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Abstract: This paper presents a real-time kinematically synchronous planning method for the col-

laborative manipulation of a multi-arms robot with physical coupling based on the self-organizing 

competitive neural network. This method defines the sub-bases for the configuration of multi-arms 

to obtain the Jacobian matrix of common degrees of freedom so that the sub-base motion converges 

along the direction for the total pose error of the end-effectors (EEs). Such a consideration ensures 

the uniformity of the EE motion before the error converges completely and contributes to the col-

laborative manipulation of multi-arms. An unsupervised competitive neural network model is 

raised to adaptively increase the convergence ratio of multi-arms via the online learning of the rules 

of the inner star. Then, combining with the defined sub-bases, the synchronous planning method is 

established to achieve the synchronous movement of multi-arms robot rapidly for collaborative ma-

nipulation. Theory analysis proves the stability of the multi-arms system via the Lyapunov theory. 

Various simulations and experiments demonstrate that the proposed kinematically synchronous 

planning method is feasible and applicable to different symmetric and asymmetric cooperative ma-

nipulation tasks for a multi-arms system. 

Keywords: multi-arms robot; collaborative manipulation; self-organizing competitive neural  

network; inner star rule; synchronous planning 

 

1. Introduction 

The development of artificial intelligence technology has facilitated the research on 

the autonomous manipulation of robot manipulators. Meanwhile, the increase in require-

ment of using robots to replace human hands’ manipulation has made the cooperative 

motion of the robot important in the autonomous operations (e.g., manipulating the rud-

der, using pliers or a wrench, carrying large objects, or other similar manual tasks in daily 

life) [1]. Various multi-arm robots, such as Baxter [2], YUMI [3], Justin [4], and Robonaut 

[5], have been proposed to satisfy the requirement because of their outstanding capability 

of cooperative manipulation in replacing humans. 

Multi-arm robots can not only complete the manipulation task of single-arm robot 

(or robot manipulator) but also accomplish more complex cooperative manipulation task, 

which is attributed to their large workspace, more degrees of freedom (DOFs), and greater 

flexibility. The cooperative manipulation of robots has been studied a lot. The methods 

for the cooperative manipulation could be divided into force-based [6–9] and kinematics-

based strategies [10–29].  

The force-based strategies include two types: One relies on dynamics control, but the 

highly complicated nonlinear dynamic model makes it difficult to apply in robot system. 

The other one depends on position compensation control that adjusts the position of the 
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end-effector (EE) to maintain a certain interaction force and that has been studied exten-

sively. The hybrid control of force and position [6,7] and the impedance control [8,9] are 

the typical method using position compensation control. The hybrid control of force and 

position needs to accurately decompose the coordinate space of the EE into the position 

space and force space. The impedance control changes the contact force and the EE posi-

tion according to the impedance value, but the impedance parameters must be adjusted 

adaptively to ensure the compliance of interaction in the cooperative manipulation. Alt-

hough the variable impedance is proposed to improve the flexibility of interaction, the 

real impedance parameters are difficult to obtain. The intelligent control methods are pro-

posed to simplify the control schemes and reduce the difficulty of modeling the robot 

control system caused by the strong coupling, time-varying, and uncertainty, such as a 

neural network [10]. In addition, the force-based strategies rely on force/torque sensors 

and the corresponding control algorithms and are mainly used in the non-redundant ro-

bot system [11]. 

The kinematics-based strategies are simple and easy to combine with an intelligent 

algorithm to realize robot autonomous manipulation, thereby resulting in the kinematics-

based strategies becoming a research focus of the cooperative manipulation. Thus, the 

kinematics-based cooperative manipulation is mainly considered in this paper. Usually, 

the higher requirement for the motion synchronization among the arms needs to be satis-

fied in the kinematics-based cooperative manipulation. The existing kinematics-based 

strategies for the cooperative manipulation rely on motion planning, including leader–

follower [12,13], cooperative-task space (CTS) [14–19], task-oriented [20,21], and intelli-

gent approaches [11,22,23]. 

The leader–follower approach defines the leader arm and the follower arm for the 

robot system, and the follower carries out motion planning according to the movement of 

the leader [12,13]. In the CTS approach, robot arms without a leader-follower relationship 

are shared equally to achieve symmetrical cooperative manipulation tasks by defining the 

relative and absolute motions. The extended CTS approach was further proposed to ac-

complish asymmetric behavior and uncoordinated tasks [18,19]. The task-equation-based 

approach uses the general formula of the defined cooperative task to transform the coor-

dinate system kinematics among arms to plan the motion of single arm [20,21]. The intel-

ligent approach considers the collaborative task of arms as the constrained quadratic pro-

gramming problems and utilizes the advanced neural network as the solver of the prob-

lems to control the arms motion [11,22]. The intelligent approaches could simplify the 

solving process of inverse kinematics for dual arms, but the adjustment of the EE attitudes 

is neglected in cooperative tasks. In Ref. [23], the dual-arm path-planning problem was 

transformed into a multi-objective optimization problem, and a co-evolutionary method 

with shared workspace was proposed to serve as a solver. A motion planner based on the 

kinematic model of a dual-arm robot system in [24] was designed to ensure grasping sta-

bility and dexterity. The movement under the relative motion frame of EEs was studied 

in [25] for the problem of two-hand assembly. An asymmetric task-planning method 

based on the Lyapunov theory was proposed in [26] to solve the problems of designing 

the control law of absolute motion tasks and updating the distribution of relative tasks 

among arms. Fractional-order derivative and the uncertain fractional-order differential 

equations were utilized to predict and correct motion trends, and the rationality of the 

method is verified by different cases [27]. A state feedback robust controller based on local 

information was designed to ensure that the states of multiple robots converge to a com-

mon motion state [28]. An extended Kalman filter collaborative algorithm based on the 

error compensation was proposed to reduce the state estimation error of delayed filtering 

in multi robot systems [29].  

The key focus of the kinematics-based strategies planning is ensuring the motion syn-

chronization in collaborative tasks. The motion of one arm is always taken as a reference 

to plan the motion of other arms in the existing literature. Moreover, the application of the 

existing approaches is more suitable for the multi-arms robot than those coupled with the 
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common and fixed base. Even if there is an application in the robot with a dynamic cou-

pling base, the dynamic coupling base is set to be stationary to ensure the cooperation 

between arms [24], and this is caused by the uncoordinated movement between the EEs 

of redundant arms. Few studies have been devoted to the kinematics-based planning of 

the redundant multi-arms with a dynamic coupling base to ensure the cooperation be-

tween the arms. 

