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Abstract: The Internet of Things (IoT) is a very abundant source of data, as well as a source of many
vulnerabilities. A significant challenge is preparing security solutions to protect IoT nodes’ resources
and the data exchanged. The difficulty usually stems from the insufficient resources of these nodes in
terms of computing power, memory size, range energy resource, and wireless link performance. The
paper presents the design and demonstrator of a system for symmetric cryptographic Key Generating,
Renewing, and Distributing (KGRD). The system uses the TPM 2.0 hardware module to support
cryptographic procedures, including creating trust structures, key generation, and securing the node’s
exchange of data and resources. Clusters of sensor nodes and traditional systems can use the KGRD
system to secure data exchange in the federated cooperation of systems with IoT-derived data sources.
The transmission medium for exchanging data between KGRD system nodes is the Message Queuing
Telemetry Transport (MQTT) service, which is commonly used in IoT networks.

Keywords: key distribution system; cryptographic keys renewing; security in IoT; trusted platform
module; MQTT secure data exchange

1. Introduction

In an era of widespread data exchange, often from the very numerous sensor nodes of
the Internet of Things (IoT), ensuring confidentiality and integrity is crucial. Cryptographic
techniques, particularly asymmetric and symmetric key algorithms, are often used to
protect data during storage and transmission. The properties of these algorithms determine
their applications.

Asymmetric cryptography finds applications in establishing trust structures, signing
transmitted messages and establishing a secure connection with another party for data
exchange. With the use of asymmetric cryptography, it is possible to build solutions for
the distribution of symmetric keys using the Diffie–Hellman scheme [1]. Asymmetric
cryptography is unsuitable for encrypting large volumes of data because of the excessive
overhead on the data to be encrypted, the consumption of large amounts of time and
resources, and the need to use long keys to ensure adequate cypher strength.

The properties of symmetric cryptography are more favourable. They have lower
computational power requirements and provide an adequate level of encryption power
by using much shorter keys. Currently, the required encryption power forces the key of
the asymmetric RSA algorithm to be no less than 3072 bits long and, for the symmetric
AES algorithm, only 128 bits long [2]. In addition, symmetric algorithms provide good
results when encrypting multimedia data streams [3]. A specific shortcoming of symmetric
cryptography is the need for the secure distribution of the key to parties exchanging data.
For this purpose, asymmetric cryptography establishes a secure connection between the
parties involved. The first party generates a symmetric key (called a session key) and, using
the established connection, transmits this key to the other party.

Every cryptographic key loses its validity. Strategies for determining the validity of
keys vary. In some scenarios, the basis for determining the validity of a key is the volume
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of data encrypted using a given key. In other scenarios, the basis is the time since the
key appeared. It is possible to use a combination of both strategies. Regardless of the
strategy adopted, the need to renew keys arises. Key renewal strategies can also vary.
Generating a new key using the same method as the previous one belongs to the first group
of methods. In the second approach, the “old key” (before expiration) supports obtaining a
“new key”. The third group includes methods in which two keys are generated initially,
Where one will be the primary key, and the second will only support renewing the primary
key when it expires.

The basis of cryptographic key distribution and renewal procedures is building trust
between the parties involved. To build a trust structure, a so-called third-party trust is
often required. In traditional solutions, the Certification Authority plays this role. Such a
solution requires relatively large resources for storing cryptographic material, access to an
efficient network connection, adequate computing power, and an efficient power source.
For IoT network nodes, such a requirement is often impossible to meet [4,5].

For a network of sensor nodes, due to their limited capabilities, clusters are created.
For such clusters, unique solutions are being prepared to ensure secure data exchange
within the cluster [6,7]. Group key management (GKM) is used to distribute cryptographic
keys for a group of cooperating nodes. An extensive analysis of GKM systems is presented
in [8]. In this analysis, Dammak et al. separately evaluated implementations relating to
wireless sensor networks (WSN) [9–11], wireless body area networks (WBAN) [12], wireless
IPv6 networks [13], cloud computing [14], and IoT networks [15–17]. They considered the
following properties of the solutions: key distribution schemes (centralised, distributed, de-
centralised), types of cryptographic algorithms used (asymmetric, symmetric, polynomial,
attribute-based), key sharing by a group of nodes with a changing number of participants,
scalability, the existence of single points of failure, mutual, and the independence of keys.

Solutions are needed to the problem of secure data exchange between clusters and
other closed systems belonging, for example, to the critical infrastructure of the state,
systems of the armed forces, police, health services, etc. In the case of a crisis caused
by a natural disaster, terrorist events, or a war emergency, the need to ensure security
cooperation will be crucial. Such cooperation includes integrating civilian IoT with military
C2-class and logistics systems [18–20].

This paper describes symmetric Key Generating, Renewing, and Distributing (KGRD)
for clients with limited memory, computing power, and energy resources, as well as for
clients without such limitations. The KGRD system was developed based on the concept
of this type of system described in [21]. The concept presented in [21] was not mature.
The current study differs from that of [21] in how the solution concept differs from the
implemented system. The study [21] was a presentation of the idea of solving the problem,
while the current study is a description of the implemented system. During the work on
implementing the KGRD system, many modifications were made to the data structures and
the way data were secured, and the software TPM was used as a cryptographic coprocessor.
Such modifications increased the number of procedures in the system and caused changes
in the flow of individual procedures.

In the local trust structure of the hardware TPM, one asymmetric key was removed,
and symmetric keys used to secure local data resources were introduced. The removed
asymmetric key was originally used to authenticate newly registered nodes, so a new
authentication method was developed using a unique NTAG tag and new tasks for node
preparation and registration procedures. For the data stored in TPM NVRAM, access
policies for this data have been implemented, raising the security level. Due to the use of
the software TPM module as a cryptographic coprocessor, a simplified trust structure was
implemented for the software TPM, and procedures for securely transferring symmetric
keys were implemented from the hardware TPM to the software TPM. The most significant
changes are related to the following aspects:

1. During the implementation, there was a problem with the hardware implementation
of the commercially available TPM module. Several TPM hardware models tested
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(including the LetsTrust TPM and Optiga TPM) do not support encryption/decryption
commands using symmetric keys. According to the [22] TCG specification, such
modules should encrypt and decrypt. When developing the concept, I did not assume
the existence of such a problem. The discovery of this problem made it necessary to
change the concept of the whole system. I assumed that the hardware TPM would
generate and store the keys, as well as secure the data stored in the hardware TPM’s
resources and the node’s SD memory. A software TPM simulator will be used as a
cryptographic coprocessor for symmetric encryption. This approach necessitated the
secure transfer of symmetric keys, generated and stored in the hardware TPM, to the
software TPM. I developed and implemented the procedure of duplicating keys and
securely transferring the keys. The study refers to it in Section 3.5.

2. In the presented system, the operation of a node was modelled as a state machine.
The statuses for each node were defined, a state transition diagram was developed,
and all functions implementing the node’s state change were designed. I devoted
Section 3.7 to describing the states of KS-type and N-type nodes.

3. Detailed descriptions of the implemented procedures are given in Section 3.8 and
its subsections. There are three items that have expanded the list of implemented
procedures compared to the concept. The names of the procedures are similar, but
their contents are often entirely different.

4. A simplified way of handling the contexts of the data exchange protocol used between
nodes in the system was introduced. The presented modifications forced minor
changes to the file structures of the nodes stored in each node’s SD memory.

