity in a spatial–temporal volume.
The results in Tables 1 and 2 from [19] are mainly created on RGB and depth videos, with
only one result [20] on the MSRAction3D dataset.

In addition, there is a survey by Jobanputra et al. [21] divided into two main directions:
using traditional machine learning and deep learning. Within deep learning, they separated
dense artificial neural networks, convolutional neural networks (CNN), and recurrent
neural networks (RNN).

Gupta et al. [22] surveyed HAR of people from multi-modal information sources,
where information can be sensor-based [23], vision-based [24], RFID-based [25,26], WiFi-
based [27,28], and device free [29]. The recognition model is also based on two methods:
machine learning and deep learning. They calculated the ratio of device types to capture the
data for HAR or perform HAR right on those devices as follows: vision = 34%, WiFi = 7%,
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RFID = 7%, sensor = 52%, and the ratio of vision-based input information is video = 65%
and skeleton = 35%, as illustrated in Figure 2.

Figure 2. The left shows the proportion of HAR research based on vision information, and the right
shows the percentage of input information for HAR from video or skeleton.

3. HAR Based on 3D Human Pose: Survey
3.1. Methods

In the valuable surveys of Ren et al. [7] and Le et al. [30], the problem of HAR using 3D
skeleton-based deep learning models can be solved by four types of deep learning models
(DLMs): recurrent neural networks, convolutional neural networks, graph convolution
network, and hybrid deep neural networks (Hybrid-DNN). The types of deep learning
models and methods for HAR are illustrated in Figure 3. In Xing et al. [6] and Ren et al. [7],
they conducted a full survey on HAR based on 3D human skeletons, however, the results
have only been updated until 2019. In this paper, we update the results of HAR based on a
3D skeleton from 2019 to March 2023.

Figure 3. Illustrating four deep learning-based methods of HAR based on 3D human skeleton data.

3.1.1. RNN-Based

RNN-based methods that use vector sequences of joint positions in continuous time,
the position of each joint in the human body as it moves over time can be expressed as a
vector. The main idea of the RNN is to use some kind of memory to store information from
previous computational steps so that based on it can make the most accurate prediction for
the current prediction step. Figure 4 illustrates the RNN-based approach for HAR based
on a 3D human skeleton. As known, a variation of RNN called Long Short-Term Memory
(LSTM) [31,32] has achieved many impressive results in the field of NLP (Natural Language
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Processing) [33,34], speech recognition [35], and especially in computer vision [36,37].
LSTM is the same as a traditional RNN, except adding computational gates in the hidden
layer to decide to retain important information for the next time steps.

Figure 4. Illustrating the RNN-based approach for HAR based on 3D human skeleton [6]. (a) is
the skeleton representation as a function of the temporal-spatial, (b) is the skeleton representation
according to the tree structure.

Ye et al. [38] proposed a combination of RNN and LSTM to learn geometric features
from 3D human skeleton data. The proposed model selects geometric features based on
distances from joints and selected lines as the input of the network. To this end, the model
has the first layer of LSTM and the second layer of temporal pooling with the ability to
select the most recognizable time period features. To extract the geometric features, the
algorithm performs two steps. The first is pre-processing the 3D human skeleton data by
converting the 3D human skeleton data from the camera coordinate system to the human
coordinate system, with the origin being the center of the hip joints. The X-axis is a 3D
vector parallel to the “Right shoulder”| and the “Left shoulder” (red axis), the Y-axis is
parallel to the 3D vector from the “Head” to the “Center hip”, and the Z-axis is then X × Y.
The coordinate system on the body is shown in Figure 5. The second step is to represent the
geometric features, unlike other studies that use the coordinates of the joints as the input.
In this study, the authors use 30 lines selected on the lines as shown in Figure 5 as the input
for geometric feature calculation.

Gaur et al. [37] develops a HAR framework based on LSTM-RNN. The framework is
integrated into wearable sensors. The proposed framework includes four modules: the first
is the data pre-processing, the second describes the benefits and drawbacks of the RNN
model, the third is the LSTM networks model, and the final is the combination module of
LSTM and RNN.
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Figure 5. Illustrating a new coordinate system and representation of feature vectors based on joints
of human body parts.

Li et al. [39] proposed an independently recurrent neural network (IndRNN) to solve
five problems of RNN for HAR. The first one can process longer sequences greater than
5000 steps and still solve the problem of gradient vanishing and exploding. The second
can construct deeper networks (over 20 layers, much deeper if GPU memory supports).
The third can be robustly trained with ReLU. The fourth can be to interpret the behavior
of IndRNN neurons independently without the effect of the others. The fifth is reduced
computational complexity (over 10 times faster than cuDNN LSTM when the sequence
is long).

Liao et al. [40,41] proposed the Logsig-RNN with some advantages over RNN as
follows: (1) The sequence of the log signatures at a coarser time partition is transformed
from a high-frequency sampled time series by the log-signature layer. The log-signatures
transformation reduces training time. (2) When using high frequency and continuous data
sampling at a coarser time grid, it is possible to ignore the microscopic character of the
streamed data and render lower accuracy. Meanwhile, the Logsig-RNN model can do
this well. (3) has a much better performance than RNN when performed on missing data.
(4) The Logsig-RNN model can sample the highly oscillatory stream data. The improved
model of Logsig-RNN compared to RNN is illustrated in Figure 6.
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Figure 6. Illustrating the improved model of Logsig-RNN compared to RNN [40].

3.1.2. CNN-Based

This approach utilizes the outstanding advantages of CNN in object recognition in 2D
space (image space). It maps a 3D representation of the 3D human skeletons into a 2D array
(possibly spatial relations from the skeleton joints) to learn the spatial-temporal skeleton
features. The CNN-based approach is illustrated in Figure 7.

Tasnim et al. [42] proposed a DCNN model to train the feature vector transformed
from the coordinates of the joints along the X, Y, and Z axes. The joints of each frame
ith are represented by Fi(Xij, Yij, Zij), where j is the joint number. Li et al. [43] proposed a
CNN fusion model for skeletal action recognition. The fusion model was trained from two
types of feature vectors: three SPI (skeletal pose image) sequences and three STSIs (skeletal
trajectory shape images). A PoseConv3D model was proposed by Duan et al. [44]. This
model used the 3D-CNN for capturing the spatio-temporal dynamics of skeleton sequences;
there in the input of the 3D-CNN backbone are 3D heatmap volumes. The pseudo heatmaps
for joints and limbs are generated and are good inputs for 3D-CNNs. Koniusz et al. [45]
propose the sequence compatibility kernel (SCK) and dynamics compatibility kernel (DCK)
feature representations. SCK is generated from the spatio-temporal correlations between
features as illustrated in Figure 2a,b of Koniusz et al. [45]’s research, and DCK explicitly
models the action dynamics of a sequence as illustrated in Figure 4a,b of Koniusz et al. [45]’s
research. This research used the ResNet-152 model [46] to train the HAR features.
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Figure 7. Illustrating CNN-based HAR [6]. (a) represents the feature types in the image space, and
(b) represents the process of projecting the data of the 3D skeleton into the image space.

3.1.3. GCN-Based

GCN-based deep learning uses the natural representation of the 3D human skeleton
as a graph, with each joint as a vertex and each segment connecting the human body parts
as an edge. This approach often extracts the spatial and temporal features of the skeleton
graph series, as illustrated in Figure 8.