Therefore, on this basis of the previous studies [24,30,31], this paper proposed a novel 

kinematics-based synchronous planning for collaborative manipulation of the redundant 

multi-arms with dynamic coupling, which involves the inverse kinematics based on the 

sub-base method and the self-organizing competitive neural network. The following as-

pects differ from those in the existing literature. 

A class of cooperative manipulation tasks of multi-arm robot described by general-

ized coordinate transformation matrix are summarized, such as carrying, manipulating 

the rudder, using a wrench, manipulating pliers, multi-station manipulation, and other 

similar cooperative manipulation. The configuration branch division of the multi-arm ro-

bot based on the sub-base method is proposed to identify each branch of the robot, and 

the inverse kinematics is calculated based on the damped least square method. Then, the 

multi-arms robot system can synchronously converge along the reducing direction of the 

total error. The self-organizing competitive neural network is proposed to promote mo-

tion synchronization between multiple arms, and it regards the cooperative movement 

between arms as the competitive relationship of neurons instead of relying on a defined 

arm motion as a reference in existing research. The inner star learning rule is used to 

change the neuron weight, and all neuron weight values are updated to adjust the motion 

of multi-arms in every instance of competitive learning. Thus, the multi-arm robot motion 

planning method is formed and realizes the synchronization of the arms’ motion state. 

The stability of the motion-planning algorithm is analyzed by using the Lyapunov theory 

and the inner star learning rule principle. The feasibility of the proposed method, the syn-

chronization of motion state, and its applicability are demonstrated by dual-arm and 

three-arm robots with a dynamic base in different symmetric and asymmetric cooperative 

manipulations. 

The remainder of this paper is organized as follows. Section 2 presents a type of co-

operative manipulation, the sub-base description, and the Jacobian matrix definition for 

the multi-arms with physical coupling. Section 3 discusses the real-time kinematically 

synchronous planning method of collaborative manipulation based on the self-organizing 

competitive neural network and the stability. Sections 4 and 5 provide the simulation and 

experimental results in different cases, respectively. Section 6 presents the conclusion.  

2. Cooperative Manipulation of Multi-Arms 

2.1. A Type of Kinematically Cooperative Manipulation 

In Figure 1, a type of cooperative manipulation for multi-arms is considered for this 

paper, such as carrying, manipulating rudder, using pliers and multi-station manipula-

tion, etc. Figure 2 presents the common features for the kinematically cooperative manip-

ulations that can be concluded as follows:  

 

(a) (b) (c) (d) (e) 
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Figure 1. A type of cooperative manipulation. (a) Carrying. (b) Operating rudder. (c) Operating a 

wrench. (d) Using pliers. (e) Multi-station operation. 
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Figure 2. The diagram for the common features in the cooperative manipulation of multi-arms. 

(1) The coordinate system {Ti} in or out of the specified object is referenced for the 

object pose, ti, of each arm EE in real time. The object pose, ti, is defined as follows: 

{
 

 𝐐𝑖 = 𝐐T𝑖 − 𝐑𝐭𝑖
T𝑖 𝐃𝑖 

𝐑𝐭𝑖(𝐟𝐭𝑖 , 𝜓𝐭𝑖) = 𝐑T𝑖
O0 𝐑𝐭𝑖

T𝑖

𝐭𝑖 = (𝐐𝑖 , 𝐟𝐭𝑖 ∙ 𝜓𝐭𝑖)
T

,   (1) 

where 𝐐𝑖 is the desired position vector of the i-th EE in coordinate system {O0}. 𝐐T𝑖 is 

the vector from the coordinate system {O0} to the i-th coordinate system {Ti}. 𝐃𝑖 is the 

position vector in coordinate system {O0} for ti. 𝐑𝐭𝑖
T𝑖  denotes the rotation matrix from the 

coordinate system for ti to {Ti}. 𝐑T𝑖
O0   refers to the rotation matrix from {Ti} to {O0}. 

𝐑𝐭𝑖(𝐟𝐭𝑖 , 𝜓𝐭𝑖)  defines the rotational operator about the axis direction 𝐟𝐭𝑖  by 𝜓𝐭𝑖  radians. 

ti∈Rb×1. b = 3 for planar robot. b = 6 for spatial robot. i = 1, 2, …, N. N is the number of arms 

(or EEs). 

(2) When the arms perform collaborative operations, the arms form a closed loop, 

and there is a certain motion constraint relationship between the EEs. Thus, the motion 

states of EEs from “1, 2, …, i” to “1’, 2’, …, i’” are kinematically consistent and synchro-

nous. The descriptions for movement states are mutual during the execution of these 

tasks, like the motion error and the motion rate for each EE. Such common motion states 

of cooperative manipulations are expressed as the following problem in Equation (2), and 

Equation (2) is used as the judgment criteria for coordinated synchronous motion and is 

proved in Section 3.2.  

{
lim
𝑡→∞

𝐞𝑖 = 𝐭𝑖 − 𝐬𝑖 = 0      (a)

lim
𝑡→∞

(‖𝐯𝑖 − �̇�𝑖‖) = 0      (b)
,  (2) 

where 𝐞𝑖 denotes the pose error of the i-th EE, 𝐯𝑖 defines the i-th EE velocity, 𝐬𝑖 is the 

pose of the i-th EE, and t is the time. Equation (2a) refers to the pose errors of EEs along 

the direction of error convergence, which not only can make the multi-arms reach the ex-

ecution position of the manipulated object at the same time but also can ensure the mini-

mization of the movement error between the arms in the process of cooperative manipu-

lation. Equation (2b) guarantees that the movement speeds of the EEs are synchronous 

and that the manipulation speed of the EE is equal/close to the set or constraint value in 
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the manipulation. Finally, the synchronization of arms during cooperative manipulation 

can be achieved.  

The i-th EE pose, velocity, and object pose are 𝐬𝑖 , 𝐯𝑖  and 𝐭𝑖 , respectively. 𝐬𝑖 , 𝐯𝑖 , 

𝐭𝑖∈Rb×1. The i-th EE pose error and velocity can be calculated as follows:  

𝐞𝑖(T) = 𝐭𝑖(T) − 𝐬𝑖(T) ,  (3) 

𝐯𝑖(T) = �̇�𝑖 =
𝐬𝑖(T) − 𝐬𝑖(T − ∆T)

∆T
,  (4) 

where T signifies the current time, (T − ∆T) is the last sampling time, ∆T denotes the 

sampling period, 𝐬 = (s1, s2, …, sk)T, and t = (t1, t2, …, tk)T. 

