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Abstract: Aiming at the problems of low detection efficiency and poor detection accuracy caused
by texture feature interference and dramatic changes in the scale of defect on steel surfaces, an
improved YOLOv5s model is proposed. In this study, we propose a novel re-parameterized large
kernel C3 module, which enables the model to obtain a larger effective receptive field and improve
the ability of feature extraction under complex texture interference. Moreover, we construct a feature
fusion structure with a multi-path spatial pyramid pooling module to adapt to the scale variation
of steel surface defects. Finally, we propose a training strategy that applies different kernel sizes
for feature maps of different scales so that the receptive field of the model can adapt to the scale
changes of the feature maps to the greatest extent. The experiment on the NEU-DET dataset shows
that our model improved the detection accuracy of crazing and rolled in-scale, which contain a
large number of weak texture features and are densely distributed by 14.4% and 11.1%, respectively.
Additionally, the detection accuracy of inclusion and scratched defects with prominent scale changes
and significant shape features was improved by 10.5% and 6.6%, respectively. Meanwhile, the mean
average precision value reaches 76.8%, compared with the YOLOv5s and YOLOv8s, which increased
by 8.6% and 3.7%, respectively.

Keywords: mixed receptive fields; multi-path spatial pyramid pooling; re-parameterized conv; steel
surface defect detection; YOLOv5s

1. Introduction

During the production process of steel, various types of defects, such as cracks, holes,
and scratches, may form on the surface of the product due to factors, such as raw material
quality, manufacturing equipment, and production environment [1]. Among the typical
defects on steel surfaces, different types of defects usually differ greatly in shape, size, and
distribution due to various factors, which is challenging for the design of detectors [2].
In addition, with the rapid development of high-precision machinery manufacturing,
higher quality requirements are put forward for the surface process quality inspection of
steel products, especially the detection of subtle defects on the steel surface [3]. In the
current research of steel surface defect detection methods, traditional image-based detection
methods and machine learning-based detection methods rely on features, such as texture,
edge contours, and contrast, to identify defects and require complex feature extraction
algorithms and feature classifiers for complex designs, and there are still some shortcomings
in the face of the above detection challenges [4]. Deep learning-based detection methods
can achieve certain effects in addressing the above detection challenges through targeted
algorithms, such as data augmentation [5], multi-scale feature fusion [6], and attention
mechanisms [7,8]. However, they still have a certain distance from high-precision detection
of steel surfaces [9]. Therefore, it is of great research significance to develop a high-precision
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steel surface defect detection algorithm that can cope with steel surface defect scale changes,
background texture interference, and subtle defects.

In the research of steel surface defect detection based on traditional image-based
detection methods. Wen et al. [10] proposed a detection algorithm that combines grayscale
images and three-dimensional depth information. This algorithm combines the rough
compactness measurement of regions of interest with depth information and has a good
detection ability for defects on the surface of steel with unevenness. Xu et al. [11] proposed
a detection algorithm that introduces Shearlet transform to provide efficient multi-scale
directional representation, which achieved good results in testing on different steel pro-
duction lines. Yan et al. [12] proposed an image preprocessing algorithm that combines
improved principal component analysis with a genetic algorithm for feature selection. This
algorithm can intelligently and quickly screen out suspected defect images on the surface
of round steel by using evolutionary calculation and parallel calculation based on compute
unified device architecture. Although traditional detection algorithms based on image pro-
cessing can bring certain detection effects, these methods usually require strict application
conditions, such as high stability in lighting, posture, and texture. In terms of robustness
and real-time performance, these algorithms cannot better meet industrial needs.

In the research of steel surface defect detection based on machine learning methods.
Chu et al. [13] proposed a multi-information twin support vector machine aiming at the
efficiency and accuracy of steel surface defect classification. The algorithm has good
execution efficiency and anti-noise performance. Yue et al. [14] proposed an improved
bat algorithm, which enables the optimized backpropagation network to have higher
accuracy in steel defect detection. Wang et al. [15] proposed an improved random forest
algorithm with optimal multi-feature-set fusion for distributed defects. The algorithm is
able to adapt to a small number of defect image samples and high dimensionality of feature
sets. Although machine learning-based object detection algorithms have overcome the
shortcomings of traditional detection algorithms to some extent, such as poor robustness,
they still have problems, such as large amounts of data, redundant information, and
high feature space dimensions. They are also easily affected by multiple factors, such as
environment, lighting, production processes, and noise.