Figure 8. Illustrating feature extraction of GCN-based methods [6].

With the advantages of features that can be extracted from the skeleton graph, this
approach has received much research attention in the past four years. Figure 9 shows the
number of studies based on the GCN methods.
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Figure 9. Statistics on the number of value studies based on GCN in the past four years.

In 2019, Shi et al. [47] proposed a novel MS-AAGCN (multistream attention-enhanced
adaptive graph convolutional neural network) with some advantages for HAR based on
3D human skeleton data. The first is that an adaptive GCN is proposed to adaptively
learn the topology of the graph in an end-to-end manner. The second is to embed an
STC-attention module in each graph convolutional layer, which can help the model learn
to focus on discriminative joints, frames, and channels selectively. Third, the combination
of information from bones, joints, and information about the movement of bones and joints
has created high efficiency for the activity recognition process. Peng et al. [48] proposed
the first automatically designed GCN as well as a NAS (Neural Architecture Search). The
spatial-temporal correlations between nodes are used to increase the search space of the
GCN by building higher-order connections with a Chebyshev polynomial approximation.
The NAS helps to increase search efficiency; it both performs sampling and is memory-
efficient. Shi et al. [49] proposed a novel directed graph neural network to train features
extracted from joints, bones, and their relationships. The skeleton data are represented
as a DAG (directed acyclic graph) based on the kinematic dependency between the joints
and bones in the human body. A two-stream framework is used to exploit two streams of
information, namely the space and time of movement of the joints. The AS-GCN (actional-
structural graph convolution network) is proposed by Li [50]. The AS-GCN combines both
actional-structural graph convolution and temporal convolution into a basic building block
for training both spatial and temporal features. The AS-SCN block is connected to two
parallel branches by a future pose prediction head.

A novel end-to-end network AR-GCN (attention-enhanced recurrent graph convo-
lutional network) is proposed by Ding et al. [51]. AR-GCN is an end-to-end network
capable of selectively learning discriminative spatial-temporal features and overcoming
the disadvantages of learning only using key frames and key joints. The AR-GCN com-
bines the advantages of the GCN and an RNN. Thus, the AR-GCN promotes the spatial
feature extraction ability of GCN and improves the discriminative temporal information
modeling ability. Gao et al. [52] proposed the BAGCN (Bidirectional Attentive Graph
Convolutional Network). A GCN-based focusing and diffusion mechanism is used to learn
spatial-temporal context from human skeleton sequences. The features of BAGCN are built
based on the representation of the skeleton data in a single frame by two opposite-direction
graphs, thereby effectively promoting the way of message passes in the graph. Li et al. [53]
proposed the Sym-GNN (Symbiotic Graph Neural Networks) for HAR and predicting
motion based on a 3D human skeleton. Sym-GNN consists of two component networks:
a prime joint-based network to learn body-joint-based features, and a dual bone-based
network to learn body-bone-based features. The backbone of each network is essentially
a multi-branch, multi-scale GCN. Wu et al. [54] proposed a dense connection block for
ST-GCN to learn global information, and to improve the robustness of features. The pro-
posed method based on the spatial residual layer and the dense connection block produces
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better results than state-of-art methods resting on the spatial-temporal GCN. A two-stream
non-local graph convolutional network is proposed by Shi et al. [55] to solve the problem
of mining both the coordinate of joints and the length and information direction of bones.
The BP algorithm is used to learn the topology of the graph in each layer. Papadopou-
los et al. [56] proposed the DH-TCN (Dilated Hierarchical Temporal Graph Convolutional
Network) module for modeling short and long-term dependencies. To represent extracted
features on a 3D human skeleton, the author proposed a GVFE (Graph Vertex Feature
Encoder) module for encoding vertex features.

Kao et al. [57] proposed graph-based motion representations using the skeleton-based
graph structure. A skeletal-temporal graph starts with a skeletal-temporal graph such as
the Fourier transform graph. The skeletal-temporal graph is transformed into the motion
representation. To extract features for the activity recognition process, the authors used
temporal pyramid matching [58] to model the dynamics in the sequence of frame-wise
representations.

In 2020, Song et al. [59] proposed the PA-ResGCN with the combination of MIBs
(Multiple Input Branches), ResGCN (Residual GCN) with a bottleneck structure, and PA
(Part-wise Attention) blocks. The authors calculated and characterized spatial-temporal
sequence from the joints, velocity, and bone of the human skeleton based on human body
parts. These features are represented by a part of the human skeleton and trained by
some Residual GCN modules. Next, the branches are concatenated and sent to several
PA-ResGCN modules, where each PA-ResGCN module contains a sequential execution of
a Residual GCN module.

The Shift-GCN is proposed by Cheng et al. [60]. Other GCNs, such as AS-GCN and
Adaptive GCN, use heavy regular graph convolutions. The Shift-GCN uses shift graph
operations and lightweight point-wise convolutions. In the shift graph, both the spatial
graph and temporal graph are used to compute feature vectors. Thus, the computational
complexity is significantly reduced. Song et al. [61] proposed the GCN-based multi-stream
model called the RA-GCN (richly activated GCN). The rich discriminative features are
extracted from skeleton motion sequences. Especially, the noisy or incomplete skeleton
data brings challenges to HAR and training; thus, RA-GCN proposed the problem with
the learned redundant. Peng et al. [48] proposed a brand-new ST-GCN to model the
graph sequences on the Riemann manifold by Poincare geometry features computed from
the spatial-temporal graph convolutional network. A Poincare model is trained on a
multidimensional structural embedding for each graph. Mixing the dimensions is used
to provide a more distinguished representation of the Poincare model. To obtain effective
feature learning, Liu et al. [62] proposed a unified spatial-temporal graph convolution called
G3D. This method is based on the multi-scale aggregation scheme to remove the redundant
dependencies between node features from different neighborhoods. G3D introduced graph
edges across the “3D” spatial-temporal domain as skip connections for the unobstructed
information flow. The Dynamic GCN proposed by Ye et al. [63] exploits the advantages
of learning-based skeleton topology of CNNs. A CNN named CeN (Context-encoding
Network) is introduced to learn skeleton topology automatically. CeN can be embedded
into a graph convolutional layer and learned end-to-end. The contextual information of
each joint can be monitored globally by CeN and can represent the dynamics of the skeleton
system more accurately. Obinata et al. [64] proposed extending the temporal graph of
a GCN. The authors performed adding connections to neighboring multiple vertices on
the inter-frame and extracting additional features based on the extended temporal graph.
From this, the extended method can extract correlated features of multiple joints in human
movement for training the HAR model. Yang et al. [65] proposed a PGCN-TCA (pseudo
graph convolutional network with temporal and channel-wise attention) to solve the three
existing problems of the previous GCN-based networks. First, the features of joints are
usually only extracted based on the direct connection between bones for which the distant
joint information that has no physical connection in a skeleton chain has not been used.
The second is the normalized adjacency matrices are directly computed by the predefined
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graph and kept fixed through the training process. They are used on most GCN-based
networks, which makes the model unable to extract diverse features. The third is that
different frames and channels are of different importance to action recognition.