2.2. Multi-Arms Robot with Physical Coupling 

This paper considers the general configuration of the multi-arm robot with physical 

coupling to achieve the cooperative manipulation, as shown in Figure 3. Suppose that 

there are r joints of the multi-arms and each value of θj is the joint angle. The completely 

joint configuration of the multi-arms is defined as Θ = (θ1, …, θr)T, 𝚯 ∈ 𝐑𝑟×1. The pose 

mapping of the multi-arm robot from joint space to Cartesian space can be expressed as 

follows:  

𝐬 = 𝑓(𝚯), (5) 

and 𝐬𝑖 = 𝑓𝑖(𝚯) for the EE.  
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Figure 3. Simple configuration of multi-arm robot. 

The corresponding inverse mapping is as follows: 

𝚯 = 𝑓−1(𝐬).    (6) 

where f is a highly nonlinear operator and difficult to solve. The iterative method via Ja-

cobian matrix is used to approach the good solution of the mapping problem. 

The traditional Jacobian matrix, J, is the partial derivative matrix of the whole chain 

system relative to the EE 𝐬. The Jacobian matrix is obtained via linear approximations of 

inverse kinematic problems. They linearly simulate the motion of the EE with respect to 

the instantaneous system changes of the link translation and joint angle. The traditional 

Jacobian matrix, J, is a function of the joint angle, 𝚯, defined as follows:  

𝐉(𝚯)𝑖𝑗 = (
𝜕𝒔𝒊
𝜕𝜃𝑗

)
𝑖𝑗

,     (7) 
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where I = 1, …, N. j = 1, …, r. 𝐉(𝚯)𝑖𝑗 ∈ 𝐑
b×1. 

2.3. Definition of Sub-Bases  

The traditional Jacobian matrix can ensure that each EE converges along its own error 

reduction direction. Unlike the traditional Jacobian matrix, 𝐉, the sub-bases are defined to 

make the EEs converge along the reducing direction of the system’s total error and guar-

antee that the EEs converge at the same time. 

This paper defines that the nodes with multiple branches as the sub-bases for the 

multi-arms configuration, as shown in Figure 3. The Jacobian matrix is modified as fol-

lows: 

𝐉(𝚯) = diag(𝐉1,1, 𝐉𝑛,1, … , 𝐉𝑛,𝑘 , 𝐉1, … , 𝐉N).   (8) 

For the 1-th sub-base pose, 𝐏1,1, the corresponding element of the Jacobian matrix is 

as follows: 

𝐉1,1(𝚯)𝑗 =∑(
𝜕𝐬𝑖
𝜕𝜃𝑗

)
𝑗

N

𝑖=1

,     (9) 

where 𝐉1,1(𝚯)𝑗 ∈ 𝐑
b×1. 𝐉1,1(𝚯) ∈ 𝐑

b×M0,1. 𝜃𝑗 belongs to the chain 𝐏0—𝐏1,1 with M0,1 DoFs. 

For the n,k-th sub-base pose, 𝐏𝑛,𝑘, the corresponding element of the Jacobian matrix 

is as follows: 

𝐉𝑛,𝑘(𝚯)𝑗 = [ ∑ (
𝜕𝐬𝑖
𝜕𝜃𝑗

+⋯+
𝜕𝐬N
𝜕𝜃𝒋

)

N

𝑖=N−N𝑘+1

]

𝑗

,   (10) 

where 𝐉𝑛,𝑘(𝚯)𝑗 ∈ 𝐑
b×1 . 𝐉𝑛,𝑘(𝚯) ∈ 𝐑

b×M𝑛,𝑘 . 𝜃𝑗  belongs to the chain 𝐏1,1—𝐏𝑛,𝑘  with Mn,k 

DoFs. By analogy, the Jacobian matrix corresponding to other sub-bases can be obtained. 

For 𝐉1, … , 𝐉𝑁 without common degrees of freedom, the corresponding elements can 

be obtained according to (6). 

N = N1 + N2 +⋯+ N𝑘,  (11) 

𝑟 = M0,1 +M𝑛,1 +⋯+M𝑛,𝑘 +M1 +⋯+M𝑁.  (12) 

The velocities of 1-th sub-base and n,k-th sub-base are calculated by the following: 

�̇�1,1 = 𝜂1 ∙
1

N
∙∑𝑘𝑝 ∙

𝑑(𝐭𝑖 − 𝐬𝑖)

𝑑𝑡

N

𝑖=1

,    (13) 

�̇�𝑛,𝑘 = 𝜂𝑛,𝑘 ∙
1

N𝑘
∙ ∑ 𝑘𝑝 ∙

𝑑(𝐭𝑖 − 𝐬𝑖)

𝑑𝑡

N

𝑖=N−N𝑘+1

,      (14) 

where 𝜂1 and 𝜂𝑛,𝑘 are the gain coefficient. N and Nk are fixed value and related to the 

configuration of multi-arms. 

The inverse kinematics is as follows: 

�̇� = 𝐉∗(𝚯)�̇� = 𝐉∗(𝚯)(�̇�1,1   �̇�𝑛,1    ⋯   �̇�𝑛,𝑘   �̇�)
T
,  (15) 

where J* denotes the pseudo-inverse of Jacobian matrix, J(Θ), based on the damped least 

squares method, and J* = JT(JJT + λI)−1. 𝐉(𝚯) ∈ 𝐑b(𝑘+N+1)×𝑟. 𝐉∗ ∈ 𝐑𝑟×b(𝑘+N+1). λ (λ > 0) rep-

resents the damping factor that can handle the ill-conditioned J in the neighborhood of 

singular configurations for redundant manipulators and guarantee the EEs with the min-

imum possible deviation at all configurations. I is a unit matrix with the dimension 

b(k + N + 1) × b(k + N + 1) . In accordance with the traditional fixed proportion-based 



Sensors 2023, 23, 5120 7 of 22 
 

 

method [31] for the real-time tracking of a given object pose, �̇� , the EE velocities are 

planned as follows: 

�̇� = �̇� + 𝑘𝑝 ∙ (𝐭 − 𝐬),      (16) 

where 𝑘𝑝 is the gain coefficient. 

2.4. Iteration for Multi-Arms Robot Motion 

The iterative method is utilized to achieve the real-time movement of multi-arms via 

updating the joint angles, Θ, according to (17). 