5. The implemented KGRD system has been tested. I evaluated the security level of the
solutions used in the existing system. This is discussed in Section 3.9 and its subsections.

The essential elements of the contribution of the presented approach are as follows:

• a description of the modified solutions for the KGRD system designed to securely
generate, distribute, and renew sensor nodes’ cryptographic keys;

• a description of a method of creating a trust for KGRD system nodes using a hardware
TPM (to create local trust structures) and a software TPM as a crypto coprocessor;

• a description of the method of protecting the sensitive data of the system nodes;
• a description of the method of protecting sensitive data of nodes and the data exchange

between system nodes;
• a description of how to use MQTT to transfer data among system nodes securely;
• an assessment of the solution’s resilience to the most common attacks on IoT networks;
• the implementation of the KGRD system demonstrator.

The rest of the article is organised as follows. Section 2 presents the general concept of
the KGRD system. Section 3 describes the data structures and solutions used in the KGRD
system. The security evaluation of these solutions also has its place in this chapter. Section 4
presents details of the hardware configuration, the system demonstrator’s implementation,
and selected system test results. Discussion and planned work fill Section 5.

2. The General Concept of the Key Generation, Renewal, and Distribution
(KGRD) System
2.1. The Idea behind the KGRD System

The number of IoT network nodes is proliferating. Any such node can be the target
of a cyberattack, but this is a relatively rare situation. IoT nodes can often be part of a
distributed tool to attack other targets. In both cases, the reason for this is the great difficulty
in preparing appropriate mechanisms to protect IoT nodes from unwanted intrusion into
node resources.

IoT nodes are often mobile, use short-range, low-bandwidth wireless links, have low
computing power and memory, and have low-efficiency power sources. Due to these
limitations, preparing effective security mechanisms to secure such nodes’ resources and
ensure secure data exchange is a significant challenge. In such a situation, a standard
solution is to create clusters of cooperating nodes. Security mechanisms are implemented
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to ensure the mutual authentication of cooperating nodes, the protection of nodes’ internal
sensitive data, and the protection of mutually exchanged data. An example of such a
solution is the secure domain of sensor nodes described in [6,7]. Such an approach solves
the security problem within a group of sensor nodes, but secure data exchange between
such clusters and other traditional information systems remains an open problem.

2.1.1. Collaboration between Clusters of IoT Nodes and Other IT Systems

Cryptographic solutions using symmetric key algorithms can be used to provide
secure data exchange between clusters of IoT nodes. This approach has many advantages,
but it requires a mechanism to distribute cryptographic keys safely. Cryptographic key
distribution systems are known and effective for traditional IT systems. Still, there is a
need to develop a cryptographic key distribution system that clusters of IoT nodes and
traditional IT systems can use. Such demands meet the KGRD system. Figure 1 shows the
structure of the KGRD system.
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Figure 1. Illustration of IoT clusters and traditional information systems’ collaboration with the
KGRD system (adapted from [21], taken from [23]).

It was assumed that, in each IoT cluster, one node would act as an intermediary for
data exchange between its nodes and its environment. In Figure 1, such a node is labelled
as Gateway. Nodes or software components of IT systems specially prepared for this task
will play a similar role. For the KGRD system, Gateway components will represent the
IoT cluster or IT system, respectively. Figure 2 shows a new look at the structure of the
KGRD system.
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2.1.2. MQTT Service

IoT networks often use the MQTT service as an intermediary for data exchange. In
the MQTT service, there are two types of nodes: a node that acts as a service server, called
a broker, and other nodes that publish or subscribe to data. The intermediary of such an
exchange is the service broker. Since the resources of IoT nodes are limited, it was assumed
that the KGRD system would use the MQTT service to distribute keys. Figure 3 shows the
KGRD system communication structure using the MQTT service.
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2.1.3. Components of the KGRD System

There will be four types of nodes in the KGRD system. These include:

• KS (Key Server)—the system’s most important node. Its main task will be to handle
N-type nodes and, in particular, generating keys for symmetric cryptography and
securely distributing keys to target nodes,

• AC (Authorization Centre)—the node will provide identifiers for authorised N-type
nodes, and it will be the intermediary for the exchange of credentials necessary to
register N-type nodes in the internal files of the KS node,

• N1, N2, . . . Nk (Node)—nodes for which the KS node will provide keys,
• Broker—node necessary for the operation of the MQTT service, but in the KGRD

system, it will only mediate the exchange of data between the other system nodes.

The KS node will only support N-type nodes registered earlier in the KS resource. The
task of the AC node will be to provide authenticated data for the registration procedure of
this node.

2.1.4. The Idea of Acquiring a Key

A single key generation procedure will create two keys, named NNSK and NNSKsign,
and an initialization vector named NNSKiv for a pair of N-type nodes. The NNSK (Node-
to-Node Security Key) symmetric key and NNSKiv (Node-to-Node Security Key Initialization
Vector) are designated to encrypt messages exchanged between Nm and Nn. The NNSKsign
(Node-to-Node Security Key for signing) is assigned to determine the HMAC digest for the
exchanged data [21,23]. Any registered N-type node can request node KS to generate keys
for a pair of N-type nodes <N1; N2 >(N2 node must also be registered). Figure 4 shows the
sequence diagram for the key generation and distribution procedure (it is assumed that, in
all the figures, node N1 will send a request to generate keys for a pair of <N1, N2 > nodes).
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3. Solutions in the KGRD System
3.1. Requirements for the KGRD System

Considering the conditions under which the cryptographic key distribution system is
to operate and the limitations of IoT network nodes, the KGRD system should meet the
following requirements [21,23]:

• KGRD generates symmetric keys only for authorised clients;
• the KGRD system works on the open Internet—KS and AC nodes of the system can

build a trust relationship between each other using Certification Authority;
• the KS node will generate keys using a high entropy random number generator—this

could be a quantum random number generator, for example;
• the AC node will be the source of authorised customer data for the KS node;
• the MQTT protocol will be used to exchange the data between system elements,

especially during the cryptographic keys distributing procedure;
• the nodes of the system will cryptographically secure the stored data and data trans-

mitted between the nodes of the system;
• each N-type node will have to be appropriately prepared and then registered in the

KS node resources before it begins regular operation;
• the AC node will be responsible for providing the credential data to the N-type nodes

necessary for the N node registration procedure;
• all cryptographic procedures of the KGRD system will be supported by a hardware

TPM module (local trust structure creating, encryption/decryption, HMAC determi-
nation, key generating, etc.).

Figure 5 shows how data are exchanged between elements of the KGRD system.
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To properly organise message exchanges in the MQTT service, a particular string
called “topic” is required, the contents of which must be known to the nodes that are the
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source of the message and to the nodes that are to be the recipients of the message. Before
the message exchange begins, the receiving node must start subscribing to the “topic”,
while the sending node will publish its messages using the “topic”.

Different types of messages will be sent between nodes in the KGRD system, so
different “topic” strings will be designated for each system task. It was assumed, to
improve security, that the contents of the “topic” strings would be generated randomly.
These topics will only know a pair of nodes that will exchange data. In the following, these
strings will be called TOPICn, where n = 0,1,2,3,4. Table 1 shows the list and use of each
“topic” string.

Table 1. Purposes of topics in the KGRD system (adapted from [21,23]).