In the research of steel surface defect detection based on deep learning methods. Liu
et al. [16] proposed a new concurrent convolutional neural network with different image
scales. The model uses only 20% of the steel surface data set as a training set and has higher
detection accuracy. Nevertheless, the algorithm has the disadvantage of complex training.
Zhao et al. [17] proposed an improved Faster R-CNN based on deformable convolution
and multi-scale fusion training, which focuses on improving the detection ability of small
targets, but the detection speed is slow. Cheng et al. [18] proposed an improved RetinaNet
with a differential channel attention module and adaptive spatial feature fusion for steel
surface defect detection. The model effectively fuses shallow and deep features to improve
detection accuracy, but there are still shortcomings in feature extraction under complex
background textures. Kou et al. [19] proposed an improved YOLOv3 model based on
an anchor-free feature selection mechanism and dense convolution blocks. The model
optimizes the detection performance at multiple scales by using an anchor-free mechanism,
but has the disadvantage of high model complexity and high computational cost. Zhao
et al. [20] proposed an improved YOLOv5 model based on dual feature pyramids and
double decoupled heads, the model improves the detection accuracy of tiny defects on
the surface of the steel, but there is a problem of model overfitting caused by the reuse
of features. Liu et al. [21] proposed an improved YOLOv5 model based on a combined
attention mechanism. This model introduces a cross-layer connection in the backbone
network to reduce the problem of feature loss and introduces a cross-stage expansion
weighted feature pyramid network in the neck network to improve the feature extraction
ability of the model. However, this model does not consider the detection problem under
complex texture interference. Yu et al. [22] proposed a two-stage network based on the
squeeze excitation attention mechanism and dilated convolution. The network enhances
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the correlation of channel features, reduces noise interference to a certain extent, and
expands the receptive field of the model, which is beneficial for improving the detection
ability of small target defects. However, it is not designed for multi-scale targets. Fu
et al. [23] proposed region-based fully convolutional networks, which improve the feature
extraction ability of steel surface defects with unclear boundaries by introducing deformable
convolution and attention mechanisms based on adaptive learning. However, due to
the introduction of deformable convolutions and a two-stage network architecture, the
detection speed of the network is slow, and the model volume is large. Wang et al. [24]
proposed an improved YOLOX model, which introduces a coordinate attention mechanism
in the backbone network to enhance feature extraction ability under complex textures
and introduces varifocal loss to solve the problem of imbalance between positive and
negative samples in the front. However, the varifocal loss requires the calculation of
independent loss for each category, which increases the computational complexity and
leads to a decrease in the model’s ability to detect defects in small samples. Zhang et al. [25]
proposed a cross-scale weighted feature fusion network, which improves the bi-directional
feature pyramid network by adding multiple cross-layer feature fusion paths and enhances
the model’s ability to detect multi-scale objects. However, excessive feature fusion and
scale matching increase much of the computational costs.

Based on the problems existing in the above algorithms, in order to improve the
detection accuracy when dealing with the scale changes of surface defects on steel and the
interference of background textures while meeting the deployment requirements of high
speed and lightweight. This paper takes the one-stage object detection algorithm as the
research direction and YOLOv5s algorithm as the baseline model. Additionally, it proposes
an enhanced YOLOv5 model based on a larger kernel design and multi-path pyramid
pooling structures. Our model achieved 76.8% mAP, 67.1 FPS, and 28.9 mb model volume
on the NEU-DET dataset, which verified the effectiveness of the proposed model. The main
contributions of this paper are as follows:

1. We propose a novel re-parameterized large kernel C3 (RepLK-C3) module with a
large kernel design, which has a larger receptive field than the original C3 module
and can pay more attention to shape features.

2. We revisit the effectiveness of using spatial pyramid pooling in deep layers of the
network and remove the spatial pyramid pooling module in the last layer of the
backbone network. Additionally, we re-focus on the importance of recognizing
complex objects at every scale feature map, we redesigned the re-parameterized
large kernel spatial pyramid pooling (RepLK-SPP) module with multiple large kernel
designs. This module can extract strong positional features and use them for lateral
propagation. By using this module after each scale feature map, we constructed the
multi-path RepLK-SPP neck structure, which improves the model’s detection ability
in complex textures.

3. We propose a training strategy that applies different kernel sizes to feature maps of
different scales, allowing the network to capture the scale variations of steel surfaces
to the greatest extent possible.

The rest of the paper is organized as follows: Section 2 describes the work related to the
two major research directions studied in this paper. Section 3 provides a detailed description
of the baseline model and the proposed network structure and related modules in this
paper. Section 4 introduces the dataset and evaluation metrics used, and experimental
results and analysis, validating the accuracy and effectiveness of the proposed algorithm.
Section 5 gives the experimental conclusions and related analysis.

2. Related Work
2.1. Receptive Field

In the object detection model, expanding the receptive field of the model can help the
model better capture the global information improving, so as to improve the model’s ability
to detect tiny targets under complex texture interference. At present, in order to expand the
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receptive field of the model, some methods can be used, such as: 1. Increasing the number
of layers of the model. By increasing the number of layers of the model, the receptive field of
the model can be extended to a larger area; 2. Using global average pooling. Global average
pooling can integrate the information of each position of the input image to produce a
vector representing the entire image. 3. Using dilated convolution, dilated convolution can
achieve a larger receptive field in the model by setting the expansion rate size; 4. Using
large kernel convolution, which can enlarge the receptive field by equalizing the receptive
field of the model with the size of the input image.