𝚯(T) = 𝚯(T − ∆T) + ∆𝚯.  (17) 

where ∆𝚯 deduced from (15) becomes 

∆𝚯 ≈ 𝐉∗(𝚯)∆𝐒 = 𝐉∗(𝚯)(∆𝐏1,1   ∆𝐏𝑛,1    ⋯   ∆𝐏𝑛,𝑘   ∆𝐬)
T
   

= 𝐉∗(𝚯)

[
 
 
 
 
 
 
 
 
 
 
 

𝜂1 ∙
1

N
∙∑𝜇 ∙ (𝐭𝑖 − 𝐬𝑖)

N

𝑖=1

𝜂𝑛,1 ∙
1

N1
∙∑𝜇 ∙ (𝐭𝑖 − 𝐬𝑖)

N1

𝑖=1

⋮

𝜂𝑛,𝑘 ∙
1

N𝑘
∙ ∑ 𝜇 ∙ (𝐭𝑖 − 𝐬𝑖)

N

𝑖=N−N𝑘+1

∆𝐭 + 𝜇 ∙ (𝐭 − 𝐬) ]
 
 
 
 
 
 
 
 
 
 
 

,           (18) 

where μ = kp·ΔT, and μ < 1. Moreover, ∆𝐭 represents the changing pose of the object at a 

sampling time interval, ΔT. 

Then, according to the sub-base method, the movement of the multi-arm robot can 

be achieved. The sub-base motion facilitates the synchronous convergence, and the syn-

chronous performance is more obvious when the common DoFs are enough. The corre-

sponding verifications are presented in Sections 4.1 and 5.2. 

3. Kinematically Synchronous Planning 

3.1. Synchronous Planning Using Self-Organizing Competitive Neural Network 

The DoFs of the sub-base are not always enough to ensure the system convergence 

along the reducing error direction for the pose of the EEs, thereby resulting in the asyn-

chronous EE motion. Thus, the self-organizing competitive neural network based on the 

rule of inner star model is proposed to adjust the synchronism of multi-arms movement. 

Equation (2) indicates that the error 𝐞𝑖 and the 𝐯𝑖 will tend to a stable value. In accord-

ance with the principle of the self-organizing competitive neural network, the kinemati-

cally synchronous planning for the multi-arm robot is designed as shown in Figure 4. 
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Figure 4. Kinematically synchronous planning for multi-arm robot. Uin = t = (t1, t2, …, tN)T. Uout = s = 

(s1, s2, …, sN)T. 

The learning rule of the inner star model defines the weight updating as follows: 

∆𝑤𝑖 = 𝜂(𝑃𝑖 − 𝑤𝑖)𝑌𝑖 ,   (19) 

where 𝜂 denotes the learning rate; 𝑃𝑖 is the i-th input element of the neuron and the min-

imum pose velocity error norm, min(‖𝐯𝑖(T) − �̇�𝑖‖); 𝑤𝑖 is the weight value; i = 1, 2, …, N; 

N is the number of arms (or EE); and 𝑌𝑖 is the value of output neuron and is defined as 

𝑌𝑖 = {
1,      if 𝑃𝑖

′𝑃𝑖 > 휀

 0,      Otherwise 
,    (20) 

where 

휀 =
𝐏𝐏

N
.    (21) 

The input element, 𝑃𝑖, and the weight value, 𝑤𝑖, are defined as 

𝑃𝑖 = ‖�̃�‖ = min (‖𝐯1(T) − �̇�1‖, ‖𝐯2(T) − �̇�2‖,… , ‖𝐯N(T) − �̇�N‖),    (22) 

𝑤𝑖 = ‖𝐯𝑖(T) − �̇�𝑖‖. (23) 

The input vector 𝐏 is constituted by 𝑃𝑖 and defined as 

𝐏 = (𝑃1, 𝑃2, … , 𝑃N)
T, 𝐏 ∈ 𝐑N×1.     (24) 

Since the minimum of ‖�̃�‖ is used as an input and each EE may become the one with 

the minimum of ‖�̃�‖, the proposed method makes the planner no longer use a manipula-

tor as a reference as in the existing literature. In each period, the new input vectors, 𝐏′, in 

neural networks are defined as 

𝐏′ = (𝑃1
′, 𝑃2

′ , … , 𝑃N
′ )T.  (25) 

where 

𝑃𝑖
′ = ‖𝐯𝑖(T) − �̇�𝑖‖.  (26) 

In order to make the system quickly reach the state of synchronization, the winning 

weight value will get more rewards in a cycle. The new weight value, ∆�̂�𝑖, is designed as 
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∆�̂�𝑖 = ∆𝑤𝑖 ∙ tanh(
𝑐𝑖‖𝐯𝑖(T) − �̇�𝑖‖

∑ ‖𝐯𝑖(T) − �̇�𝑖‖
𝑁
𝑖=1 + 𝜎𝑖

),  (27) 

where 𝜎𝑖 is a small positive real number; and 𝑐𝑖 denotes a positive real number to adjust 

the updating slope of neuron weight and contributes to the synchronization of the EE 

motion. The response time of converges is shorter when the parameter 𝑐𝑖 becomes larger.  

The i-th EE’s planned related velocity is deduced according to the iterative method 

as follows: 

�̂�𝑖(T) = 𝜇 ∙ (𝐭𝑖 − 𝐬𝑖) ∙ [1 −
∆�̂�𝑖

‖𝐯𝑖(T) − �̇�𝑖‖ + 𝛿𝑖
].  (28) 

Then, the planned velocity for EEs is 

�̅�𝑖(T) = �̂�𝑖(T) + ∆𝐭𝑖 .  (29) 

Thus, (18) becomes 

∆𝚯 ≈ 𝐉∗(𝚯)∆𝐒 = 𝐉∗(𝚯)

[
 
 
 
 
 
 
 
 
 
 
 

𝜂1 ∙
1

N
∙∑�̂�𝑖(T)

N

𝑖=1

𝜂𝑛,1 ∙
1

N1
∙∑ �̂�𝑖(T)

N1

𝑖=1

⋮

 𝜂𝑛,𝑘 ∙
1

N𝑘
∙ ∑ �̂�𝑖(T)

N

𝑖=N−N𝑘+1

�̅�(T) ]
 
 
 
 
 
 
 
 
 
 
 

,     (30) 

where �̅�(T) = [�̅�1(T), �̅�2(T),… , �̅�N(T)]
T. The learning rate η, η1 and ηn,k are related to the 

step size for each iteration. The response time of converges is shorter when the learning 

rate becomes larger.  