Topic Node Purpose

TOPIC0 1 KS An N-type node will use this topic to send the first request in the
registration procedure

TOPIC1 KS An N-type node will use this topic to send subsequent requests in
the registration procedure

TOPIC2 N KS node will use this topic to send messages to N-type nodes

TOPIC3mn Nm
The Nm node will use this topic to receive messages published by
the Nn node

TOPIC4mn Nm The Nm node will use this topic to publish messages to the Nn node
1 TOPIC0 has “register” content, and the others have randomly generated content.

3.2. Protection of the Resources of Each Node of the System

The system nodes have limited resources and the use of Certification Authority would
be difficult, so it was assumed that all KS and N nodes would use a local trust structure.
The KGRD system will use a hardware TPM v.2.0 module to create and support this trust
structure [21]. The local trust structure would be used to build trust relationships between
KGRD system nodes, protect the node’s sensitive data, and secure data exchange between
system nodes.

The Trusted Computing Group has developed a cryptographic coprocessor standard
called the TPM module [22]. It can be implemented as a hardware-on-chip or software-
only TPM simulator. TPM supports the use of many cryptographic algorithms. These
include SHA (256, 384, 512), HMAC, RSA (2048, 3072, 16384), ECC (256, 384, 521), and
AES (128, 256) [22]. It also enables the generation of random numbers, the generation
of asymmetric keys, the determination of hash functions, and the verification of digital
signatures. The property that determines the usefulness of the TPM is the ability to store the
private part of the asymmetric key in the internal structures of the chip. The TPM module
generates the key only once, which is never accessible outside. The TPM places such keys
on top of one of the cryptographic key hierarchies of the endorsement, platform, or storage
hierarchy. This approach allows for the building of a local trust structure on each TPM-
equipped node. Symmetric keys and the private part of asymmetric keys, residing at lower
levels in the hierarchy, are protected by the key that is the parent of the key. These keys
outside the TPM do not exist in explicit form. The TPM performs cryptographic operations
using these keys internally. The TPM also includes NVRAM—where sensitive node data,
such as cryptographic keys, can be securely stored—and a unique Platform Configuration
Register (PCR), which allows the preparation of a mechanism for detecting unauthorised
modifications to the node’s hardware and software configurations. In particular, PCR
registers should be used in the system boot procedure to verify the correct hardware
configuration of KS and N nodes and the integrity of critical system files. This procedure is
not described in this paper.

KS and AC nodes will be implemented in an environment with no limitations regard-
ing memory, computing power, and energy. Therefore, it will be possible to use Certification
Authority capabilities to build a trust relationship between these nodes.
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An asymmetric primary key will be at the top of the hierarchy in the local trust
structure built based on the hardware TPM v.2.0 module (e.g., RSA2048 or ECC256). In
the diagrams, it will be designated as SRK (Storage Root Key). The following key in the
hierarchy will be the ANK (Asymmetric Node Key) [21,23], which will be used to protect the
other keys the node uses.

3.3. KS Node Description

The most important node of the KGRD system is the KS node. The main tasks of this
node will include generating symmetric keys and distributing these keys to the node that
requested the keys, as well as to the node’s partner. The data necessary for execution can
be grouped as follows:

• local trust structure;
• own node’s data;
• a description of the nodes authorised to be served by the KGRD system;
• temporary data containing generated cryptographic material for nodes in generating

or renewing keys.

The TPM will store the local trust structure and the own data of the node in its
secure NVRAM. SD memory will store node descriptions and temporary data during key
distribution. All data groups will be protected using the mechanisms offered by the TPM.
Figure 6 shows how the KS node stores its sensitive data.
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The KS node’s data include:

• SRK and ANK asymmetric keys (RSA2048), which are the beginning of the local
trust structure;

• Keys—other elements of the local trust structure:

# NK (Node Key) (AES128—16 bytes)—symmetric key for protecting the data in
local SD memory;

# NKsign (16 bytes)—key required to calculate HMAC for data encrypted with NK
key;

• N_ID (4 bytes)—sensor node identifier in the KGRD system;
• BA (Broker Address)—IP address of MQTT broker;
• NKiv (16 bytes)—initialization vector for NK (random string);



Sensors 2023, 23, 5102 9 of 36

• TOPIC1 (16 bytes)—N nodes use this topic to initiate key generation and distribution;
this topic subscribes to the KS node; this topic is randomly generated and is known
for all registered N nodes;

• RN (1 byte)—variable describing the node’s roles and status.

KS node files stored in its SD memory:

1. File node_desc—stores descriptions of N-type nodes that can use the KGRD system.
There is one record in the file that includes a description of one node. Only the N_ID
field in each file record is given in explicit form. The other fields are encrypted using
the NK key. An HMAC is determined using the NKsign key for the N_ID field and
the encrypted portion of the record. If only the N_ID and NTAG fields are filled in
the record, it means that the node with the N_ID is not yet registered and cannot
use the services of the KGRD system. Each file record includes the following fields
(based on [21]):

• N_ID (Node ID) (4 bytes)—the identifier for a node that is authorised to register
in the system;

• NTAG (Node Tag) (32 bytes)—field containing data to authenticate the node
during its registry; SHA256 digest is determined from the concatenation of the
N_ID field, the private part of the ANK key, and a 4 byte area containing the
number of this node’s description entry in the node_desc file;

• NKSK (Node to Key server Security Key) (16 bytes)—symmetric key for the encryp-
tion of data transmitted between the KS node and the registered N_ID node (node
registration procedure generates this key–only the registered node and KS node
know this key);

• NKSKiv (16 bytes)—initialization vector for NKSK (random string);
• NKSKsign (16 bytes)—key required to calculate HMAC for data encrypted with

NKSK key (only the N_ID node and KS node know this key);
• TOPIC2 (16 bytes)—N_ID node uses this topic (subscribes) to receive data from

the KS node during key generation and distribution; this topic is randomly
generated and is known for N_D and KS nodes;

• HMAC–HMAC hash value is determined for the entire record using the NKsign key.

2. File gen_keys—the file store generated keys and topics from when these data were
generated until the nodes for which these data were generated acknowledge receipts
of these data. The identifiers, N_ID1 and N_ID2, are in plain text. The remaining areas
are encrypted using the KS node’s NK key. HMAC is determined using the NKsign
key for the N_ID1 and N_ID2 identifiers and the encrypted portion record. Each file
record includes the following areas:

• N_ID1 (4 bytes)—identifier of the node initiating key generation and distribution
for nodes N_ID1 and N_ID2;

• N_ID2 (4 bytes)—identifier of the second element in the pair;
• NNSK (Node to Node Security Key) (16 bytes)—symmetric key for the encryption

of data transmitted between nodes N_ID1 and N_ID2;
• NNSKiv (16 bytes)—initialization vector for NNSK (random string);
• NNSKsign (16 bytes)—key required to calculate HMAC for data encrypted with

a NNSK key;
• TOPIC3—the N_ID1 node uses this topic (subscribes) to receive data from node

N_ID2; the N_ID2 node uses this topic (publishes) to send data from node N_ID1;
• TOPIC4—the N_ID1 node uses this topic (publishes) to send data from node

N_ID2; the N_ID2 node uses this topic (subscribes) to receive data from
node N_ID1.