Ding et al. [66] proposed a novel SemGCN (Semantics-Guided Graph Convolutional
Network) to extract multiple semantic graphs for skeleton sequences adaptively. This
method can explore action-specific latent dependencies, and allocate different levels of
importance to different skeleton information. The spatial useful and temporal information
is extracted based on the different feature fusion strategies of the Sem-GCN block.

Yu et al. [67] proposed PeGCNs (Predictively encoded Graph Convolutional Networks)
to train a GCN-based action recognition model with missing and noisy human skeleton
data. To learn such representations by predicting the perfect sample from the noisy sample
in latent space via an auto-regression model by using a probabilistic contrastive loss to
capture the most useful information for predicting a perfect sample.

The PR-GCN (pose refinement graph convolutional network) is proposed by Li et al. [68].
To reduce the impact of errors in the skeleton data, the authors preprocessed the input
skeleton sequences via a pose refinement module. Then, the position and motion informa-
tion is combined through two branches: a motion-flow branch and a position-flow-branch.
In addition, the refined skeleton sequences are created based on gradual fusion. Finally, the
temporal aggregation module aggregates the information over time and predicts the action
class probabilities.

In 2021: Chen et al. [69] proposed a dual-head GNN (graph neural network) frame-
work for HAR based on human skeleton data. This method used two branches of inter-
leaved graph networks to extract features at two different temporal resolutions. The branch
with a lower temporal resolution captures motion patterns at a coarse level, and the branch
with a higher temporal resolution is encoded time movements on a more sophisticated level.
These two branches are processed in parallel, and the output is the dual-granular action
classification. Yang et al. [70] proposed a new framework called UNFGEF. This framework
is unified with 15 graph embedding features with GCN and model characteristic skeletons.
The human skeleton is represented using the adjacent matrix to represent the skeleton graph.
The graph features of nodes, edges, and subgraphs are extracted and embedded into GCN
and TCN networks. The final prediction is fused from the multi-stream through the softmax
classifier for each stream. Chen et al. [71] propose the CTR-GC (Channel-wise Topology
Refinement Graph Convolution) to learn different topologies dynamically and effectively
aggregate joint features in different channels. This method learns a shared topology and
channel-specific correlations simultaneously. To solve the problem of confusion between
the activities of the nearly identical human bodies, Qin et al. [72] proposed fusing higher-
order features in the form of angular encoding (AGE) into modern architectures to capture
the relationships between joints and body parts robustly. To extract relevant information
from neighboring nodes effectively while suppressing undesired noises, Zeng et al. [73]
suggested a hop-aware hierarchical channels-squeezing fusion layer. The information from
distant nodes is extracted and fused in a hierarchical structure. Dynamic skeletal graphs
are built upon the fixed human skeleton topology and capture action-specific poses. Song
et al. [74] have made improvements to the ResGCN to EfficientGCN v1, the authors used
additional three types of layers (SepLayer, EpSepLayer, and SGLayer) for skeleton-based ac-
tion recognition. This study employs a compound scaling strategy to configure the model’s
width and depth with a scaling coefficient; since then, the number of hyper-parameters is
also calculated automatically. EfficientGCN v1 considers spatial attention and distinguishes
the most important temporal frames. To extract effective spatial-temporal features from
skeleton data in a coarse-to-fine progressive process for action recognition, Yang et al. [75]
suggested the FGCN (Feedback Graph Convolutional Network). FGCN builds a local net-
work with lateral connections between two temporal stages by a dense connections-based
FGCB (Feedback Graph Convolutional Block) to transmit high-level semantic features to
low-level layers.
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In 2022: Lee et al. [76] proposed the HD-GCN (hierarchically decomposed graph
convolutional network), as illustrated in Figure 10. HD-GCN contains a hierarchically
decomposed graph (HD-Graph) to thoroughly identify the distant edges in the same
hierarchy subsets and attention-guided hierarchy aggregation (A-HA) module to highlight
the key hierarchy edge sets with representative spatial average pooling and hierarchical
edge convolution.

Figure 10. The illustration of the HD-GCN architecture [76].

The DG-STGCN model (Dynamic Group Spatio-Temporal GCN) is proposed by
Duan et al. [44]. DGSTGCN has the following advantages. The spatial modeling is built on
learning the learnable coefficient matrices. The dynamic spatial-temporal modeling of the
skeleton motion diversified groups of graph convolutions and temporal convolutions is
designed dynamically group-wise.

The STGAT is proposed by Hu et al. [77] to capture short-term dependencies of spatial-
temporal modeling. STGAT uses the three simple modules to reduce local spatial-temporal
feature redundancy and further release the potential. STGAT builds local spatial-temporal
graphs by connecting nodes in local spatial-temporal neighborhoods and dynamically
constructing their relationships.

Duan et al. [78] proposed an open-source toolbox for skeleton-based action recognition
based on PyTorch called PYSKL. PYSKL implements six different algorithms under a
unified framework with both the latest and original good practices to ease the comparison
of efficacy and efficiency. The PYSKL framework is built on top of ST-GCN, and PYSKL is
the version of ST-GCN++.

The InfoGCN framework is proposed by Chi et al. [79] and presented in Figure 11.
InfoGCN is a learning framework that combines a novel learning objective and an encoding
method. The authors used the attention-based graph convolution that captures the context-
dependent intrinsic topology of human action to learn the discriminative information for
classifying action. A multi-modal representation of the skeleton using the relative position
of joints also provides complementary spatial information for joints.
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Figure 11. The InfoGCN framework [79].

The TCA-GCN (Temporal-Channel Aggregation Graph Convolutional Networks)
method is proposed by Wang et al. [80]. The TCA-GCN is used to learn spatial and
temporal topologies dynamically and efficiently aggregate topological features in different
temporal and channel dimensions for HAR. The TCA-GCN process of learning features
is divided into two types: the TA module to learn temporal dimensional features and
the channel aggregation module to efficiently combine spatial dynamic channel-wise
topological features with temporal dynamic topological features.

3.1.4. Hybrid-DNN

Hybrid-DNN approaches use deep learning networks together to extract features
and train recognition models. Here we examine a series of studies from 2019 to 2023 for
skeletal data-based activity recognition. Si et al. [81] proposed the AGC-LSTM (Attention
Enhanced Graph Convolutional LSTM Network). The AGC-LSTM is capable of combining
discriminative features in spatial configuration, temporal dynamics, and exploring the
co-occurrence relationship between spatial and temporal domains. The AGC-LSTM also
uses the AGC-LSTM layer to learn high-level semantic representation and significantly
reduce the computation cost. The end-to-end trainable framework is proposed [82] with a
combination of a Bayesian neural network (BNN) model where BNN is again combined
from the graph convolution and LSTM. The graph convolution is used to capture the spatial
dependency among different body joints and LSTM is used to capture the temporal depen-
dency of pose change over time. A new SSNet (Scale Selection Network) is proposed [83]
for online action prediction. SSNet learns the proper temporal window scale at each step to
cover the performed part of the current action instance. The network predicts the ongoing
action at each frame. Shi et al. [84] proposed a DSTA-Net (decoupled spatial-temporal
attention networks). It is built with pure attention modules without manual designs of
traversal rules or graph topologies. The spatial-temporal attention decoupling, decoupled
position encoding, and spatial global regularization are used to build attention networks.
The DSTA-Net model splits the skeleton’s data into four streams: spatial-temporal stream,
spatial stream, slow-temporal stream, and fast-temporal stream, each focusing on a specific
aspect of the skeleton sequence. These data streams are then combined to obtain a feature
vector that best describes the skeleton data in space and time, as presented in Figure 12.
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Figure 12. The DSTA-Net framework [84]. (a) is to compute the attention maps frame by frame,
(b) is the calculation of the relations of two joints between all of the frames, (c) is a compromise.