3.2. Stability Analysis 

Supposing that the learning rate, i.e., 𝜂, 𝜂1, 𝜂𝑛,1, …, 𝜂𝑛,𝑘, is small, based on the rule 

of inner star model, the weight value with the minimum EE pose error, 𝐞min, is never 

updated, and the minimum pose error changes in a cycle is ∆𝐞min(T). Thus, for the EE 

with the minimum pose error, the Lyapunov function is defined as follows:  

𝑉(T) =
1

2
𝐞min
2 (T),     (31) 

𝑉(T + ∆T) =
1

2
𝐞min
2 (T + ∆T),  (32) 

The change of the pose error is 

𝐞min(T + ∆T) = 𝐞min(T) − ∆𝐞min(T),  (33) 

For the EE with the minimum pose error, 𝐞min(T), the planned iterative step based 

on the fixed proportion method [31] is 𝜇𝐞min(T) in each control cycle, as shown in Figure 

5. However, the actual motion of EE will have a small deviation, 𝛗, as follows: 

∆𝐞min(T) = 𝜇𝐞min(T) + 𝛗,    (34) 

where 0 < μ < 1. 
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Figure 5. Motion planning and EE motion for the EE with the minimum pose error, 𝐞min(T) . 

�̂�𝑖(T) = 𝜇𝐞min(T). 

Due to the high-precision motion of the advanced manipulator and the small learning 

rate in the proposed method, the deviation, 𝛗, is usually in a very small range. The norm 

of the deviation ‖𝛗‖ is less than ‖𝜇𝐞min(T)‖ to ensure that the EE can move along the 

planned path, i.e., ‖𝛗‖ < ‖𝜇𝐞min(T)‖. Therefore, 

                     ∆𝑉(T) =
1

2
𝐞min
2 (T + ∆T) −

1

2
𝐞min
2 (T) 

=
1

2
{[𝐞min(T) − 𝜇𝐞min(T) − 𝛗]

𝟐 − 𝐞min
2 (T)} 

=
1

2
{[(1 − 𝜇)𝐞min(T) − 𝛗]

2 − 𝐞min
2 (T)} 

≤
1

2
{[(1 − 𝜇)‖𝐞min(T)‖ + ‖𝛗‖]

2 − 𝐞min
2 (T)} 

<
1

2
{[(1 − 𝜇)‖𝐞min(T)‖ + 𝜇‖𝐞min(T)‖]

2 − 𝐞min
2 (T)} 

=
1

2
{[(1 − 𝜇)‖𝐞min(T)‖ + 𝜇‖𝐞min(T)‖]

2 − ‖𝐞min(T)‖
2} 

 = 0.    

(35) 

Thus,  

lim
T→∞

𝐞min(T) = 0,  (36) 

and the minimum pose error, 𝐞min, is convergent.  

Based on Equations (3) and (4), the derivation of �̇�min(T) is 
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        �̇�min(T) = �̇�min(T) − 𝐯min(T) = �̇�min(T) − �̇�min(T)  

=
𝐭min(T) − 𝐭min(T − ∆T)

∆T
−
𝐬min(T) − 𝐬min(T − ∆T)

∆T
 

=
𝐭min(T) − 𝐬min(T)

∆T
−
𝐭min(T − ∆T) − 𝐬min(T − ∆T)

∆T
 

=
1

∆T
[𝐞min(T) − 𝐞min(T − ∆T)] 

=
1

∆T
[∆𝐞min(T − ∆T)] 

=
1

∆T
[𝜇𝐞min(T − ∆T) + 𝛗] 

 

Since ‖𝛗‖ < ‖𝜇𝐞min(T)‖ and lim
T→∞

𝐞min(T) = 0,  

lim
T→∞

�̇�min(T) = 0,  (37) 

According to the rule of inner star model, the input and the weight ultimately become 

equal, as follows: 

𝑃𝑖 = 𝑤𝑖 .   (38) 

This is  

‖�̃�‖ = ‖�̇�min(T)‖ = ‖𝐯𝑖(T) − �̇�𝑖‖ = 0,     (39) 

∆�̂�𝑖 = ∆𝑤𝑖 = 0.  (40) 

Then, 

lim
T→∞

‖𝐞𝑖(T)‖ = lim
T→∞

‖𝐞min(T)‖ = 0.    (41) 

lim
T→∞

‖�̇�𝑖(T)‖ = lim
T→∞

‖�̇�min(T)‖ = 0.   (42) 

Therefore, the proposed planning method based on the self-organizing competitive 

neural network is convergent, and Equation (2) is proved to be valid to achieve motion 

synchronization. 

4. Simulation 

The three-arm robot with 15-DoFs is utilized to provide the contrast simulations for 

inverse kinematics by using inverse kinematics based on the sub-bases and the traditional 

method [31], as shown in Figure 6. The common DoFs are 3 that are enough for all EEs to 

make the pose error converge along the decreasing direction of the total error simultane-

ously. The synchronization performances of EE movements are compared by tracking the 

static-designated location on the specified-carried object. The robot configuration param-

eters, initial parameters, and kinematics parameters are presented in Tables 1–3. The poses 

of the static object are t1 = (2.49 m, 2.79 m, 1.536 rad)T, t2 = (5.0 m, −0.70 m, 1.536 rad)T, and 

t3 = (4.49 m, 1.50 m, 1.536 rad)T. Moreover, t = (t1, t2, t3)T, and �̇� = 0. The simulation results 

are presented in Figures 7 and 8.  
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Figure 6. The configuration of three-arm robot with 15-DoFs. 

Table 1. Parameters of three-arm robot. 

li 1 2 3 4 5 

Length (m) 1.18 0.88 0.88 0.88 0.88 

li 6 7 8 9 10 

Length (m) 0.88 57.85 0.88 0.88 0.88 

li 11 12 13 14 15 

Length (m) 57.85 0.88 0.88 0.88 57.85 

Table 2. Initial joint parameters of three-arm robot. 

𝜃𝑖 1 2 3 4 5 

Initial angle (°) −5.0 5.0 5.0 30.0 20.0 

𝜃𝑖 6 7 8 9 10 

Initial angle (°) 20.0 20.0 −70.0 20.0 20.0 

𝜃𝑖 11 12 13 14 15 

Initial angle (°) 20.0 10.0 10.0 20.0 20.0 

Table 3. Kinematic parameters. 

Parameters μ 𝜂1,1 N b k R 

Value 0.08 1/6 3 3 1 15 

Parameters M0,1 M1 M2 M3 λ ∆T 

Value 3 4 4 4 0.01 0.05 

Both methods can make the EEs arrive at the designated location of the specified ob-

ject, as illustrated in Figures 7a and 8a. The joint angles are shown in Figures 7b and 8b. 