The KS node is the most crucial element of the KGRD system, so it should always
be available to N nodes, have a permanent power supply, and use an adequate Internet
connection. This node should be appropriately secured with a firewall, IDS/IPS systems,
anti-virus software, etc. N-type nodes are likely to differ from each other and have limited
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capabilities. They are unlikely to have Ethernet or Wi-Fi connectivity, but they will use the
communication links commonly used by IoT nodes. Therefore, the KS node should have a
gateway for such communication links as ZigBee, Xbee, Thread, LoRa, BLE, etc.

3.4. N Node Description

N-type nodes are clients in the KGRD system. Each such node must have the data
necessary to communicate with the KS node and secure the data transmitted between that
node and the KS node. These data can be grouped as follows:

• N node local trust structure;
• own node’s data;
• data that are necessary to ensure the protection of data transmission between N nodes

(identifiers, keys, initialization vectors, and “topic” strings).

The node’s local trust structure and own data will be stored in the secure NVRAM
of the TPM. The node’s SD memory will store cryptographic material to secure the data
exchange. The node’s cryptographic material will be stored in the node’s SD memory, in
encrypted form, using symmetric keys stored in a previously generated hierarchy of keys.
All data groups will be protected using the mechanisms offered by the TPM. Figure 7 shows
the way of storing data in the N node resources.
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The N node’s data include:

• SRK and ANK asymmetric keys (RSA2048), which are the beginning of the node’s
local trust structure;

• Keys—other elements of the local trust structure:

# NK (Node Key) (AES128—16 bytes)—symmetric key for protecting the data in
local SD memory;

# NKsign (16 bytes)—key required to calculate HMAC for data encrypted with the
NK key;

# NKSK (Node to Key server Security Key) (AES128—16 bytes)—symmetric key for
the encryption of data transmitted between the node and KS node (only the node
and KS node know this key);

• NTAG (Node Tag) (32 bytes)—field containing data to authenticate the node during
its registry; AC node passes this tag to the node when initializing the node in the
KGRD system;

• N_ID (4 bytes)—identifier of the sensor node; passed by the AC node;
• RN (1 byte)—variable describing the node’s roles and status;
• BA (Broker Address)—IP address of MQTT broker;
• NKiv (16 bytes)—initialization vector for NK (random string);
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• NKSKiv (16 bytes)—initialization vector for NKSK (random string);
• TOPIC1 (16 bytes)—the node uses this topic (publishes) to initiate the generation and

distribution of symmetric keys (KS node subscribes to this topic);
• TOPIC2—the node subscribes to this topic while exchanging data with the node KS,

while generating and distributing symmetric keys.

The ses_keys file is stored in the node’s SD memory. In this file, the node stores the
cryptographic material necessary to secure the data exchange between this node and the
nodes whose identifiers are given in the individual records of this file. A zeroed CTime field
indicates that the cryptographic material has not yet been generated or has expired. The
N_ID and CTime fields are in explicit form. The other areas are protected cryptographically
with the NK key. HMAC is determined using the NKsign key for the public (N_ID and
CTime) and encrypted record portions. Each file record includes the following areas:

• N_ID (4 bytes)—identifier of the second node in the pair with which the data exchange
will be secured using cryptographic material stored in this record;

• CTime (Creation Time of the key) (8 bytes)—timestamp of the moment the cryptographic
material is received from the KS node;

• NNSK (Node to Node Security Key) (16 bytes)—symmetric key for the encryption of
data transmitted between the local node and node N_ID (known only for the local
node and node N_ID);

• NNSKiv (16 bytes)—initialization vector for NNSK (random string);
• NNSKsign (Node to Node Security Key for signing) (16 bytes)—key required to calculate

HMAC for the data encrypted with the NNSK key;
• TOPIC3—the local node uses this topic (subscribes) to receive data from node N_ID;

the N_ID node uses this topic (publishes) to send data to the local node;
• TOPIC4—the local node uses the topic to send (publishes) data to node N_ID; the

N_ID node uses this topic (subscribes) to receive data from the local node;

3.5. Ways of Implementing the N Node

The assumptions for the KGRD system did not specify large requirements for N-type
nodes. Type nodes can either be implemented as standalone devices to support clusters of
IoT network nodes or as software packages designed to support traditional IT systems. In
the case of autonomous devices for IoT, it was assumed that these nodes can have limited
memory, computing power, and energy resources, and they can be mobile and use wireless
links. An example of such an implementation would be a Raspberry Pi board with a TPM
v.2.0 hardware module installed. Depending on the demand and the TPM model used,
N-type nodes can be implemented in one of the following ways:

• a standalone device with hardware TPM v.2.0 that meets all TCG specifications [22];
• a standalone device with a hardware TPM that does not meet all the requirements of

the TCG specification [22] and, in particular, does not support encryption/decryption
functions (such hardware TPM modules are available on the market, e.g., Infineon
Iridium SLx 9670 and LetsTrust TPM 2.0);

• a standalone device using a software-based TPM simulator that has implemented all
the functions described in the TCG specification [22];

• a software component that does not require a TPM fully emulates an N-type node’s
operation. This component can obtain keys from the KGRD system for a traditional IT
system to work with other N-type nodes.

The solutions for the KGRD system presented in this paper are prepared for an im-
plementation case that uses a TPM module that does not support encryption/decryption
functions. For this reason, the N node will use a software TPM simulator and the hard-
ware TPM. The hardware TPM, except encryption/decryption functions, will perform
all other security-related activities, particularly the secure storage of cryptographic keys
and other sensitive N node data, random number generation, as well as SHA and HMAC
digest determination.
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Before performing the encryption/decryption function, the key must be read from the
hardware TPM’s resources and transferred to the keys hierarchy in the software TPM (this
activity is performed once after powering up the Node N). For this purpose, a particular
procedure is used to secure duplication of the transferred key on the hardware TPM side
(the final section provides a detailed description of key duplication). Then, the importing
of this duplicated key on the software TPM side is performed. Before starting the key
duplication procedure in the software TPM, a simplified local trust structure must be
generated, into which the duplicated key will be imported. The key hierarchies that are
generated in the software TPM are not permanent (they disappear after powering down the
N node), so a new local trust structure must be generated in the software TPM every time
the node is powered down. Then, the transfer of the necessary keys, from the hardware
TPM to the hierarchy in the software TPM, must be carried out. Figure 8 shows an example
of the contents of the key hierarchy in a software TPM after importing an NK key from a
hardware TPM.
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The procedure for secure duplication is described in the TCG specification of the TPM
module [22]. There are two TPM modules involved in key duplication. The first module is
the hardware TPM—it will be labelled S1. The second module is the software module (S2).
The duplication procedure includes the following steps:

1. Obtain the public part of the key from the S2 system, which is to be the new parent of
the duplicated key (for example, CCK), and transfer it to the S1 system.

2. Execute the ANK key duplication command in the hardware TPM of the S1 system
using the public part of the SRK key of the S2 system. The result is three files
containing: the private part of the ANK key and the ANK key seed (both secured by
the public key of the SRK system S2), as well as the public part of the ANK key.

3. Execute a key duplication command (e.g., NK) by the S1 module using the public
part of the key from the S2 module (e.g., CCK). The result is three files containing:
the private part of the duplicated key (NK) and the seed of that key (both bound to
the public key CCK of the S2 system), as well as the public part of the duplicated key.
These files require no other security and can be transferred to the S2 system.