The end-to-end SGN network (Semantics-Guided Neural Network) is proposed [85]
based on the combination of GCN and CNN models. It consists of a joint-level module
and a frame-level module. SGN learns the dynamics representation of a joint by fusing the
position and velocity information of a joint. To model the dependencies of joints in the joint-
level module and the dependencies of frames, SGN used the three GCN layers and two
CNN layers, respectively. Plizzaria et al. [86] proposed a novel two-stream Transformer-
based model that is used on both the spatial and the temporal dimensions. The first
stream is the Spatial Self-Attention (SSA) module to dynamically build links between
skeleton joints, representing the relationships between human body parts, conditionally
on the action and independently from the natural human body structure. The second
stream is a Temporal Self-Attention (TSA) module to study the dynamics of a joint over
time. Xiang et al. [87] employed a large-scale language model as the knowledge engine to
provide text descriptions for body parts’ movements for actions. The authors proposed a
multi-modal training scheme by utilizing the text encoder to generate feature vectors for
different body parts and supervise the skeleton encoder for action representation learning.
This means that the skeleton is divided into parts, and every human action is a working
combination of the parts. Each part is coded with a descriptive text.

Trived et al. [88] proposed PSUMNet (Part Stream Unified Modality Network) for
HAR based on human skeleton data. It introduces the combined modality part-based
streaming approach compared to the conventional modality-wise streaming approaches.
PSUMNet performs across skeleton action recognition datasets compared to state-of-the-art
methods, yet it reduces the number of parameters by around 100–400%.

Zhou et al. [89] built a hybrid model named Hyperformer. This model used a solution
to incorporate bone connectivity into Transformer via a graph distance embedding. Unlike
GCN, which only uses the skeleton structure for initialization, Hyperformer retains the
skeleton structure during training. Hyperformer also implements a self-attention (SA)
mechanism on hypergraph, termed Hypergraph Self-Attention (HyperSA), to incorporate
intrinsic higher-order relations into the model.

The action capsule network (CapsNet) for skeleton-based action recognition is pro-
posed by Bavil et al. [90]. The temporal features associated with each joint are hierarchically
encrypted based on ResTCN (Residual Temporal Convolution Neural Network) and Cap-
sNet to focus on a set of critical joints dynamically. CapsNet learns to dynamically attend
to features of pivotal joints and for each action of the human skeleton.

3.2. Datasets

To evaluate deep learning models for HAR based on 3D human skeleton data, usually,
some benchmark datasets have to be used to evaluate the performance. Here we introduce
some databases containing 3D human skeleton data.

UTKinect-Action3D Dataset [91] includes three types of data: color image, depth
image, and 3D human skeleton. It is captured from a single MS Kinect with Kinect for
Windows SDK Beta Version and 10 action types of human: walk, sit down, stand up, pick
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up, carry, throw, push, pull, wave hands, and clap hands. The skeleton data of each frame
includes 20 joints, each joint has coordinates (x, y, z), and the total is 199 motion sequences.

SBU-Kinect dataset [92] is captured from the Microsoft Kinect sensor. It includes in
total 282 video sequences belonging to eight classes of type actions: “approaching”, “de-
parting”, “pushing”, “kicking”, “punching”, “exchanging objects”, “hugging”, and “hand
shaking”. Each skeleton frame annotated 15 joints for each person by OpenNI with NITE
middleware provided by PrimeSense, and each frame has 2 persons.

Florence 3D Actions dataset [93] is captured from MS Kinect sensors at the University
of Florence in 2012. This dataset includes nine class activities: wave, drink from a bottle,
answer the phone, clap, clinch, sit down, stand up, read, watch, and bow. The actions were
performed 2/3 times by 10 subjects, resulting in 215 action sequences. Each skeleton frame
includes 15 body joints (with x, y, and z coordinates) captured with MS Kinect.

J-HMDB dataset [94] is a subset of HMDB [95] with 21 action classes: brush hair,
catch, clap, climb stairs, golf, jump, kickball, pick, pour, pull-up, push, run, shoot ball,
shoot a bow, shoot a gun, sit, stand, swing baseball, throw, walk, wave. Each skeleton frame
includes a total of 15 joints, of which there are 13 joints (left shoulder, right shoulder, left
elbow, right elbow, left wrist, right wrist, left hip, right hip, left knee, right knee, left ankle,
right ankle, neck) and two landmarks (face and belly). J-HMDB contains 928 samples and
uses 3 train/test splits in the ratio of 7:3 (70% training and 30% testing).

Northwestern UCLA Multiview Action 3D (N-UCLA) [96] is captured by the MS
Kinect version 1 sensor from various viewpoints. The training data are captured from view
1 and view 2, and the testing data are captured from view 3. This dataset includes 10 action
categories: pick up with one hand, pick up with two hands, drop trash, walk around, sit
down, stand up, donning, doffing, throwing, and carrying. Each action is performed by
10 subjects.

SYSU 3D Human-Object Interaction Dataset [97] includes 480 skeleton sequences
with 12 action classes performed by 40 different subjects. The number of joints in each
human skeleton is 20 joints. In each action, each subject can interact with one of six objects:
phone, chair, bag, wallet, mop, and besom. For training and evaluation, the authors used
two data split protocols as follows. The first protocol is for half of the samples for training
and the other half for testing. The second protocol is to use half of the subjects for training
and the other half for testing.

NTU RGB+D dataset [11] has been captured by three MS Kinect V2 sensors. 3D
skeletal data contains the 3D locations/joints (with x, y, z coordinates) of 25 major body
joints at each frame. It contains 56,880 skeleton videos of 60 action classes. This dataset is
split in two ways: cross-subject and cross-view. The cross-subject includes 40,320 videos
from 20 subjects for training and the rest for testing. The cross-view include 37,920 videos
captured from camera 2 and 3 for training and those from camera 1 for testing.

Kinetics-Skeleton dataset [98] is named from DeepMind Kinetics human action video
dataset. It includes 400 human action classes captured from nearly 300 videos. Each video
is about 10 s, and the 3D human skeleton is annotated from the Open-Pose toolbox [99].
Each human skeleton includes 18 joints. The training and test sets of this dataset consist of
240, 436, and 19,794 samples, respectively.

NTU RGB+D 120 dataset [12] is extended from NTU RGB+D dataset [11]. Most
descriptions of this dataset are the same as the NTU RGB+D dataset [11], only the number
of action classes is 120, and the number of samples is expanded to 114,480. This dataset is
split into two parts: an auxiliary set and a one-shot evaluation set. The auxiliary set contains
100 classes, and all samples of these classes can be used for training. The evaluation set
consists of 20 novel classes, and one sample from each novel class is picked as the exemplar,
while all the remaining samples of these classes are used to test the recognition performance.
Two evaluation protocols for NTU RGB+D 120 dataset are set similarly to those in the
NTU RGB+D dataset, where Cross-Subject in these two datasets has the same name, and
Cross-View in the NTU-RGB+D is renamed Cross-Setting.
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KLHA3D-102 dataset [100] is captured and combined from eight cameras of the
MOCAP system. The 3D human skeleton of each frame includes 39 joints, as illustrated
in Figure 13. In KLHA3D-102 consists of 102 classes, with each action class having five
subjects (Sub), so the total video frame is 510 with 299,468 frames.