Due to �̇� = 𝟎, ∆𝐞𝑖(T) is equal to 𝐯𝑖(T)∆T, and the velocity curves of the EE pose are sim-

ilar with those of the EE pose error, as shown in Figures 7c–f and 8c–f. Because of the sub-

base motion, the convergence of the EE pose error is much faster than that based on the 

traditional method. Furthermore, the EE pose velocities form uniform motion states be-

fore complete convergence in Figure 8c,d. Thus, the proposed sub-base method is condu-

cive to the synchronization from the initial motion state to the cooperative motion state 

and improves the efficiency for the carrying of the multi-arm robot. 
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Figure 7. Inverse kinematics based on the traditional method in real time. (a) Motion of multi-arms. 

(b) Joint angles. (c) EE position velocity. (d) EE attitude velocity. (e) EE position error. (f) EE attitude 

error. 
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Figure 8. Inverse kinematics based on the sub-base method in real time. (a) Motion of multi-arms. 

(b) Joint angles. (c) EE position velocity. (d) EE attitude velocity. (e) EE position error. (f) EE attitude 

error. 

5. Experimental Verification 

5.1. Experimental Setup 

The two-arm robot with 13-DoFs is used to compare the proposed synchronous plan-

ning for the collaborative manipulation, and 1-DoF is common in the base joint, as shown 

in Figure 9. The D-H parameters of the two-arm robot are presented in Table 4. In Figure 

10, the principle of the experimental setup can be briefly described as follows.  
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Figure 9. The configuration of two-arm robot with 13-DoFs. 

Table 4. D-H parameters of two-arm robot *. 

 i 𝑑𝑖 
𝑎𝑖  

(mm) 
𝛼𝑖 (rad) 𝛽𝑖  i 𝑑𝑖 𝑎𝑖 (mm) 𝛼𝑖 (rad) 𝛽𝑖 

Left  

Arm 

1 0 ℎ1 = 42 0 0 

Right  

arm 

1 0 ℎ1 = 42 π 0 

2 0 ℎ2 = 84 π/2 0 2 0 ℎ2 = 84 π/2 0 

3 0 ℎ3 = 84 −π/2 0 3 0 ℎ3 = 84 −π/2 0 

4 0 ℎ4 = 84 π/2 0 4 0 ℎ4 = 84 π/2 0 

5 0 ℎ5 = 78 −π/2 0 5 0 ℎ5 = 78 −π/2 0 

6 0 ℎ6 = 71 π/2 0 6 0 ℎ6 = 71 π/2 0 

7 0 ℎ7 = 71 0 0 7 0 ℎ7 = 71 0 0 

* The base (i.e., 𝜃1) is the common joint of two arms. 

 

Figure 10. The principle of two-arm robot with 13-DoFs. 

(1) The global depth camera transfers the observed frame of depth and color images to 

the computer by using a universal serial bus (USB) in real time. The robot operating 

system (ROS) node runs in the computer and extracts the position information of the 

object from each frame image. The vision-processing procedures in the computer are 

developed based on the morphology, using the Open Source Computer Vision Li-

brary and the camera Software Development Kit.  
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(2) The joint feedback data, Θ, of the robot are transmitted to the TMS320F28335 control-

ler through the Controller Area Network (CAN) bus. At the same time, the controller 

transfers the received joint data, Θ, to the ROS nodes through the Serial Communi-

cation Interface (SCI) bus in real time.  

(3) The ROS nodes receive the data (xobj, Θ) and execute the forward and inverse kine-

matics calculation and motion-planning algorithm. The real-time control command 

data, Θd and �̇�𝑑, are sent to the robot joint actuator through the RS485 bus to control 

the motion. The baud rate of the CAN bus, USB serial bus, SCI bus, and RS485 bus is 

set to 1 MHz. The control period of the whole system containing the proposed kine-

matically synchronous planning method is less than 10 ms. 

5.2. Synchronous Planning Experiments 

(1) Collaboration Carrying 

The collaboration carrying an object was provided to verify the feasibility of the pro-

posed planning method, as illustrated in Figure 11. The parameters for carrying are shown 

in Tables 5 and 6, respectively. The carried object has translational and rotational motion. 

The rotation center position is (−1.5 mm, −342.7 mm, −0.85 mm)T. The EEs of left and right 

arms reach the initial locations, as shown in Figure 11a. The tracked initial locations on 

the carried object are 𝐭1
init   = (115.841, −342.7, −0.85, 1.2092, −1.2092, −1.2092)T, 𝐭2

init   = 

(−118.841, −342.7, −0.85, 1.2092, −1.2092, −1.2092)T. At 6.75 s, two arms begin to carry the 

object, as shown in Figure 11b. The rotation angle relative to the rotation center is 0.0005 

rad, and the translational motion of the rotation center is 0.15 mm in a cycle period, ΔT. 

During the collaboration process, the position of the tracked locations on the carried object 

moves back and forth in a 5 s cycle, and the tracked pose trajectory in the initial 2.25 s 

(from 6.75 s to 9 s) is as follows: 

𝐭1 = 𝐭1
init −

(

  
 

117.341 ∙ [sin(0.0005(T − 6.75) + 0.0005∆T) − sin(0.0005(T − 6.75))] + 0.15(T − 6.75)

117.341 ∙ [cos(0.0005(T − 6.75) + 0.0005∆T) − cos(0.0005(T − 6.75))]

−0.15(T − 6.75)

𝐟1 ∙ 𝜓1 )

  
 

 (43) 

𝐭2 = 𝐭2
init +

(

  
 

117.341 ∙ [sin(0.0005(T − 6.75) + 0.0005∆T) − sin(0.0005(T − 6.75))] + 0.15(T − 6.75)

117.341 ∙ [cos(0.0005(T − 6.75) + 0.0005∆T) − cos(0.0005(T − 6.75))]

0.15(T − 6.75)

𝐟2 ∙ 𝜓2 )

  
 
  (44) 

where f̂1, ψ
1
, f̂2, and ψ

2
 can be obtained according to the following equations: 

𝐑1(f̂1,ψ1
) = 𝐑2(f̂2,ψ2

)  

=

[
 
 
 
 
 cos (−

𝜋

2
− 0.0005(T − 6.75)) −sin (−

𝜋

2
− 0.0005(T − 6.75)) 0

sin (−
𝜋

2
− 0.0005(T − 6.75)) cos (−

𝜋

2
− 0.0005(T − 6.75)) 0

0 0 1]
 
 
 
 
 

[
 
 
 
 
1 0 0

0 0 1

0 −1 0]
 
 
 
 

  (45) 
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(a) (b) 

Figure 11. Carrying task. (a) Initial configuration. (b) Manipulating process. 