In the research of improving the receptive field for the detection of steel surface de-
fects. Bi et al. [26] proposed an improved segmentation and decision network with dilated
convolution. The network has improved detection accuracy in complex environments to
a certain extent; however, its accuracy only improves by 1%. Tian et al. [27] proposed
an improved CenterNet to increase the receptive field of the detector by extending the
feature enhancement method and achieving the best trade-off between speed and accu-
racy; however, it may introduce additional noise interference while expanding feature
information. Li et al. [28] proposed a receptive field enhanced YOLOv4 model for steel
surface defect detection, which introduces a receptive field block to the path aggregation
network for enhancing the information acquisition and feature extraction ability of the
network. However, the receptive field block may not be able to obtain sufficient contextual
information at the global level, which may affect the performance of the model in some
complex scenarios. Zheng et al. [29] proposed a chained atrous spatial pyramid pooling
network for steel surface defect detection. The network introduces multiple groups of
atrous convolutions in series to achieve feature interaction and prominence; however, this
leads to a large computational volume and may lead to overfitting problems.

In recent research, convolutional neural networks with large kernel designs have been
revisited. Ding et al. [30] proposed a re-parameterized large kernel net (RepLKNet) with
the idea of using re-parameterized convolutions to obtain larger receptive fields and more
global information. However, when the kernel size gradually expands to 31 × 31 and
above, there is a decrease in accuracy. Liu et al. [31] proposed a sparse large-kernel
network with a 51 × 51 convolutional kernel. The network verified the ability to further
improve the convolutional kernel size and eliminate the performance gap by strategically
expanding the convolution; however, it does not consider the optimization problems and
calculation speed brought by such a large core. Han et al. [32] proposed an improved
UNet model. The model uses large kernels of depth-wise separable convolution to reduce
parameters; however, the computational speed will significantly decrease when the kernel
size of depth-wise separable convolution reaches a certain size. Yu et al. [33] proposed an
InceptionNet, the network decomposes the large kernel depth-wise convolution along the
channel dimension into four parallel branches, which improves the computational speed
of large kernel CNNs almost without loss of performance; however, it only expanded the
channel kernel to 16 and did not further discuss larger kernel designs. Although the above
algorithm still has some problems, the performance of larger kernel design in upstream
tasks still has significant advantages compared with other methods. Therefore, our study
aims to improve the model’s receptive field by enlarging the kernel of convolution and
optimizing some existing problems so as to explore high-precision detection of surface
defects in steel.

2.2. Multi-Scale Defect Detection

Multi-scale feature fusion is one of the key research fields of computer vision, which
can significantly improve the accuracy of model detection for different scale targets. Lin
et al. [34] proposed a feature pyramid network (FPN) model to solve the problem of
difficulty in multi-scale detection; however, this method only transfers the multi-scale
features of the backbone network and does not consider the deeper feature fusion design.
Zhao et al. [35] proposed a pyramid pooling module to solve the difficulty of understanding
complex scenes, which integrates features of different scales to explore global contextual
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information. However, it only introduces pyramid pooling modules in the deepest layer
of the backbone network without considering multi-scale receptive field design for other
scales. Chen et al. [36] proposed an atrous spatial pyramid pooling module. The model
uses multiple sampling rates to capture feature information at multiple scales in order to
capture contextual information of the target object. However, using atrous convolution
will lead to the problem of feature information overlap when dealing with large targets,
which affects the accuracy of the model. Zhang et al. [37] proposed the backbone network
architecture of efficient pyramid squeeze attention, with stronger multi-scale representation
ability. However, it only performs multi-scale feature extraction on channels and does
not consider spatial feature information. Tang et al. [38] proposed a layered multiscale
network suitable for cross-scale visual defect detection and constructed a new backbone
network called a hierarchical multi-scale network; however, the implementation is achieved
by stacking through grouped convolution, when the number of groups is large, spatial
information loss may occur.

In the research of multi-scale feature fusion for steel surface defect detection. Yeung
et al. [39] proposed a detection model of fusion attention framework, which is used to
enhance the discrimination ability of different scale defect detection through adaptive
balance feature fusion and has a good performance on both NEU-DET and GC10-DET
data sets. However, the feature extraction for multi-scale defects relies on the stacking
of multiple deformable convolutions, which brings a large amount of computation. Liu
et al. [40] proposed a multi-scale context defect network, and it improves the detection
ability of multi-scale defects by introducing multiple parallel expansion convolutions and
uses multiple parallel feature enhancement and selection modules to improve feature
extraction ability. However, this brings a large amount of computation, and its detection
speed in the NEU-DET dataset is only 14.1 FPS. Guo et al. [41] proposed an improved
YOLOv5 network, which adds a transformer block to the backbone network and prediction
head, combining features with global information to enhance the detector’s dynamic
performance for objects of different scales. However, the transformer blocks have a large
computational cost, which reduces the inference speed of the model.

The above research on multi-scale defect detection of steel surface almost all focus on
improving the extraction ability of backbone network for multi-scale features; however,
they do not pay attention to the design direction of different receptive fields. In this paper,
we use a multi-path spatial pyramidal pooling feature fusion path to fully extract the
feature information of each scale feature map and participate in lateral propagation, which
significantly improves the detection capability of the model for multi-scale defects.

3. Methods
3.1. Review of YOLOv5

YOLOv5 [42] is a one-stage target detection network with the advantages of high
accuracy, high speed and light weight. It can be divided into four versions based on the
depth and width of the network: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Among
them, YOLOv5s has the smallest model size and fastest detection speed and is widely used
in industrial detection fields. It consists of four parts: Input, Backbone, Neck, and Head
network. The structure of YOLOv5 is shown in Figure 1.