Figure 13. Illustrating the KLHA3D-102 and KLYOGA3D datasets.

KLYOGA3D dataset [14] that the structure of the joints of the 3D human skeleton is
similar to the KLHA3D-102 dataset [100]. The only difference, it has 39 action classes of
yoga skeletal, so the total number of video frames is 39 with 173,060 frames.

3.3. Evaluation Matrices

To evaluate and compare the performance of HAR models based on a 3D human
skeleton, the measurements are essential and must be unified. Usually, in machine learning,
model evaluation is often based on the accuracy metric as follows:

• Accuracy (Acc):

Acc =
TP + TN

TP + TN + FP + FN
(1)

where TP (True Positive) is the number of predictions when the label is positive and
the prediction is true, TN (True Negative) is the number of predictions when the label
is negative and the prediction is true, FP (False Positive) is the number of predictions
when the label is positive, but the prediction is false, FN (False Negative) is the number
of predictions when the label is negative, but the prediction is false.

3.4. Literature Results

The results of HAR based on the 3D human skeleton data of the NTU RGB+D [11]
dataset are presented in Table 1. We presented the results of 66 valuable studies over time
from 2019 to March 2023. The results are based on the Acc measure and two protocols:
Cross-Subject and Cross-View [11].
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Table 1. The results of HAR on the NTU RGB + D [11] dataset.

Authors Years Models Cross-Subject
Acc (%)

Cross-View
Acc (%) Type of DLMs

Wen et al. [101] 2019 Motif-STGCN 84.2 90.2 CNN

Song et al. [61] 2019 RA-GCN 85.9 93.5 GCN

Li et al. [39] 2019 DenseIndRNN 86.7 93.7 RNN

Li et al. [50] 2019 AS-GCN 86.8 94.2 GCN

Si et al. [81] 2019 AGC-LSTM
(Joint & Part)

89.2 95 Hybrid-DNN

Lei et al. [102] 2019 2s-AGCN 88.5 95.1 GCN

Wu et al. [54] 2019 2s-SDGCN 89.6 95.7 GCN

Shi et al. [49] 2019 DGNN 89.9 96.1 GNN

Peng et al. [48] 2019 GCN-NAS 89.4 95.7 GCN

Gao et al. [52] 2019 BAGCN 90.3 96.3 GCN

Li et al. [53] 2019 Sym-GNN 90.1 96.4 GNN

Shi et al. [47] 2019 MS-AAGCN 90 96.2 GCN

Shi et al. [47] 2019 JB-AAGCN 89.4 96 GCN

Si et al. [81] 2019 AGC-LSTM 89.2 95 Hybrid-DNN

Liang et al. [103] 2019 3SCNN 88.6 93.7 CNN

Shi et al. [55] 2019 2s-NLGCN 88.5 95.1 GCN

Cho et al. [104] 2019 TS-SAN 87.2 92.7 Hybrid-DNN

Li et al. [105] 2019 RF-Action 86.8 91.6 Hybrid-DNN

Song et al. [61] 2019 3s RA-GCN 85.9 93.5 GCN

Song et al. [61] 2019 2s RA-GCN 85.8 93 GCN

Papadopoulos et al. [56] 2019 GVFE + AS-GCN
with DH-TCN

85.3 92.8 GCN

Ding et al. [51] 2019 AR-GCN 85.1 93.2 GCN

Wang et al. [106] 2019 ST-GCN-jpd 83.36 88.84 GCN

Zhao et al. [82] 2019 Bayesian GC-LSTM 81.8 89 Hybrid-DNN

Zhang et al. [107] 2019 EleAtt-GRU 80.7 88.4 RNN

Caetano et al. [108] 2019 Skelemotion + Yang et al. 76.5 84.7 CNN

Caetano et al. [109] 2019 TSRJI 73.3 80.3 CNN

Zhang et al. [85] 2020 SGN 89 94.5 Hybrid-DNN

Wang et al. [110] 2020 MV-IGNET 89.2 96.3 Hybrid-DNN

Cheng et al. [60] 2020 4s Shift-GCN 90.7 96.5 GCN

Cheng et al. [111] 2020 DecoupleGCN-DropGraph 90.8 96.6 GCN

Song et al. [59] 2020 PA-ResGCN-B19 90.9 96 GCN

Liu et al. [62] 2020 MS-G3D 91.5 96.2 GCN

Koniusz et al. [45] 2020 SCK⊕ 91.56 94.75 CNN
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Table 1. Cont.

Authors Years Models Cross-Subject
Acc (%)

Cross-View
Acc (%) Type of DLMs

Shi et al. [84] 2020 DSTA-Net 91.5 96.4 Hybrid-DNN

Ye et al. [63] 2020 Dynamic GCN 91.5 96 GCN

Obinata et al. [64] 2020 MS-AAGCN + TEM 91 96.5 GCN

Yang et al. [70] 2020 CGCN 90.3 96.4 GCN

Yang et al. [75] 2020 FGCN-spatial + FGCN-motion 90.2 96.3 GCN

Plizzaria et al. [86] 2020 ST-TR-agcn 89.9 96.1 Hybrid-DNN

Peng et al. [48] 2020 Mix-Dimension 89.7 96 GCN

Yang et al. [65] 2020 PGCN-TCA 88 93.6 GCN

Song et al. [61] 2020 3s RA-GCN 87.3 93.6 GCN

Ding et al. [66] 2020 Sem-GCN 86.2 94.2 GCN

Yu et al. [67] 2020 PeGCN 85.6 93.4 GCN

Li et al. [68] 2020 PR-GCN 85.2 91.7 GCN

Fan et al. [112] 2020 RGB+Skeleton 84.23 89.27 GCN

Song et al. [74] 2021 EfficientGCN-B4 91.7 95.7 GCN

Chen et al. [71] 2021 CTR-GCN 92.4 96.8 GCN

Chi et al. [79] 2021 InfoGCN 93 97.1 GCN

Chen et al. [71] 2021 CTR-GCN 92.4 96.8 GCN

Chen et al. [69] 2021 DualHead-Net 92 96.6 GCN

Qin et al. [72] 2021 AngNet-JA + BA + JBA + VJBA 91.7 96.4 GCN/GNN

Zeng et al. [73] 2021 Skeletal GNN 91.6 96.7 GNN

Song et al. [74] 2021 EfficientGCN-B2 90.9 95.5 GCN

Song et al. [74] 2021 EfficientGCN-B0 89.9 94.7 GCN

Duan et al. [44] 2022 PoseC3D 94.1 97.1 CNN

Trivedi et al. [88] 2022 PSUMNet 92.9 96.7 Hybrid-DNN

Lee et al. [76] 2022 HD-GCN 93.4 97.2 GCN

Duan et al. [44] 2022 DG-STGCN 93.2 97.5 GCN

Xiang et al. [87] 2022 LST 92.9 97 Hybrid-DNN

Hu et al. [77] 2022 STGAT 92.8 97.3 GCN

Wang et al. [80] 2022 TCA-GCN 92.8 97 GCN

Duan et al. [78] 2022 ST-GCN++ [PYSKL, 3D
Skeleton] 92.6 97.4 GCN

Duan et al. [78] 2022 ST-GCN [PYSKL, 2D Skeleton] 92.4 98.3 GCN

Zhou et al. [89] 2023 Hyperformer 92.9 96.5 Hybrid-DNN

Bavil et al. [90] 2023 Action Capsules 90 96.3 Hybrid-DNN

The results of HAR based on the 3D human skeleton data of the NTU RGB+D 120 [12]
dataset are presented in Table 2. We present the results of 37 valuable studies over time
from 2019 to March 2023. The results are based on the Acc measure and two protocols:
Cross-Subject and Cross-Setting [11].
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Table 2. The results of HAR on the NTU RGB + D 120 [12] dataset.