Table 5. Kinematic parameters of two-arm robot. 

Parameters μ 𝜂1,1 N b k r 

Value 0.005 5 2 2 1 13 

Parameters M0,1 M1 M2 λ ∆T — 

Value 1 6 6 0.01 0.05 — 

Table 6. The parameters of self-organizing competitive neural network. 

Parameters 𝜹𝒊 𝝈𝒊 𝒄𝒊 𝜼 

Value 1 × 10−5 1 × 10−5 2.0 0.03 

All the parameters in Tables 5 and 6, the rotation center position, 𝐭1
init, and 𝐭1

init, were 

used in Figure 4. The inverse kinematics is based on Equation (30) to obtain the joint angle, 

Θ. The change of the new weight value, ∆�̂�𝑖, of the self-organizing competitive neural 

network is obtained according to Equation (27). The learning rate, i.e., 𝜂 , 𝜂1 , 𝜂𝑛,1 , …, 

𝜂𝑛,𝑘, is used to calculate the carrying step size of EE motion in Cartesian space. With the 

continuous learning and competition of the proposed planning method, the position ve-

locities of EEs gradually form a consistent movement. Figure 12a,b show the motion paths 

of EEs and joint trajectories, respectively. Figure 12c,d show the periodic change of pose 

in Cartesian space where the Y-axis position, the Z-axis position, and the attitude of the 

EEs remain the same. The position velocity and the attitude velocity reach synchronous 

motion states when the position velocity error and the attitude velocity error decrease to 

0, as illustrated in Figure 12e–h. 
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Figure 12. Trajectories for dual arms in carrying task. (a) EE movement. (b) Joint trajectory. (c) EE 

position. (d) EE attitude. (e) Position velocity. (f) Attitude velocity. (g) Pose velocity error. (h) EE 

pose error. 

(2) Manipulating the pliers 

Figure 13 shows that the two arms manipulated a pair of pliers. The parameters are 

illustrated in Tables 5 and 6. The rotation center position is (−50.0 mm, −347.55 mm, and 

0.85 mm)T. The length of the pliers’ handle is 135 mm. The tracked initial locations on the 

carried object for the EEs of left and right arms are 𝐭1
init = (86.841, −212.7, 0.85, 1.2092, 

−1.2092, −1.2092)T and 𝐭2
init  = (−186.841, −212.7, 0.85, 1.2092, −1.2092, −1.2092)T. At 6.25 s, 

two arms begin to manipulate the pliers, as shown in Figure 14b. During the collaboration 

process, the position of the tracked locations on the pliers moves back and forth in a 3 s 

cycle, and the tracked pose trajectory in the initial 1.5 s (from 6.25 s to 7.75 s) is as follows: 

𝐭1 = 𝐭1
init +

(

  
 

135 ∙ [sin(0.0005(T − 6.25) + 0.0005∆T) − sin(0.0005(T − 6.25))]

135 ∙ [cos(0.0005(T − 6.25) + 0.0005∆T) − cos(0.0005(T − 6.25))]

0

𝐟1 ∙ 𝜓1 )

  
 
  (46) 

𝐭2 = 𝐭2
init +

(

  
 

135 ∙ [sin(−0.0005(T − 6.25) − 0.0005∆T) − sin(−0.0005(T − 6.25))]

135 ∙ [cos(0.0005(T − 6.25) + 0.0005∆T) − cos(0.0005(T − 6.25))]

0

𝐟2 ∙ 𝜓2 )

  
 

 (47) 

where f̂1, ψ
1
, f̂2, and ψ

2
 can be obtained according to the following equations: 

𝐑1(f̂1,ψ1
) =

[
 
 
 
 
 cos (−

𝜋

2
− 0.0005(T − 6.25)) −sin (−

𝜋

2
− 0.0005(T − 6.25)) 0

sin (−
𝜋

2
− 0.0005(T − 6.25)) cos (−

𝜋

2
− 0.0005(T − 6.25)) 0

0 0 1]
 
 
 
 
 

[
 
 
 
 
1 0 0

0 0 1

0 −1 0]
 
 
 
 

 (48) 

𝐑2(f̂2,ψ2
) =

[
 
 
 
 
 cos (−

𝜋

2
+ 0.0005(T − 6.25)) −sin (−

𝜋

2
+ 0.0005(T − 6.25)) 0

sin (−
𝜋

2
+ 0.0005(T − 6.25)) cos (−

𝜋

2
+ 0.0005(T − 6.25)) 0

0 0 1]
 
 
 
 
 

[
 
 
 
 
1 0 0

0 0 1

0 −1 0]
 
 
 
 

   (49) 

 

  
(a) (b) 

Figure 13. Manipulating pilers. (a) Initial configuration. (b) Manipulating process. 
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Figure 14. Trajectories for dual arms in manipulating pilers. (a) EE movement. (b) Joint trajectory. 

(c) EE position. (d) EE attitude. (e) Position velocity. (f) Attitude velocity. (g) Pose velocity error. 

(h) EE pose error. 

The inverse kinematics is based on Equation (30) to obtain the joint angle, Θ. The 

change of the new weight value, ∆�̂�𝑖, is obtained according to Equation (27) and used to 

adjust the EE motions according to Equation (28). The learning rate, i.e., 𝜂, 𝜂1, 𝜂𝑛,1, …, 

𝜂𝑛,𝑘, is used to calculate the step size of manipulating the pilers in the Cartesian space. The 

proposed planning method makes the position velocities of EEs gradually form a con-

sistent movement. Figure 14a,b show the motion paths of EEs and joint trajectories, re-

spectively. Figure 14c,d show the periodic change of pose in Cartesian space, where the 

Y-axis position, the Z-axis position, and the attitude of the EEs remain the same. The po-

sition velocity and the attitude velocity of the EEs are almost the same and showed a small 

error when synchronous motion states were reached, as illustrated in Figure 14e–h.  