The Input network includes three parts: mosaic data augmentation, adaptive anchor
box calculation, and adaptive image scaling. Mosaic data augmentation combines four
images using random cropping, scaling, and shuffling methods, which is beneficial for
detecting small objects. For different datasets, the adaptive anchor box calculation method
generates anchor frames of different scales. The adaptive image scaling method can resize
the input image to the specified size.

The backbone network contains multiple CBS modules, which reduce the size to
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ensuring the model is lightweight. The spatial pyramid pooling fast (SPPF) module is
shown in Figure 1b. It consists of a CBS module and several maxpooling layers, which
fuse the feature maps of different receptive fields and enrich the expression ability of
feature maps.
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The neck network combines the Feature Pyramid Network (FPN) with the Path
Aggregation Network (PANet) to fuse the semantic information extracted by deep networks
with the positional information extracted by shallow networks. At the same time, the feature
fusion between the backbone and neck makes the model acquire richer feature information
and sends it to the head to output the prediction results.

The head network and anchor boxes of different sizes are used to predict and classify
feature maps of different scales. In the prediction stage, multiple prediction boxes with
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confidence are generated for a single target. According to the confidence level, the non-
maximum suppression (NMS) algorithm selects the optimal predicted box and leaves the
optimal target box.

3.2. Improved Network Architecture

To solve the problem of missed and false detection caused by a large number of
tiny targets and complex background textures on the steel surface, based on the original
YOLOv5s, the network structure has been redesigned and improved, as shown in Figure 2.
The improvements are as follows.
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1. According to statistics, there are a large number of large-scale, tiny textured defect
images in the NEU-DET steel surface dataset. Therefore, we added an additional
P6 layer with a smaller size to the backbone network and integrated it into the neck
network. We also added a detection head to the head network to better adapt to
multi-scale defect object detection.

2. Due to the interference of texture features on the surface of the steel, there are a large
number of defects with subtle features. Therefore, in order to increase the receptive
field of the model, we combine the re-parameterized large kernel convolution block
with the C3 module, replace the original CSP layer, and introduce the newly designed
re-parameterized large kernel C3 (RepLK-C3) module into the backbone and neck
networks. The structure of RepLK-C3 is shown in Figure 2a.

3. In order to improve the detection accuracy of multi-scale defects on the surface of
the steel, we design a re-parameterized large kernel spatial pyramid pooling (RepLK-
SPP) module with different receptive fields, which replaces maxpooling layers with
re-parameterized large kernel convolutions and changes the connection structure to
parallel architecture. The structure of RepLK-C3 is shown in Figure 2b.

4. We revisit the effects of using SPPF modules in the deeper layers of the network and
refocus on multi receptive field feature extraction for each scale feature map. Based
on this idea, we propose a multi-path re-parameterized large kernel spatial pyramid
pooling feature fusion path in the neck network. Specifically, we removed the SPPF
module from the bottom layer of the backbone network and used the newly proposed
RepLK-SPP module to connect the down-sampled feature maps after the CBS module.
This connection is marked with a red line in Figure 2.

3.3. Re-Parameterized Large Kernel Convolution C3 Module

In the backbone network of YOLOv5s, by continuously using the CBS module and
C3module for down-sampling and feature extraction, feature maps of different scales
are obtained for feature fusion. By visualizing these feature maps, we observed that,
while extracting effective features, a large number of ineffective texture features are not
effectively filtered. RepLKNet [30] proposed a large kernel structure called Replk Block,
which demonstrated that using large kernel re-parameterized convolutions can lead to
larger effective receptive fields and higher shape bias. The re-parameterized large kernel
conv is shown in Figure 3a. It contains a small kernel and a large kernel depth separable
convolution and batch normalization. By connecting the large kernel and small kernel in a
re-parameterized way, the memory computation cost can be reduced while enlarging the
kernel size. RepLK module is shown in Figure 3b, which consists of batch normalization,
two 1 × 1 convolutions, re-parameterized convolution, and residual connection. To solve
the problem of interference of texture features, we combine the RepLK module with the
C3 module in YOLOv5s, replacing the CSP structure to obtain a new RepLK-C3 module.
The structure of this module is shown in Figure 3d. The addition of the large kernel re-
parameterized conv allows the RepLK-C3 module to obtain a larger receptive field and pay
more attention to the shape features within the region when extracting features.

In order to show the effectiveness of the RepLK-C3 module for extracting shape fea-
tures, we replaced the C3 module at the P2 layer with RepLK-C3 module by adding it to
the backbone network structure and visualize the feature maps extracted by the RepLK-
C3Module with a small-size convolution kernel (15 × 15) and a large-size convolution
kernel (41 × 41), respectively, and compare them with the feature maps output by the
C3module in the original position. Selected three types of defects with significant shape
features in the steel surface dataset, including inclusion, patches, and pitted surface, for fea-
ture map visualization, as shown in Figure 4. The results show that the RepLK-C3 module
with large convolution kernels can bring larger receptive fields while effectively eliminating
texture features and can better focus on shape features. Moreover, the ability to extract
shape features will be continuously strengthened with the deepening of network layers.
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3.4. Multi-Path RepLK-SPP Neck