4. Import the contents of the transferred files into the key hierarchy in the S2 system,
starting with the new parent of the duplicate key (as an NK_v key).

3.6. AC Node Description

Among the assumptions of the KGRD system, one is to support only authorized
N-type nodes. This assumption results in the fact that, before a KS node can perform its
services for N nodes, both types of nodes will need to have the appropriate data. The KS
node requires data about the N-type nodes authorised to use its services, while the N nodes
will need credentials to initiate cooperation with the KS node. The AC node head tasks are
all the activities necessary for data preparation for KS and N nodes.

KGRD system clients (N nodes) can vary widely. The differences may relate to the
technology used, the way the system is protected, the purpose of the system, the classifica-
tion of the processed data, national or organizational affiliation, etc. For this reason, it isn’t
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easy to define a homogeneous way to initiate an interaction between these systems and the
KS node.

The solution to these problems is not the subject of this paper. Still, it has been
assumed that the AC node will support the organizational activities required to establish
the cooperation of such systems with the KS node. The AC node will be the intermediary
for the secure transfer of {N_ID, NTAG} credentials from the KS node to the N nodes
authorised to use the services of the KGRD system. As a result of these actions, the KS
node will have a list of authorised N nodes, and the authorised N nodes will have their
N_IDs, NTAGs, and the N_IDs of the nodes with which they can interact.

The target implementation of the AC node should meet the following requirements:

1. The configuration of the AC node must comply with the security recommendations
for nodes operating on the Internet (an example of such requirements is given in the
final section of Section 3.8).

2. Data exchange between the KS and AC node must be secured using mechanisms that
use a recognised Certification Authority.

3. The KS node will prepare credentials for new N nodes.
4. The credentials for the N node will be transmitted, via a secure link, from the KS node

to the AC node in a form that ensures the confidentiality and integrity of the data.
The data packet will contain, among other things, an identifier for the node (N_ID)
and a specially prepared NTAG tag. This tag is prepared so that it can be used only
by the node for which it was prepared to register only with the KS node that prepared
this tag.

5. The credentials will be transmitted to the N node in a protected and controlled
environment using a secure link, such as an SSH service.

3.7. Status of Nodes and Activities in the KGRD System

During its lifetime, each node can be in one of the states. Table 2 describes the states of
the KS and N nodes. Figure 9 illustrates how to transition between states. This figure also
gives the names of the procedures that make the state change possible.

Table 2. Descriptions of the states of KS and N-type nodes.

State Name Node Type Description Conditions That Must Be Met

NOT_INIT KS, N node is not initialized The trust structures for the node and the required data have not
been created in the NVRAM of the TPM

INIT_FULL KS, N node initiated in full

The trust structure is generated in the hardware TPM
The required data is generated in the NVRAM of the
hardware TPM
The trust structure is generated in the software TPM

INIT KS, N node initialized after
powering on again

The trust structure is generated in the hardware TPM
The required data is generated in the NVRAM of the
hardware TPM
LACK of trust structure in the software TPM

READY KS ready to register N nodes
KS node is fully initiated
File “node_desc” is generated
forwarded credentials for nodes N

REGISTERED N node N registered

N node is fully initiated
There is an NKSK key in the trust structure in the hardware TPM
In the NVRAM of the hardware TPM, the existence of fields
NKSKiv, NKSKsign and TOPIC1
There is an NKSK_v key in the trust structure in the
software TPM
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Table 2. Cont.

State Name Node Type Description Conditions That Must Be Met

WORK KS ready for normal operation KS node is ready to register N nodes
Communication with the MQTT broker is up and running

WORK N ready for normal operation N node is registered
Communication with the MQTT broker is up and running

KWN_COOP N known cooperators N node is fully initiated
File “ses_keys” is generated

INIT_REG N
After power on again, when
the N node was previously in
a REGISTERED state

Forwarded credentials for nodes N
There is an NKSK key in the trust structure in the hardware TPM
In the NVRAM of the hardware TPM, the existence of fields
NKSKiv, NKSKsign and TOPIC1
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3.8. Procedures in the KGRD System

Building a secure system requires the development of procedures that will be used
throughout the system’s life, i.e., from the moment of its creation through the processes of
its operation and, finally, its decommissioning. These procedures will implement security
solutions for hardware and software configuration. The list of these procedures (based
on [21]) is as follows (in parentheses are the names of the implemented functions):

1. The procedure for starting the Broker node.
2. The procedure for initiating the KS node (KS_init).
3. The procedure for preparing the credentials for an N node (KS_prep_cred).
4. The procedure for establishing a cooperation KS node with the Broker node (KS_work).
5. The procedure for initiating the N node (N_init).
6. The procedure for setting the list of cooperators for node N (N_init_ses_keys).
7. The procedure for registration of the N node in the KGRD system (N_register).
8. The procedure for establishing a cooperation N node with the Broker node (N_work).
9. The procedure for generating and distributing symmetric keys (N_request_key)

involves three steps:

(a) request a set of cryptographic keys and topics;
(b) provide the generated cryptographic material to the destination node;
(c) confirm the transfer of cryptographic material.
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10. Procedure for secure data exchange between nodes (N_data_send).
11. The procedure for renewing and distributing a symmetric key involves three steps:

(a) request the renewal of cryptographic material—includes activities such as
notifying the other party of the initiation of the procedure,

(b) deliver renewed cryptographic material to the nodes concerned,
(c) confirm the transfer of cryptographic material.

12. The procedure for restarting the node after powering on again (KS_start, N_start).

The procedures highlighted in bold in the above list are described in detail in the
following subsections.

Each node of the KGRD system should be secured under good security practices. In
particular, the following should be done:

1. Update the system firmware.
2. Remove default installed and unnecessary accounts from the node’s operating system

(e.g., in Raspbian, remove the account named “pi”) and change the passwords of
the remaining accounts to something other than the default (as required by the
security policy).

3. Create another account that will be dedicated to the remote management of the node
acting as a Broker. Logging into this account must require a password. This account
can have the superuser privilege (to use “sudo” command) but with the superuser
account password enforced.

4. Run an SSH service that allows remote login via a secure link. The SSH service should
be configured so that only selected accounts can be remotely logged in.

5. Run and configure the MQTT service to force the use of TLS protocol (port tcp/8883).
This approach requires certificates for the broker and the broker’s clients. A way
to obtain such certificates is to use a self-signed Certificate Authority and server-
side certificates on the Broker node. The generated certificates for the clients can be
forwarded to the N nodes, via the AC node, as they pass their credentials to the nodes.

6. Run and configure the local firewall (e.g., UFW) so that the node only supports the
ports required for operation:

• to support SSH (port tcp/22) and, additionally, block traffic for six or more post-
connection attempts from the same IP address in the last 30 s (to prevent brute
force attacks),

• to support MQTT over a secured link (port tcp/8883)

7. Disable all services that are not needed for broker operation in the system.
8. Disable all unnecessary interfaces of the system, e.g., Bluetooth, Serial ports.

3.8.1. The Procedure for Starting the Broker Node

The node that plays the Broker role should be run first in the system. This node only
acts as an intermediary for data exchange between other nodes in the KGRD system, but it
should be configured under good security practices and should accept all requests from
other nodes in the KGRD system described in the following subsections. The Broker node
configuration must meet the requirement described in the final section of Section 3.8.