(3) Manipulating a rudder 

Manipulating a rudder is illustrated in Figure 15. The parameters are shown in Tables 

5 and 6. The rotation center position is (0.0 mm, −342.7 mm, −0.85 mm)T. The diameter of 

the rudder is 136.84 mm. The tracked initial locations on the carried object for the EEs of 

left and right arms are 𝐭1
init  = (136.84, −342.7, −0.85, 1.2092, −1.2092, −1.2092)T and 𝐭2

init  = 

(−136.84, −342.7, 0.85, 1.2092, −1.2092, −1.2092)T. At 6.75 s, two arms begin to manipulate 

the rudder, as shown in Figure 16b. During the collaboration process, the position of the 

tracked locations on the rudder moves back and forth in a 2.5 s cycle, and the tracked pose 

trajectory in the initial 1.25 s (from 6.75 s to 8 s) is as follows: 

𝐭1 = 𝐭1
init −

(

  
 

136.841 ∙ [sin(0.0005(T − 6.75) + 0.0005∆T) − sin(0.0005(T − 6.75))]

136.841 ∙ [cos(0.0005(T − 6.75) + 0.0005∆T) − cos(0.0005(T − 6.75))]

0

𝐟1 ∙ 𝜓1 )

  
 

 (50) 

𝐭2 = 𝐭2
init +

(

  
 

136.841 ∙ [sin(0.0005(T − 6.75) + 0.0005∆T) − sin(0.0005(T − 6.75))]

136.841 ∙ [cos(0.0005(T − 6.75) + 0.0005∆T) − cos(0.0005(T − 6.75))]

0

𝐟2 ∙ 𝜓2 )

  
 
  (51) 
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where f̂1, ψ
1
, f̂2, and ψ

2
 can be obtained according to the following equations: 

𝐑1(f̂1,ψ1
) = 𝐑2(f̂2,ψ2

)  

=

[
 
 
 
 
 cos (−
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2
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2
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2
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0 0 1]
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1 0 0

0 0 1

0 −1 0]
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Similar to the previous experiments, the inverse kinematics is based on Equation (30) 

to obtain the joint angle, Θ. The change of the new weight value, ∆�̂�𝑖, is obtained accord-

ing to Equation (27) and used to adjust the EE motions according to Equation (28). The 

learning rate, i.e., 𝜂, 𝜂1, 𝜂𝑛,1, …, 𝜂𝑛,𝑘, is used to calculate the step size of manipulating 

the rudder in Cartesian space. Since the shape of the rudder is symmetrical at the center, 

the tracked locations are also symmetrical, and the EE attitude changes are the same. In 

Figure 16c,d, the two arms begin to manipulate the rudder at 6.75 s. In Figure 16e–h, the 

EE pose errors can converge to 0, and the corresponding EE motions own almost the same 

states ultimately by using the proposed planning method with the learning of the self-

organizing competitive neural network. 

Considering (1)–(3) in Section 5.2 comprehensively, the pose speed and pose error 

converge to 0 for the successful execution of coordination manipulation and correspond 

to Equation (2), and no arm motion is set as the reference for the other arms. Hence, the 

proposed planning method based on the self-organizing competitive neural network 

owns the feasibility, synchronism, and effectiveness in achieving the collaboration manip-

ulations for the arms with physical coupling and has the contributions to the practical 

application. 
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Figure 15. Manipulating rudder. (a) Initial configuration. (b) Manipulating process. 

500

X (mm)
0

 500 400

 350

Y (mm)

 10

 5

0

5

 300

Z
 (

m
m

)

Left arm

Right arm

 
0 5 10 15 20

 2

 1

0

1

2 θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ12

θ13

Jo
in

t 
an

g
le

 (
ra

d
)

t (s)
25

 0 5 10 15 20
 400

 200

0

200

400

P
os

it
io

n 
(m

m
)

t (s)

EE X-position of left arm
EE Y-position of left arm
EE Z-position of left arm
EE X-position of right arm
EE Y-position of right arm
EE Z-position of right arm

Object X-position of left arm
Object Y-position of left arm
Object Z-position of left arm
Object X-position of right arm
Object Y-position of right arm
Object Z-position of right arm

 
0 5 10 15 20

 2

 1.5

 1

 0.5

0

0.5

1

1.5

A
tt

it
u
d

e 
(r

ad
)

t (s)

Left EE around X-axis

Left EE around Y-axis

Left EE around Z-axis

Right EE around X-axis

Right EE around Y-axis

Right EE around Z-axis

Left object around X-axis

Left object around Y-axis

Left object around Z-axis

Right object around X-axis

Right object around Y-axis

Right object around Z-axis

 
(a) (b) (c) (d) 



Sensors 2023, 23, 5120 20 of 22 
 

 

0 5 10 15 20
0

50

100

150

200

250

E
E

 v
el

o
ci

ty
 (

m
m

/s
)

t (s)

8 10 12 14

25

30

Left arm

Right arm

 
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

E
E

 a
tt

it
u
d
e 

v
el

o
ci

ty
 (

ra
d
/s

)
t (s)

Left arm

Right arm

 
0 5 10 15 20

 20

0

20

40

60

80

P
o
si

ti
o
n
 v

el
o
ci

ty
 e

rr
o

r 
(m

m
/s

)

t (s)

Attitude
Position

 0.1

0

0.1

0.2

0.3

0.4

0.5

A
tt

it
u
d

e 
v
el

o
ci

ty
 e

rr
o

r 
(r

ad
/s

)

 
0 5 10 15 20

0

50

100

150

200

E
E

 p
o
si

ti
o
n
 e

rr
o

r 
(m

m
)

t (s)

Left arm position

Right arm position

Left arm attitude

Right arm attitude

0

0.2

0.4

0.6

0.8

E
E

 a
tt

it
u
d
e 

er
ro

r 
(r

ad
)

 

(e) (f) (g) (h) 

Figure 16. Trajectories for dual arms in manipulating rudder. (a) EE movement. (b) Joint trajec-

tory. (c) EE position. (d) EE attitude. (e) Position velocity. (f) Attitude velocity. (g) Pose 

velocity error. (h) EE pose error. 

6. Conclusions 

This paper presents a real-time kinematically synchronous planning method for col-

laborative manipulation through the self-organizing competitive neural network. This 

method considers a type of collaborative manipulation known as the synchronization of 

EE motion. The sub-bases are defined for the configuration of multi-arms to obtain the 

Jacobian matrix of common DoFs and ensure the pose errors converging along the reduc-

ing direction of the EE total pose errors. The simulations of multi-arms with common DoFs 

display the consistency before the pose errors converge completely and make contribu-

tions to the collaborative manipulation of multi-arms. On this basis, an unsupervised com-

petitive neural network is raised to regard the EE synchronous motion as the competition 

of neurons and adaptively increase the convergence ratio of multi-arms through the mu-

tual learning and competition of neurons by using the inner star rules. The stability of 

multi-arms system is analyzed through the Lyapunov theory. Various simulations and 

experiments confirm that the proposed synchronous planning method is feasible, syn-

chronous, and has the application potentiality in different cooperative manipulation tasks. 
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