Authors Years Models Cross-Subject
Acc (%)

Cross-Setting
Acc (%) Type of DLMs

Caetano et al. [108] 2019 SkeleMotion
(Magnitude-Orientation)

62.9 63 CNN

Caetano et al. [108] 2019 SkeleMotion + Yang et al 67.7 66.9 CNN

Caetano et al. [109] 2019 TSRJI 67.9 59.7 CNN

Song et al. [61] 2019 3s RA-GCN 81.10 82.70 GCN

Papadopoulos et al. [56] 2019 GVFE + AS-GCN with DH-TCN 78.30 79.80 GCN

Liao et al. [40] 2019 Logsig-RNN 68.30 67.20 RNN

Liu et al. [83] 2019 FSNet 59.90 62.40 Hybrid-DNN

Zhang et al. [85] 2020 SGN 79.2 81.5 Hybrid-DNN

Cheng et al. [60] 2020 4s Shift-GCN 85.9 87.6 GCN

Cheng et al. [111] 2020 DecoupleGCN-DropGraph 86.5 88.1 GCN

Liu et al. [62] 2020 MS-G3D 86.9 88.4 GCN

Song et al. [59] 2020 PA-ResGCN-B19 87.3

Shi et al. [84] 2020 DSTA-Net 86.6 89.0 Hybrid-DNN

Yang et al. [75] 2020 FGCN-spatial + FGCN-motion 85.4 87.4 GCN

Plizzaria et al. [86] 2020 ST-TR-agcn 82.70 84.70 Hybrid-DNN

Peng et al. [48] 2020 Mix-Dimension 80.50 83.20 GCN

Memme et al. [113] 2020 Gimme Signals 70.80 71.60 CNN

Song et al. [74] 2021 EfficientGCN-B4 88.3 89.1 GCN

Chen et al. [71] 2021 CTR-GCN 88.9 90.6 GCN

Chen et al. [71] 2021 InfoGCN 89.8 91.2 GCN

Chen et al. [69] 2021 DualHead-Net 88.2 89.3 GCN

Qin et al. [72] 2021 AngNet-JA + BA + JBA + VJBA 88.2 89.2 GCN/GNN

Song et al. [74] 2021 EfficientGCN-B2 87.90 88.00 GCN

Zeng et al. [73] 2021 Skeletal GNN 87.5 89.2 GNN

Song et al. [74] 2021 EfficientGCN-B0 85.90 84.30 GCN

Duan et al. [44] 2022 PoseC3D 86.9 90.3 CNN

Trivedi et al. [88] 2022 PSUMNet 89.4 90.6 Hybrid-DNN

Lee et al. [76] 2022 HD-GCN 90.1 91.6 GCN

Xiang et al. [87] 2022 LST 89.9 91.1 Hybrid-DNN

Duan et al. [44] 2022 DG-STGCN 89.6 91.3 GCN

Wang et al. [80] 2022 TCA-GCN 89.4 90.8 GCN

Hu et al. [77] 2022 STGAT 88.7 90.4 GCN

Duan et al. [78] 2022 ST-GCN++ [PYSKL, 3D Skeleton] 88.6 90.8 GCN

Zhou et al. [89] 2023 Hyperformer 89.9 91.3 Hybrid-DNN

In Table 3, we have shown the number of FLOPS (floating point operation per second)
for training and testing of some DNNs on the NTU RGB + D [11] and NTU RGB + D
120 [12] datasets. With the larger number of FLOPS, the processing speed of the DNNs
is slower.
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Table 3. The number of FLOPS when training on the NTU RGB+D [11] and NTU RGB + D 120 [12]
datasets.

Models FLOPs Type of DLMs

TaCNN+ [114] 1.0 GCN/GNN

ST-GCN [16] 16.3 GCN/GNN

RA-GCN [61] 32.8 GCN/GNN

2s-AGCN [102] 37.3 GCN/GNN

PA-ResGCN [59] 18.5 GCN/GNN

4s-ShiftGCN [60] 10.0 GCN/GNN

DC-GCN+ADG [111] 25.7 GCN/GNN

CTR-GCN [71] 7.6 GCN/GNN

DSTA-Net [84] 64.7 Hyprid-DNN

ST-TR [86] 259.4 Hyprid-DNN

PSUMNet [88] 2.7 Hyprid-DNN

The results of HAR based on the 3D human skeleton data of the Kinetics-Skeleton
dataset [98] are presented in Table 4. We present the results of 17 studies over the period
from 2019 to March 2023. The results are based on the Acc measure with the training and
test dataset presented in [98].

Table 4. The results of HAR on the Kinetics-Skeleton [98] dataset.

Authors Years Models Activity Recognition
Acc (%) Type of DLMs

Lei et al. [102] 2019 2s-AGCN 38.6 GCN

Shi et al. [47] 2019 MS-AAGCN 37.8 GCN

Shi et al. [47] 2019 JB-AAGCN 37.4 GCN

Peng et al. [48] 2019 GCN-NAS 37.1 GCN

Shi et al. [49] 2019 DGNN 36.9 GNN

Li et al. [50] 2019 AS-GCN 34.8 GCN

Li et al. [115] 2019 ST-GR 33.6 GCN

Ding et al. [51] 2019 AR-GCN 33.5 GCN

Liu et al. [62] 2020 MS-G3D 38 GCN

Ye et al. [63] 2020 Dynamic GCN 37.9 GCN

Yang et al. [70] 2020 CGCN 37.5 GCN

Plizzaria et al. [86] 2020 ST-TR-agcn 37.4 Hybrid-DNN

Yu et al. [67] 2020 PeGCN 34.8 GCN

Li et al. [68] 2020 PR-GCN 33.7 GCN

Chen et al. [69] 2021 DualHead-Net 38.4 GCN

Duan et al. [44] 2022 PoseC3D 49.1 CNN

Hachiuma et al. [116] 2023 Structured Keypoint Pooling 52.3 CNN

Table 5 presents the results of HAR based on the 3D human skeleton data of the
N-UCLA dataset [96]. We presented the results of 17 studies over the period from 2019 to
March 2023. The results are based on the Acc measure with the training and test dataset
presented.
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Table 5. The results of HAR on the N-UCLA [96] dataset.