In the backbone network of YOLOv5s, the spatial pyramid pooling fast module is
located in the last layer. Its combination of multiple small-sized pooling layers replaces
the single large-sized pooling layers in the SPP module. Therefore, while retaining fusing
feature maps of different receptive fields and enriching the expressive ability of feature
maps, the running speed is further improved. The structure of the SPPF module is shown in
Figure 5a. The module first uses a 1 × 1 convolution operation, then uses three maxpooling
layers with a window size of 5 to extract features with different receptive fields. Then,
these four processed features will be fused and processed for channel number through a
1 × 1 convolution. At the beginning of the design of the SPPF module, it was believed that
aggregating information from the previous layers that had already been deeply processed
may be more in line with the human brain’s cognitive process of objects when processing
objects of different scales at deeper layers. We revisit this view when the feature information
of the object passes through multiple feature extraction layers, its feature map has been
reduced to 1/32 of the original, the feature information contained is relatively little, and the
feature information already belongs to relatively high-level abstract information, on this
basis, using the SPPF module to fuse the feature information of multiple receptive fields
may not bring the expected effect. Therefore, we propose a multi-path spatial pyramid
feature fusion structure, as shown in Figure 5. Using spatial pyramid pooling module
to extract multi-scale features from each down-sampled feature map and pass them to
deeper layers of the network. Our experimental results show that for large feature maps, a
larger receptive field should be used when using spatial pyramid pooling after different
scale feature maps. Based on this idea, we replace the max pooling layers in the SPPF
module with the Rep Conv module with a larger receptive field, which can avoid the
disadvantage of information loss caused by the pooling operation itself. In addition, Rep
Conv can implement larger kernels without incurring excessive memory computation costs.
Therefore, it is possible to directly design and construct the RepLK-SPP module according
to the parallel architecture of the SPP module without the need for grouping stacking with
a small field of view, such as the SPPF module, as shown in Figure 5b.
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As shown in Figure 6, in the multi-path spatial pyramid feature fusion structure
designed in this paper, the same down-sampled feature map will be processed separately
by the RepLK-C3 module and the RepLK-SPP module. Additionally, we use the same
kernel size design for feature maps of the same size, with the kernel size changing as the
feature map scale changes, in order to achieve the best perception field. We visualized
the feature maps of the CBS module of the third down-sampling, the Rep-C3 module,
the Rep-SPP module in the subsequent branch, and the corresponding position of the
C3 module in the original YOLOv5. The results are shown in Figure 7. It can be seen
from (III and IV) that compared with the C3 module, the RepLK-C3 module proposed in
this paper can filter irrelevant texture information and highlight shape information while
retaining more detailed information; From (V), it can be seen that the proposed RepLK-SPP
module can greatly highlight the position information of the image, especially for defect
types, such as crazing, pitted surface, and rolled-in scale that contain a large amount of
complex background interference. In the original feature fusion path design, the feature
map after the feature extraction of the C3 module will be sent to the subsequent network.
However, for the processing of complex textures on the steel surface, the C3 module is not
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very competent, which will bring poor results to the subsequent feature fusion. Therefore,
by using a branch design to extract shape and position information separately using the
RepLK-C3 module and RepLK-SPP module on each scale feature map, significant effects
can be achieved.
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4. Experiment
4.1. Dataset

The experiment in this paper uses the hot-rolled strip surface defect dataset (NEU-
DET) [43] collected by the School of Mechanical Engineering and Automation of North-
eastern University, which contains six types of surface defects of the hot-rolled strip, as
shown in Figure 8, including crazing (Cr), inclusion (In), patches (Pa), pitted surface (Ps),
rolled-in scale (RS), and scratches (Sc). The dataset contains 1800 grayscale images of steel
surface defects, with 300 images for each type of defect and a resolution of 200 × 200 for
each image. The training set, validation set, and test set are divided in the ratio of 8:1:1, as
shown in Table 1, with 1440 images in the training set and 180 images in both the test set
and validation set.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 21 
 

 

Northeastern University, which contains six types of surface defects of the hot-rolled strip, 

as shown in Figure 8, including crazing (Cr), inclusion (In), patches (Pa), pitted surface 

(Ps), rolled-in scale (RS), and scratches (Sc). The dataset contains 1800 grayscale images of 

steel surface defects, with 300 images for each type of defect and a resolution of 200 × 200 

for each image. The training set, validation set, and test set are divided in the ratio of 8:1:1, 

as shown in Table 1, with 1440 images in the training set and 180 images in both the test 

set and validation set. 

 

Figure 8. Six types of surface defects in the NEU-DET dataset: (a) Crazing; (b) Inclusion; (c) Patches; 

(d) Pitted surface; (e) Rolled-in scale; and (f) Scratches. 

Table 1. Dataset division. 

Data Samples 

Training 1440 

Validation 180 

Test 180 

4.2. Training Environment and Parameters 

This experiment is built on an AutoDL server with an RTX3090 GPU, In-

tel(R)Xeon(R)Platinum 8358P CPU, running on a Linux operating system, using 

PyTorch1.8.1, Python 3.8, and CUDA 11.0. The experimental environment was set up as 

shown in Table 2. 