3.8.2. The Procedure for Initiating the KS Node

Initializing the KS node is the next mandatory step after launching the Broker node.
This procedure performs the following tasks:

1. the generation of trust structure in hardware TPM, including SRK and ANK keys;
2. the generation of symmetric keys, NK and NKsign, and attaching them to the created

trust structure—these keys and the NKiv field will be used to secure the node’s
resources stored in SD memory;

3. the generation of a temporary trust structure in a software TPM, including CCRK and
CCK keys;
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4. the duplication of the NK key from the hardware TPM module and securely importing
this key (NK_v) into the trust structure in the software TPM module;

5. the creation and initialization of the following areas in the NVRAM of the hardware
TPM: N_ID, BA, TOPIC1, NKiv, and RN;

6. set the status for the KS node to “INIT_FULL” in the RN field.

Figure 10 shows the sequence diagram and the KS node resource contents after the
procedure is completed (updated fields are highlighted in orange).
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3.8.3. The Procedure for Preparing the Credentials for the N Node

The procedure is designed to generate credentials for N nodes in the KS node resources.
These data are placed in the “node_desc” file in SD memory.

The operation of an AC node in the system will depend very much on where the
KGRD system is applied for this study, so it was assumed that the procedure described
here would additionally export the generated authentication data to a separate file with
the working name “node_desc_export”. This file will be the source of authentication data
for N nodes in the procedure for initiating these nodes. How to use this file is shown in
Section 3.8.5.

The result of the procedure for generating credentials will be two files. The first file is
the “node_desc”, which is stored in the KS node resources. Figure 11 shows how this file is
transferred in the KGRD system. Figure 12 shows the contents of this file after generating
the credentials for N-type nodes (the data updated so far are highlighted in yellow, and
those updated in the last step are in orange). The second file is “node_desc_export”.

After completing this procedure, the status of the KS node is set to “READY” in the
RN variable.

3.8.4. Establishing Cooperation KS node with the Broker Node

The procedure starts the cooperation between KS nodes and the Broker, as well as
subscription in the “TOPIC0” and “TOPIC1” topics.

After completing this procedure, the KS node status is set to “WORK” in the RN variable.



Sensors 2023, 23, 5102 17 of 36

Sensors 2023, 23, x FOR PEER REVIEW 17 of 38 
 

 

(1) Generating local 
      trust structure 
      (SRK, ANK)

(5) Generate N_ID 
      for node      

(2) Generate keys 
      NK and NKsign

(6) Generate string for 
      TOPIC1 and NK_iv

(7) Set BA address

KS node

(3) Generating temp. 
      trust structure 
      (CCRK, CCK)
(4) Duplicating and 
      importing NK

 

TPM Non-volatile Memory

SD memory
The files are 

empty

node_desc - node descriptions

N_ID NTAG NKSKsign TOPIC2 HMACNKSK NKSKiv

N_ID NTAG NKSKsign TOPIC2 HMACNKSK NKSKiv

N_ID1 N_ID2 NNSK NNSKsign TOPIC3 TOPIC4 HMACNNSKiv

N_ID1 N_ID2 NNSK NNSKsign TOPIC3 TOPIC4 HMACNNSKiv

gen_keys – temporary data

SRK

ANK

NKsignNK

TOPIC1NKiv
N_ID BA

RN

 

software TPM 
CCRK

CCK

NK_v
 

(a) (b) (c) 

Figure 10. Sequence diagram: (a) the KS node’s resource contents in the hardware TPM (b) and 
software TPM (c) after the KS node initialization procedure (adapted from [21]). 

3.8.3. The Procedure for Preparing the Credentials for the N Node 
The procedure is designed to generate credentials for N nodes in the KS node re-

sources. These data are placed in the “node_desc” file in SD memory. 
The operation of an AC node in the system will depend very much on where the 

KGRD system is applied for this study, so it was assumed that the procedure described 
here would additionally export the generated authentication data to a separate file with 
the working name “node_desc_export”. This file will be the source of authentication data 
for N nodes in the procedure for initiating these nodes. How to use this file is shown in 
Section 0. 

The result of the procedure for generating credentials will be two files. The first file 
is the “node_desc”, which is stored in the KS node resources. Figure 11 shows how this 
file is transferred in the KGRD system. Figure 12 shows the contents of this file after gen-
erating the credentials for N-type nodes (the data updated so far are highlighted in yellow, 
and those updated in the last step are in orange). The second file is “node_desc_export”.  

KS

N1 N2

credentials 

Nk

node_desc_export

N-type node link for 
regisration procedure

N-type node link for 
normal work

Authentication data flow 
path for an N-type node

 
Figure 11. Transfer file “node_desc_export” (adapted from [21]). Figure 11. Transfer file “node_desc_export” (adapted from [21]).

Sensors 2023, 23, x FOR PEER REVIEW 18 of 38 
 

 

TPM Non-volatile Memory

SD memory

SRK

ANK

NKsignNK

TOPIC1NKiv
N_ID BA

RN

The file is 
empty

node_desc - node descriptions

N_ID NTAG NKSKsign TOPIC2 HMACNKSK NKSKiv

N_ID NTAG NKSKsign TOPIC2 HMACNKSK NKSKiv

N_ID1 N_ID2 NNSK NNSKsign TOPIC3 TOPIC4 HMACNNSKiv

N_ID1 N_ID2 NNSK NNSKsign TOPIC3 TOPIC4 HMACNNSKiv

gen_keys – temporary data

 
Figure 12. KS node data resources after the credentials preparation procedure is completed (adapted 
from [21]). 

After completing this procedure, the status of the KS node is set to “READY” in the 
RN variable. 

3.8.4. Establishing Cooperation KS node with the Broker Node 
The procedure starts the cooperation between KS nodes and the Broker, as well as 

subscription in the “TOPIC0” and “TOPIC1” topics. 
After completing this procedure, the KS node status is set to “WORK” in the RN var-

iable. 

3.8.5. The N Node Initiation Procedure 
The procedure for initializing an N-type node is to prepare the node for operation in 

the KGRD system. This procedure generates a local trust structure in the node’s hardware 
TPM that includes SRK and ANK keys. It then generates NK and NKsign keys for this 
node and attaches them to the generated trust structure. 

In the next step, a trust structure is created in the software TPM, and a duplicate NK 
key is imported into this structure using a particular and secure procedure. 

The last step generates the fields necessary for an N-type node, including NTAG, 
N_ID, BA, NKiv, NKSKiv, NKSKsign, TOPIC2, and RN. NTAG, and N_ID fields are gen-
erated based on the provided “node_desc_export” file. The Broker node IP address is 
placed in the BA field. The contents of the fields, NKiv and TOPIC2, are generated ran-
domly. The last action of this procedure is to set the status value for the node to 
“INIT_FULL” in the RN field. Figure 13 shows the contents of this file after generating the 
credentials for N-type nodes (so far, updated data is highlighted in orange). Figure 14 
shows how the data from this file is transferred to the initiated node. 
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3.8.5. The N Node Initiation Procedure

The procedure for initializing an N-type node is to prepare the node for operation in
the KGRD system. This procedure generates a local trust structure in the node’s hardware
TPM that includes SRK and ANK keys. It then generates NK and NKsign keys for this
node and attaches them to the generated trust structure.