Authors Years Models Activity Recognition
Acc (%) Type of DLMs

Zhang et al. [107] 2019 EleAtt-GRU 90.7 RNN

Davoodikakhki et al. [117] 2020 Hierarchical Action Classification 93.99 CNN

Zhang et al. [85] 2020 SGN 92.5 Hybrid-DNN

Chi et al. [79] 2021 InfoGCN 97 GCN

Chen et al. [71] 2021 CTR-GCN 96.5 GCN

Xiang et al. [87] 2022 LST 97.2 Hybrid-DNN

Lee et al. [76] 2022 HD-GCN 97.2 GCN

Wang et al. [80] 2022 TCA-GCN 97 GCN

Bavil et al. [90] 2023 Action Capsules 97.3 Hybrid-DNN

Table 6 presents the results of HAR based on the 3D human skeleton data of the
J-HMDB dataset [94]. Studies on HAR based on the 3D human skeleton on the J-HMDB
dataset are only available from the year 2019.

Table 6. The results of HAR on the J-HMDB [94] dataset.

Authors Years Models Activity Recognition
Accuracy (%) Type of DLMs

Yan et al. [118] 2019 PA3D+RPAN 86.1 CNN

Nally et al. [119] 2019 STAR-Net 64.3 CNN

Yang et al. [120] 2019 DD-Net 77.2 Hybrid-DNN

Ludl et al. [121] 2019 EHPI 65.5 CNN

Table 7 presents the results of HAR based on the 3D human skeleton data of the SYSU
3D dataset [97]. Studies on HAR based on a 3D human skeleton on the SYSU 3D dataset
are only available from the years 2019 and 2020.

Table 7. The results of HAR on the SYSU 3D [97] dataset.

Authors Years Models Activity Recognition
Acc (%)

Type of
DLMs

Zhang et al. [107] 2019 EleAtt-GRU 85.7 RNN

Ke et al. [122] 2019 Local + LGN 83.14 Hybrid-DNN

Zhang et al. [85] 2020 SGN 86.9 Hybrid-DNN

Table 8 presents the results of HAR based on the 3D human skeleton data of the
UTKinect-Action3D dataset [91]. In the UTKinect-Action3D dataset [91], the authors used
the “Test Two” protocol in [123] for training and testing (2/3 of the samples were for
training, the rest for testing). Studies on HAR based on a 3D human skeleton on the
UTKinect-Action3D dataset are only available in the years 2019 and 2020.
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Table 8. The results of HAR on the UTKinect-Action3D [91] dataset.

Authors Years Models Activity Recognition
Acc (%)

Type of DLMs

Kao et al. [57] 2019 GFT 96.0 GCN

Paoletti et al. [124] 2020 Temporal Subspace Clustering 99.5 Hybrid-DNN

Koniusz et al. [45] 2020 SCK ⊕ DCK 99.2 CNN

Table 9 presents the results of HAR based on the 3D human skeleton data of the
Florence 3D Actions dataset [93]. In the Florence 3D Actions dataset, [93] have the same
protocol for training and evaluation as the UTKinect-Action3D dataset [91].

Table 9. The results of HAR on the Florence 3D Actions [93] dataset.

Authors Years Models Activity Recognition
Acc (%) Type of DLMs

Koniusz et al. [45] 2020 SCK ⊕ + DCK⊕ 97.45 CNN

Paoletti et al. [124] 2020 Temporal Spectral Clustering +
Temporal Subspace Clustering

95.81 Hybrid-DNN

Koniusz et al. [45] 2020 SCK + DCK 95.23 CNN

Table 10 presents the results of HAR based on the 3D human skeleton data of the SBU
dataset [92]. The training and testing data have been described in [92].

Table 10. The results of HAR on the SBU [92] dataset.

Authors Years Models Activity Recognition
Acc (%) Type of DLMs

Mazari et al. [125] 2019 MLGCN 98.6 GCN

Bianchi et al. [126] 2019 ArmaConv 96 GCN

WuFelix et al. [127] 2019 SGCConv 94 GCN

3.5. Challenges and Discussions

In Tables 1, 2, and 4–10, we presented the results of HAR based on a 3D human skeleton.
The datasets of 3D human skeletons are presented in Section 3.2; in each scene/frame in 3D
space, only one 3D human skeleton is considered. The activities identified are simple and
common everyday activities. The datasets presented are of no interest and contain data on
the context of human activity. Therefore, the building recognition models are only used for
testing but have not been able to apply it in practice to build real applications.

These tables also show that the GCN/GNN-based approach is the most interesting
in the research because the structure of the human skeleton is represented as graphs, and
the temporal-spatial functions are important information to represent and extract feature
vectors. Tables 1 and 2 presented the results on the NTU RGB + D [11] and NTU RGB + D
120 [12], respectively. Although it is the same evaluation method and measure, the results
on the NTU RGB + D dataset are much higher than on the NTU RGB + D 120 dataset. It can
be seen that the number of action classes in the data greatly affects the results. It increases
the complexity of the activity recognition problem. In the Kinetics-Skeleton dataset [98],
the number of human action classes is 400 classes, so the results in Table 4 are very low.
The highest result is 52.3% when there is a combination of the 3D skeleton and RGB images.
The results only based on 3D human skeletons are only 30–40%.
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4. Comparative Study of HAR
4.1. Experiment

In this paper, we perform a comparative study on HAR based on the 3D human
skeleton alone. This study was conducted on the two databases presented above, namely
the KLHA3D-102 dataset [100] and the KLYOGA3D dataset [14]. We use DDNet [120] and
PA-ResGCN [59] to experiment on two datasets.

We divide the KLHA3D-102 dataset [100] into five configurations for training and
testing: Configuration 1 (KLHA3D-102_Conf. 1) has Sub #2, Sub #3, Sub #4, and Sub #5 of
each action used for training, and Sub #1 for testing; Configuration 2 (KLHA3D-102_Conf.
2) has Sub #1, Sub #3, Sub #4, and Sub #5 of each action used for training and Sub #2 for
testing; Configuration 3 ((KLHA3D-102_Conf. 3) has Sub #1, Sub #2, Sub #4, and Sub #5 of
each action used for training and Sub #3 for testing; Configuration 4 (KLHA3D-102_Conf.
4) has 15% of the first frames of each sub of each action used for testing and the remaining
85% of frames in each sub of each action for training; Configuration 5 (KLHA3D-102_Conf.
5) has 85% of the first frames of each sub of each action used for training and 15% of the
remaining frames in each sub of each action for testing.

We also divide the KLYOGA3D dataset [14] into two configurations for training and
testing: Configuration 1 (KLYOGA3D_Conf. 1) has 15% of the first frames of each sub of
each action used for testing, and the remaining 85% of frames in each sub of each action for
training; Configuration 2 (KLYOGA3D_Conf. 2) has 85% of the first frames of each sub of
each action used for training and 15% of the remaining frames in each sub of each action
for testing.

In this paper, we used a server with an NVIDIA GeForce RTX 2080 Ti 12 GB GPU
for fine-tuning, training, and testing. The programs were written in the Python language
(≥3.7 version) with the support of CUDA 11.2/cuDNN 8.1.0 libraries. In addition, there
are a number of other libraries such as OpenCV, Numpy, Scipy, Pillow, Cython, Matplotlib,
Scikit-image, Tensorflow ≥ 1.3.0, etc.

In this paper, we pre-trained the models of DDNet [120] and PA-ResGCN [59] with 500
epochs. The HAR results are compared with CNN-LSTM [128], SgCNN [14], and CCNN [129].