Table 2. Experimental environment. 

Experimental Environment 

Processor Intel(R)Xeon(R)Platinum8358P CPU 

Operating system Linux 

Ram 32GB 

Graphics card RTX3090 GPU 

Programming language Python3.8 

Figure 8. Six types of surface defects in the NEU-DET dataset: (a) Crazing; (b) Inclusion; (c) Patches;
(d) Pitted surface; (e) Rolled-in scale; and (f) Scratches.

Table 1. Dataset division.

Data Samples

Training 1440
Validation 180

Test 180

4.2. Training Environment and Parameters

This experiment is built on an AutoDL server with an RTX3090 GPU, Intel(R)Xeon(R)
Platinum 8358P CPU, running on a Linux operating system, using PyTorch1.8.1, Python 3.8,
and CUDA 11.0. The experimental environment was set up as shown in Table 2.

To train our models, the Stochastic Gradient Descent (SGD) optimizer was used with
a momentum and weight decay of 0.937 and 0.0005, respectively. Additionally, the learning
rate was adjusted to 0.01. To find the optimal hyperparameter values, we chose image
size 640 × 640, batch size 32, and the model was run for up to 300 epochs. The training
parameters are shown in Table 3.
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Table 2. Experimental environment.

Experimental Environment

Processor Intel(R)Xeon(R)Platinum8358P CPU
Operating system Linux

Ram 32GB
Graphics card RTX3090 GPU

Programming language Python3.8
Deep learning libraries PyTorch1.8.1
Deep learning toolkit CUDA11

Table 3. Training parameters.

Parameter Value Parameter Value

Learning Rate 0.01 Weight Decay 0.0005
Batch Size 32 Momentum 0.937
Image Size 640 × 640 Epoch 300
Dataloader 16 Optimizer SGD

In order to prevent overfitting and improve the generalization of the model, we
use image enhancement methods, such as HSV enhancement, random scaling sampling,
random flipping, and mosaic enhancement, during the training process. These methods
can greatly enhance the diversity of data and effectively improve the model’s detection
ability for small targets. The hyperparameters of image enhancement are shown in Table 4.
The mosaic data enhancement is shown in Figure 9.

Table 4. Augmentation hyperparameters.

Parameter Value

HSV-Hue 0.015
HSV-Saturation 0.7

HSV-Value 0.4
Image scale 0.5

Image flip left-right 0.5
Mosaic 1.0
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4.3. Evaluation Metrics

To evaluate the overall performance of the model, the evaluation metrics used in this
experiment are precision (P), recall (R), average precision (AP), mean average precision
(mAP), FPS, giga floating-point operations per second (GFLOPS), parameters, and model
volume. Their calculations are shown in Equations (1)–(4).

AP represents the area enclosed by the P-R curve, where P, R, and the calculation
expressions are shown below.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

In the above equation, True Positive (TP) represents the samples that are judged as
positive and correct, False Positive (FP) represents the negative samples that are judged
as positive, and False Negative (FN) represents the positive samples that are judged
as negative.

The calculation formula for AP and Map are as follows:

AP =
∫ 1

0
P(R)dR (3)

mAP =
∑S

j=1 AP(j)

S
(4)

In the above equation, S represents the number of all categories and is both the
denominator and the sum of the AP of all categories.

Additionally, FPS represents the number of images the model can detect per second;
the higher FPS, the faster the detection speed of the model. GFLOPS represents the number
of floating-point operations that a model can perform per second; the higher the GFLOPs,
the higher the computational complexity of the model. Parameters usually refer to the
number of trainable parameters in a model, including the number of layers in a network
and the weights of each layer. Model volume refers to the size of its model weight file,
which is determined by the number and data type of all trainable parameters in the model.
The unit of model volume is mb.

4.4. Experiment of Multi Kernel Size Re-Parameterized Large Kernel C3 Module

In order to evaluate the influence of RepLK-C3 modules with different kernel sizes on the
model detection accuracy, we designed relevant experiments by introducing five sets of RepLK-
C3 modules with convolution kernel sizes of 9 × 9, 15 × 15, 25 × 25, 35 × 35, and 41 × 41, and
two groups of mixed-size convolution kernel RepLK-C3 modules. A control group without
RepLK-C3 modules was also introduced, which adopted an architecture fused with the P6
layer. The experimental schemes and results are shown in Tables 5 and 6, respectively.

Table 5. Experimental schemes of multi-kernel size RepLK-C3 module.

Schemes P2 P3 P4 P5 P6

1 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3
2 9 × 9 9 × 9 9 × 9 9 × 9 9 × 9
3 15 × 15 15 × 15 15 × 15 15 × 15 15 × 15
4 25 × 25 25 × 25 25 × 25 25 × 25 25 × 25
5 35 × 35 35 × 35 35 × 35 35 × 35 35 × 35
6 41 × 41 41 × 41 41 × 41 41 × 41 41 × 41
7 33 × 33 23 × 23 13 × 13 9 × 9 7 × 7
8 35 × 35 25 × 25 15 × 15 9 × 9 7 × 7
9 41 × 41 35 × 35 25 × 25 15 × 15 9 × 9
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Table 6. Experimental results of multi-kernel size RepLK-C3 module.