In the next step, a trust structure is created in the software TPM, and a duplicate NK
key is imported into this structure using a particular and secure procedure.

The last step generates the fields necessary for an N-type node, including NTAG, N_ID,
BA, NKiv, NKSKiv, NKSKsign, TOPIC2, and RN. NTAG, and N_ID fields are generated
based on the provided “node_desc_export” file. The Broker node IP address is placed in the
BA field. The contents of the fields, NKiv and TOPIC2, are generated randomly. The last
action of this procedure is to set the status value for the node to “INIT_FULL” in the RN
field. Figure 13 shows the contents of this file after generating the credentials for N-type
nodes (so far, updated data is highlighted in orange). Figure 14 shows how the data from
this file is transferred to the initiated node.
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3.8.6. Procedure for Setting the List of Cooperators for Node N

In the target implementation of the KGRD system for N-type nodes, the source of
messages about other N-type nodes that can securely exchange data with a given N-type
node will be the AC node. The described solution assumes that all N-type nodes known to
the KS node and registered in the KS resource can exchange data. Each registered N-type
node can request the KS server to generate cryptographic material to cooperate with each
registered N-type node. The source of the data will also be the “node_desc_export” file.
This procedure will result in a pre-generated file “ses_keys”. Figure 15 shows the resources
of node N after completing this procedure (the data updated so far are highlighted in
yellow, and those updated in the last step are in orange).

After completing this procedure, the N node status is set to “KWN_COOP” in the
RN variable.

3.8.7. The Registration Procedure for the N Node in the KGRD System

This procedure is designed to have node N registered in the KS node’s resources and
transfer NKSK and NKSKSign keys, as well as the NKiv vector, to the KS node to protect
future data exchanges between the KS and N nodes in question.
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node. The KS node verifies the correctness of the received frame and ignores the request if it
detects any irregularities. These irregularities include an invalid HMAC, a KS “node_desc”
file lacking a description of the node that issued the request, or an invalid NTAG.

The KS node then updates the description of that node in the local node_desc file and
sends the contents of its TOPIC1 field to the registered node in response. The fields received
in the request frame are used to secure the response frame: the NTAG encrypts the frame
payload and calculates the HMAC digest for the response frame. Figure 16 shows how
N-type nodes interact with KS nodes during the procedure. Figure 17 shows the sequence
diagram for registering an N-type node.
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Figure 16. The way N-type nodes interact with KS nodes during the procedure. N-type nodes’ reg-
istration procedure (adapted from [21]). 

Figure 16. The way N-type nodes interact with KS nodes during the procedure. N-type nodes’
registration procedure (adapted from [21]).

The result of the registration procedure of the N-type node is an update of the KS node
“node_desc” file and the TPM memory of the registered node file. Figure 18 shows the KS
node resources after the first N node is registered and the resources of the first N node after
it is registered (the data updated so far are highlighted in yellow, and the updated data
after the registration procedure are highlighted in orange).
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After completing this procedure, the N node status is set to “REGISTERED” in the 
RN variable. 

The following are the descriptions of the most critical stages of the procedure (the 
numbers in brackets (e.g., (1)) before the stage name corresponds to the designation of 
that stage in Figure 17): 
(1) Generate node registration request—a node sending a registration request to a KS 

node initiates the authentication process of that node in the system and expects to 
send NKSK and NKSKsign keys, NKSKiv, and TOPIC1 strings. Activities to be per-
formed: 
• The N node builds the nksk_key_req frame (Figure 19). The frame payload is 

encrypted, and the HMAC digest is calculated. Both of these protection actions 
use the NTAG field as a key. 

• The N node sends the nksk_key_req frame using the TOPIC0 topic. 

Figure 17. The sequence diagram for the registration procedure of N-type nodes (taken from [21]).
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After completing this procedure, the N node status is set to “REGISTERED” in the
RN variable.

The following are the descriptions of the most critical stages of the procedure (the
numbers in brackets (e.g., (1)) before the stage name corresponds to the designation of that
stage in Figure 17):

(1) Generate node registration request—a node sending a registration request to a KS
node initiates the authentication process of that node in the system and expects to send
NKSK and NKSKsign keys, NKSKiv, and TOPIC1 strings. Activities to be performed:

• The N node builds the nksk_key_req frame (Figure 19). The frame payload is
encrypted, and the HMAC digest is calculated. Both of these protection actions
use the NTAG field as a key.

• The N node sends the nksk_key_req frame using the TOPIC0 topic.

(2) Generate cryptographic material: generate NKSK and NKSKsign keys, the NKSKiv
initialization vector, and update the node_desc file entry for the N_ID node. Activities
to be performed:

• The KS node verifies the HMAC digest from the received nksk_key_req frame
and then decrypts the payload of that frame using the NTAG field from the
node’s N_ID description as the key in both actions.
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• The KS node generates the NKSK and NKSKsign keys, as well as the NKSKiv
vector. It then prepares the node’s N_ID description. After encrypting the pay-
load of this description with the NK and NKiv keys and determining the HMAC
from NKsign, it saves the updated entry in the local node_desc file. Description
of the way to modify the entry fields (only the N_ID field is not encrypted):

N_ID and NTAG—remain unchanged,
NKSK, NKSKiv and NKSKsign—generated by KS node,
TOPIC2 = TOPIC2 field from nksk_key_req frame.

• The KS node sends back a confirmation of node registration (nksk_key_ans frame
Figure 20) using the TOPIC2 from the received frame. The confirmation frame
contains the fields NKSK, NKSKiv, NKSKsign, and TOPIC1. The frame payload
is encrypted using the registered node’s NTAG. HMAC is also determined, using
the registered node’s NTAG, for concatenating the explicit part of the frame and
the result of the encryption.

(3) Acquire NKSK, NKSKiv, NKSKsign and TOPIC1. Activities to be performed:

• The N node verifies the HMAC digest from the received nksk_key_ans frame,
and then, it decrypts the payload of that frame using the node as the key in
both actions.

• Save the received data in NVRAM of TPM.
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Figure 21 shows how the MQTT service resembles the data exchange during the node
registration procedure N.

3.8.8. Establishing Cooperation N Node with the Broker Node

The procedure starts the cooperation of the N node with the Broker node and starts
subscription in the topic “TOPIC2”. After completing this procedure, the status of the N
node is set to “WORK” in the RN variable.

3.8.9. The Procedure for Generating and Distributing Symmetric Keys

Paper [23] describes, in detail, the generation and distribution of symmetric keys in
the KGRD system. Here, only general information about this procedure is presented.
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Figure 22. The interaction of N nodes with the KS node when generating and distributing keys 
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Figure 21. MQTT service data exchange diagram for the N node registration procedure (taken
from [21]).

This procedure aims to generate and securely distribute new cryptographic material
for a pair of N-type nodes (N1 and N2 will be used to denote the elements of a pair of
nodes). The material includes an NNSK (Node to Node Security Key) and an initialization
vector for this key to encrypt the exchanged data between the pair of N1 and N2 nodes, as
well as an NNSKsign (Node to Node Security Key for Signing) key to determine the HMAC
for the exchanged data.