4.2. Results and Discussions

The results of HAR based on the skeleton of the KLHA3D-102, KLYOGA3D datasets
are shown in Table 11. The results show that GCN-based DNNs and Hybrid DNNs are
very low (DDnet when evaluated on KLHA3D-102_Conf. 5 = 1.96%, PA-ResGCN when
evaluated on KLHA3D-102_Conf. 5 = 8.56%). Meanwhile, the results based on CNNs have
very high results compared to GCN/GNN and Hybrid-DNN networks.

This can be explained by several reasons. The model is trained to recognize using only
the data of the 3D human skeleton and has not been combined with other data, such as
data about the activity context. Human skeleton data are collected from many cameras
in different viewing directions without being normalized. The number of joints in the
skeleton data of these two datasets are 39 joints, which is a large number of joints in 3D
space. They make the feature vector size large, and the number of action classes in the
KLHA3D-102 dataset is 102 classes; there are many similar actions, such as “drinking tea”,
“drinking water”, and “eating”. As illustrated by the human skeleton data in Figure 1 of
the KLHA3D-102, KLYOGA3D datasets. The actions “drinking tea”, “drinking water”,
and “eating” differ only in the coordinates of the 3 joints (“14”, “15”, “16”) or (“21”, “22”,
“23”). Therefore, the size of the feature to distinguish between these three types of actions is
too small ( 3

39 = 1
13 ) compared to the size of the entire feature extracted from the 39 joints

of the 3D human skeleton. These actions are all sitting and holding/grasping a bowl or
cup, the action is only slightly different in the hand activity. At least the computational
complexity will be reduced by 1

3 times when switching from computing features in 3D
space to 2D space (image space). This is also the reason Kumar et al. [14] chooses the
approach of projecting the representation of the feature vectors of the KLHA3D-102 and
KLYOGA3D datasets from the 3D space to the image space. All these make the features
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extracted from the 3D skeleton based on the skeleton graph and the space-time function
have low discrimination. That makes the result of active recognition based on GCN and
Hybrid-DNN lower than CNNs. CNNs often project representations (joints, coordinates,
temporal-spatial) on the skeleton to the image space. This results in better discrimination
between activities, as shown by the difference between the feature vectors of 10 joints in
Figure 5 of Kumar et al.’s research [14]. In this figure, the top is a representation of JADM
(Joint Angular Displacement Maps) [130], the middle is a representation of JDM (Joint
Distance Maps) [131], and the bottom is a representation of QJVM (Quad Joint Volume
Maps) [14].

Table 11. The results of HAR on the KLHA3D-102 [100] and KLYOGA3D [14] datasets.

Datasets Configurations

Methods

DDnet
[120]

Acc (%)

PA-ResGCN
[59]

Acc (%)

CNN-LSTM
[128]

Acc (%)

SgCNN
[14]

Acc (%)

CCNN
[129]

Acc (%)

KLHA3D-102

KLHA3D-102_Conf. 1 52.94 40.02
92.63

(Cross-Subject) 93.82
98.12

(Cross-Subject)

KLHA3D-102_Conf. 2 45.18 52.94
92.46

(Cross-View) -
96.15

(Cross-View)

KLHA3D-102_Conf. 3 52.94 48.04 - - -

KLHA3D-102_Conf. 4 2.55 10.22 - - -

KLHA3D-102_Conf. 5 1.96 8.56 - - -

KLYoga3D
KLYOGA3D_Conf. 1 20.51 33.33 - 95.48 -

KLYOGA3D_Conf. 2 25.64 53.85 - - -

In Table 12, the processing time to recognize the human activity on the KLHA3D-
102 [100] dataset. The computation time of DDnet [120] is 100 times faster than PA-
ResGCN [59].

Table 12. The processing time to recognize the human activity on the KLHA3D-102 [100] dataset.

Models Processing Time (fps)

DDnet [120] 5000

PA-ResGCN [59] 50

Figure 14 shows the results of the training set and testing set on the KLHA3D-102
and KLYOGA3D datasets using DDNet [120]. On the KLHA3D-102 dataset, the result of
DDnet on the training set is more than 80%, and the result on the testing set is just over
50%. On the KLYOGA3D dataset, the result on the training set is only more than 50%,
and on the testing set, it is only more than 20%. This shows that the efficiency of learning
features extracted directly on 3D human pose on the KLYOGA3D dataset is very low. When
training DDnet on the KLHA3D-102 dataset, the result on the training dataset is more than
90%, but the result on the test dataset is about 50%. This result occurs because the trained
model of DDnet is overfitting. Figure 15 illustrates the 3D human skeleton of the action of
“drinking tea” and “drinking water”. The skeleton data of the two actions are almost the
same; only the activity is different in the skeleton of the head. This is a huge challenge to
build a discriminative model of human actions in the KLHA3D-102 dataset.
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Figure 14. Illustrating the training and testing results on the KLHA3D-102 and KLYOGA3D datasets.
(a) is the accuracy of the model on the train set and the test set of Conf.1 on the KLHA3D-102 dataset.
(b) is the accuracy of the model on the train set and the test set of Conf.2 on the KLHA3D-102 dataset.
(c) is the accuracy of the model on the train set and the test set of Conf.1 on the KLYOGA3D dataset.
(d) is the accuracy of the model on the train set and the test set of Conf.2 on the KLYOGA3D dataset.
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Figure 15. 3D human skeleton illustration of “drinking tea” and “drinking wate” actions on the
KLHA3D-102 dataset.

5. Conclusions and Future Works

In this paper, we have carried out a full survey of the methods of using deep learning to
recognize human activities based on 3D human skeleton input data. Our survey produced
about 250 results on about more than 70 different studies on HAR based on deep learning
under four types of networks: RNN-based, CNN-based, GCN/GNN-based, and Hybrid-
DNN-based. The results of HAR are shown in terms of methods and processing time.
We also discuss the challenges of HAR in terms of data dimensions and the insufficient
information to distinguish actions with a limited number of reference points. At the same
time, we have carried out comparative, analytical, and discussion studies based on fine-
tuning two methods of DNNs (DDNet, PA-ResGCN) for HAR on the KLHA3D-102 and
KLYOGA3D datasets. Although the training set rate is up to 85% and the test set rate is
15%, the recognition results are still very low (the results on KLHA3D-102_Conf. 5 is 1.96%
of DDnet and 8.56% of PA-ResGCN). It also shows that choosing a method for the HAR
problem is very important; for datasets with a large number of joints in the 3D human
skeleton, the method based on projecting a 3D human skeleton to the image space and
extraction features on the image space should be chosen.



Sensors 2023, 23, 5121 27 of 33

Shortly, we will combine many types of features extracted from the 3D human skeleton
into a deep learning model or construct new 2D feature sets to improve higher HAR results.
We will propose a unified model from end-to-end for detecting, segmenting, estimating 3D
human pose, and recognizing human activities for training and learning exercises in the
gym or yoga for training and protecting health. As illustrated in Figure 16 is an application
that detects, segments, estimates 3D human pose, recognizes activity, and calculates the
total motion of joints. From there, it is possible to calculate the total energy consumed
for exercise. From there, it is possible to make a training plan for students to practice to
protect their health, to avoid exercising too much or doing too little. This is a very practical
application in martial arts teaching, sports analysis, training, and health protection.

Figure 16. Illustrating application of 3D human pose estimation, activity recognition, and total
distance traveled of joints on the human body.
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