Schemes Precision
(%)

Recalls
(%)

mAP@0.5
(%)

Parameters GFLOPS
(G)

1 69.6 66.4 70.7 12,337,892 16.3
2 65.0 70.0 69.9 12,976,356 16.7
3 63.9 71.7 72.4 13,294,308 17.6
4 68.3 72.2 72.3 14,177,508 20.3
5 63.6 72.6 71.0 15,502,308 24.2
6 65.8 68.6 70.5 16,509,156 27.2
7 66.2 71.4 70.6 13,115,108 19.4
8 73.4 65.5 72.0 13,170,660 20.2
9 62.7 74.3 72.8 13,645,540 23.1

The experimental results show that as the size of the convolution kernel increases,
there is not a significant change in the volume of the model, only a small increase in
computational parameters. This is because depth-wise separable convolution has the
characteristic of a small computational cost. Moreover, the detection accuracy of the model
generally increases with the enlargement of the size of the convolution kernel, and the
model achieves the best mAP when the convolution kernel size is 25 × 25. However, when
the size of the kernel is beyond 25 × 25, the mAP decreases, and the oversized convolution
kernel size may not be suitable for smaller feature maps in the P6 layer. Therefore, we
propose a backbone network with mixed-size kernels to address this issue, and the size
of the kernel decreases gradually in order to adapt to variances in the feature map scale.
Two sets of experiments were designed, as shown in Schemes 6 and 7, with the kernel size
decreasing from 25 × 25 to 5 × 5 and from 41 × 41 to 9 × 9, respectively. The experimental
results of Scheme 7 show that using a mixed-size convolution kernel with a larger kernel
size in the RepLK-C3 module can further improve detection accuracy and effectively reduce
the number of parameters.

4.5. Experiment of Multi-Path RepLK-SPP Neck

To verify the effectiveness of the proposed multi-path RepLK-SPP feature fusion neck
and to explore the impact of the size of the k1, k2, and k3 kernels in the RepLK-SPP module
on the accuracy of model detection, we designed relevant experiments as shown in Table 7.
Scheme 1 is a control experiment that introduces multi-path RepLK-SPP feature fusion
neck but does not contain a RepLK-SPP module. Schemes 2–4 are experiments that use
different sizes of k1, k2, and k3 of the RepLK-SPP module accordingly. The experiment is
based on the network that introduces the P6 layer and the mixed kernel RepLK-C3 module.
Moreover, we still adopt the same kernel size design strategy for the feature map of the
same layer. The experimental results are shown in Table 8.

Table 7. Experimental schemes of different size convolution kernel RepLK-SPP module.

Schemes P3 P4 P5

1 5, 5, 5 5, 5, 5 5, 5, 5
2 9, 15, 25 7, 9, 15 5, 7, 9
3 15, 25, 35 9, 15, 25 7, 9, 15
4 9, 35, 41 9, 25, 35 9, 15, 25
5 25, 35, 41 15, 25, 35 9, 15, 25

According to the results of Scheme 1 in Table 8, after the introduction of multi-path
RepLK-SPP feature fusion neck, even if the receptive field is not designed for the feature
map, a certain accuracy improvement is still obtained; According to the results of Scheme
2 in Table 6, after the introduction of the RepLK-SPP module with a smaller kernel, the
model did not achieve better results, which indicates that a smaller receptive field cannot
effectively capture positional information; According to the results of Schemes 3–5 in Table 6,
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increasing the kernel size of RepLK-SPP can significantly improve the detection accuracy
of the model, and the mixed kernel design with the large receptive field can extract the
location information features under complex texture interference to the maximum extent.
When the kernel design is (25, 35, 41), (15, 25, 35), and (9, 15, 25), the model reaches the
best mAP: 76.8% and has the best precision: 76.1%. In addition, through the comparison
of Parameters and giga floating-point operations per second (GFLOPS), the proposed
multi-path RepLK-SPP feature fusion neck in this paper does not significantly increase the
number of parameters and model complexity.

Table 8. Experimental results of multi-kernel size RepLK-SPP module.

Schemes Precision
(%)

Recall
(%)

mAP@0.5
(%)

Parameters GFLOPS
(G)

1 71.4 69.2 73.2 14,027,684 24.9
2 71.1 66.7 73.3 14,256,868 26.1
3 75.0 69.5 75.1 14,504,676 27.4
4 69.9 73.3 75.6 14,739,364 28.9
5 76.1 70.7 76.8 14,905,572 29.7

4.6. Comparison of Different Algorithms

To verify the detection precision and reliability of the proposed model in this paper,
Faster R-CNN [17], RetinaNet [44], RetinaNet-SW (RetinaNet with Swin transformer back-
bone) [45], YOLOv3 [46], YOLOv5 [42], and the latest YOLOv8 [47] network models were
used for comparison. All models were tasked with detection on the NEU-DET steel surface
dataset, and the detection results are shown in Figure 10. The comparison experimental data
are shown in Table 9. According to the detection results, the proposed model effectively im-
proves the detection precision for various types of defects compared to several mainstream
models. Compared to the original YOLOv5, The AP values of our model for the detection
of three types of defects with prominent shape features: inclusion, patches, and scratches
are 87.5%, 92.4%, and 77.5%, respectively, which indicates that the RepLK-C3 module can
pay more attention to the shape features. As for other mainstream algorithms, this model
improves the AP values of rolled-in scale and pitted surface with complex texture feature
interference and weak feature, reaching 82.0% and 68.2%, respectively, which indicates that
the multi-path RepLK-SPP module can extract effective location information in complex
scenarios. In terms of model performance, the mAP value of our model reaches 76.8%,
compared to the original YOLOv5 and the latest YOLOv8 algorithm; these are increases
of 8.6% and 3.7%, respectively. At the same time, the model volume is 28.9 mb, compared
with RetinaNet-SW 282.0 mb, RetinaNet 277.0 mb, YOLOv3 117.0 mb, and Faster R-CNN
41.2 mb, it can still meet the lightweight deployment requirements; Meanwhile, our model
has a high detection speed, reaching 67.1 FPS, which is higher than RetinaNet 63.4 FPS,
RetineNet-SW 46.1 FPS and Faster R-CNN 23.4 FPS, and realizes real-time detection.

Table 9. Comparison of different algorithms.

Types Faster R-CNN RetinaNet RetinaNet-SW YOLOv3 YOLOv5 YOLOv8 OURS

AP (%)

CR 54.5 50.8 50.2 40.7 38.5 53.9 52.9
IN 81.1 77.8 77.3 78.0 77.0 78.0 87.5
PA 89.3 89.5 87.7 90.5 90.7 90.4 92.4
PS 79.8 80.4 84.5 78.7 75.0 89.0 82.0
RS 62.5 62.8 62.4 52.3 57.1 42.1 68.2
SC 82.6 55.3 72.5 71.4 70.9 85.2 77.5

mAP@0.5 (%) 75.0 69.5 72.4 68.6 68.2 73.1 76.8
FPS (f/s) 23.4 63.4 46.1 75.2 133.3 117.6 67.1

Parms (Mb) 41.2 277.0 282.0 117.0 13.8 21.5 28.9
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Figure 10. Detection results of different algorithms: (a) Crazing; (b) Inclusion; (c) Patches; (d) Pitted
surface; (e) Rolled-in scale; and (f) Scratches.

According to the detection results in Figure 10, Retinanet has a large number of false
detections in instance samples, while Retinanet-SW, which introduces the Swin Transformer
backbone network, can better extract global features but still has a certain degree of false
detections. Faster R-CNN has high detection accuracy, but there are a large number of
overlapping boxes during detection, which is not conducive to actual industrial detection
needs. YOLOv3 has a certain degree of missed detection and lower confidence. In addition,
YOLOv5 and YOLOv8 have false detection problems in the detection of Patches class
samples. Only the model proposed in this paper can achieve accurate detection without
missed detection, false detection, and interference from complex textures. Therefore, it can
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be concluded that our model is superior to other mainstream target detection algorithms
in terms of model volume, detection accuracy, and detection speed and can be better
applicable to the defect detection task under complex texture interference on the surface
of steel.

5. Conclusions

This paper proposes a model which improves on the YOLOv5 network structure
based on the characteristics of the NEU-DET steel surface dataset. (1) Introducing the
re-parameterized large kernel C3 (RepLK-C3) module, which pays more attention to
shape features, replaced the C3 module to improve the model’s detection performance of
significant defects in shape features. Moreover, the expansion of the kernel can enhance
this capability to a certain extent. (2) Proposing a re-parameterized large kernel spatial
pyramid pooling (RepLK-SPP) module with a large receptive field and introducing them in
each down-sampling feature map. Then, the multi-path RepLK-SPP feature fusion neck
with different kernel sizes is designed for the scale of the feature map. Experimental results
show that the module and the proposed feature fusion path can extract more significant
location information in complex backgrounds. (3) Proposing a training strategy that uses
different kernel sizes based on the scale changes of feature maps. Experimental results
show that this strategy can make the model’s receptive field better fit the scale changes of
the target object and can reduce the parameter consumption caused by large kernels.

The experiment on the NEU-DET dataset shows that the mean average precision
value reaches 76.8%, compared with the YOLOv5s and YOLOv8s, which increased by
8.6% and 3.7%, respectively. Meanwhile, the model volume increased slightly to 28.9 mb,
which is still able to meet the demand for lightweight deployment compared to RetinaNet
277.0 mb, RetinaNet-SW (RetinaNet with Swin transformer Backbone) 282.0 mb, YOLOv3
117 mb, and Faster R-CNN 41.2 mb. At the same time, the detection speed is 67.1 FPS,
which meets the industrial demand for steel surface defect detection. Additionally, our
model improved the detection accuracy of crazing and rolled in-scale, which contain a
large number of weak texture features and are densely distributed by 14.4% and 11.1%,
respectively. Additionally, the detection accuracy of inclusion and scratch defects with
prominent scale changes and significant shape features was improved by 10.5% and 6.6%,
respectively. Currently, we have designed a mixed receptive field for multi-scale defects of
steel surfaces in our experiments. In future work, we will further explore the application of
the mixed receptive fields model in other related fields.
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