The procedure result will be the mentioned cryptographic material and the TOPIC3
and TOPIC4 topics, which the KS node will securely forward to N1 and N2 nodes, respec-
tively. N1 and N2 nodes will use these topics in the MQTT service for secure data exchanges.
The exchanged data will be secured using generated cryptographic material. Figure 22
shows how the N node interacts with the KS node during the generation and distribution
of keys. Figure 23 shows the sequence diagram for generating and distributing keys.
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Figure 22. The interaction of N nodes with the KS node when generating and distributing keys
(adapted from [21]).

During the procedure, the contents of the ses_keys file stored in the SD memory of
node N change. Figure 24a shows the contents of this file after step (3) (the data updated so
far are highlighted in yellow, and the updated data after step (3) are highlighted in orange).
Figure 24b shows this file after step (6) of the procedure (the updated data after step (6) are
highlighted in orange).
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Figure 24. The contents of the resources of node N after step (3) (a) and after step (6) (b) of the 
procedure for generating cryptographic material for the first cooperator of node N (adapted from 
[21]). 

3.8.10. Secure Data Exchange between N-Type Nodes 
The purpose of the KGRD system is to generate and securely distribute cryptographic 

material for securing data exchanges between two N-type nodes. Such an effect can be 
obtained after successfully executing the procedure described in the preceding section. 
How the two nodes will use the generated keys strictly depends on the implementation 
of the data exchange method between the nodes. This issue is not the subject of this paper. 

Figure 23. The sequence diagram for the symmetric key generating and distributing procedure (taken
from [21,23]).
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3.8.10. Secure Data Exchange between N-Type Nodes

The purpose of the KGRD system is to generate and securely distribute cryptographic
material for securing data exchanges between two N-type nodes. Such an effect can be
obtained after successfully executing the procedure described in the preceding section.
How the two nodes will use the generated keys strictly depends on the implementation of
the data exchange method between the nodes. This issue is not the subject of this paper. To
demonstrate the KGRD system operation, I assumed that node N1 would send a 12-byte
string to node N2 and wait to acknowledge the receipt of the transmitted data. Figure 25
shows how nodes N1 and N2 interact during the described data exchange. Figure 26 shows
the sequence diagram for this experiment.
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The following are the descriptions of both procedure stages.

(1) Prepare data frame. Activities to be performed:

• The N_ID1 node prepares the node_data_req frame (Figure 27). The frame con-
tains N_ID1 (identifier of the node sending the data), N_ID2 (data recipient
identifier), and DATA fields. The N_ID1 node encrypts the N_ID2 and DATA
fields, using an NNSK and NNSKiv key known only to both nodes, and deter-
mines the HMAC for all areas in the frame using the NNSKsign key that is also
known only to them;

• the N node sends the nksk_data_req frame using TOPIC3 topic. The N_ID2 node
subscribes to this topic to receive data from the N_ID1 node.

(2) Receive data. Activities to be performed:

• The N_ID2 node first verifies the HMAC digest from the received node_data_req
frame, and then, it decrypts the payload of that frame using the NNSK and
NNSKiv fields generated for N_ID1 and N_ID2 nodes;

• the N_ID2 node extracts data from the received frame;
• the N_ID2 node sends back a confirmation of the data frame (node_data_ans

frame Figure 28) using the TOPIC3 subscribed by the N_ID1 node. The N_ID2
encrypts the field N_ID1 using the NNSK and NNSKiv, and it determines HMAC
using NKSKsign.
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3.8.11. The Procedure for Renewing the Keys

Every cryptographic key ages and has to be renewed from time to time. Without key
renewal, the risk of that key being guessed increases. Various measures can be used to
assess the validity of a key, including the time that has passed since it was generated. The
CTime field (stored in the sys_keys file in the description of each key used) can be used to
determine the expiration time of a given key. Another measure can be the volume of data
that has been encrypted with a given key. The presented system does not support any such
tasks, but it allows for the renewal of symmetric cryptographic keys.

For the KGRD system, the procedure for renewing keys and generating new keys is
the same because the KGRD system does not store the history of generated keys. Therefore,
when one node of a pair decides that the key currently in use has expired, it removes the
old cryptographic material from its ses_keys file and initiates the key generation procedure
for that pair. When receiving a message about generating a new set of keys for that pair
(the nnsk_adv_req frame), the second node of the pair also removes the old cryptographic
material from its ses_keys file.

3.8.12. Procedure for Restarting the Node after Powering on Again

The software TPM is used in the KGRD system as a cryptographic coprocessor. The
cryptographic material of each node necessary for its operation is stored in the resources of
the hardware TPM. The keys needed for encryption before performing this operation are
transferred to the trust structure in the software TPM using a particular secure procedure,
involving duplicating the required keys in the hardware TPM and importing this key into
the software TPM.

Due to the security requirements for the KGRD system and the characteristics of the
software TPM, the data stored in the software TPM is lost every time the power is turned
off. This situation forces the trust structure in the software TPM to be re-generated after
each power-up, and the keys required for encryption are transferred from the hardware
TPM resources to the software TPM. The described situation occurs in the following cases:
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• after powering off the KS node, when this node is in one of the states {INIT_FULL,
READY, WORK};

• after powering off the N node, when this node is in one of the states {INIT_FULL,
KWN_COOP, REGISTERED, WORK}.

In both cases, the procedure for restarting the node after powering it on again involves
two steps:

1. Generate a temporary trust structure in a software TPM, including CCRK and CCK keys.
2. Duplicate the NK key from the hardware TPM module and securely import this key

(NK_v) into the trust structure in the software TPM module.

Figure 30 shows the course of action during the restart of KS and N nodes after
powering on again, as well as the contents of the software TPM resources of these nodes.
The hardware TPM resources remain unchanged after this procedure (the created data after
restarting the node are highlighted in orange).
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3.9. Security Evaluation of KGRD System Solutions

Solutions used to secure the Internet of Things should include preventive, detecting,
and reactive means [24]. The KGRD system focuses on preventative measures, which
does not mean that the system has wholly abandoned detective and reactive measures.
Preventive actions include solutions to prevent or hinder the successful execution of
typical attacks.

The primary purpose of the KGRD system is to generate cryptographic keys for data
exchange between clusters of IoT network nodes. Such groups of nodes usually use wireless
connectivity. These nodes are often unattended and usually become easy targets for attack.
Given such conditions, the following attacks will be considered: installing a fake sensor
node (node replication attack), impersonating valid sensor nodes (imitation), attacks on
transmitted data, DoS attacks, attacks on the routing process [24], and botnet activities.
The solutions presented in the KGRD system are designed to prevent these attacks. The
mechanisms offered by the TPM are the basis for these solutions. These mechanisms
make it possible to secure cryptographic keys by building key hierarchies and local trust
structures, cryptographically protecting data stored in the sensor node’s resources (in the
TPM’s NVRAM and SD memory), and maintaining the integrity of transmitted and stored
data through HMAC hashing. The following subsections present ways to counter the
attacks mentioned above and describe which TPM mechanisms were used for this purpose.

3.9.1. System Reboot or System Crash

The credentials of each node are stored in the protected resources of the hardware
TPM all the time. Powering down (rebooting the system) does not result in the loss of this
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data. After rebooting the system, the procedures must be repeated. Before repeating these
procedures, you must delete the residual data remaining after unfinished procedures.

A critical component of the KGRD system is the KS node—specifically, its local trust
structure and the data stored in the TPM’s NVRAM and SD memory. The SRK key, stored
in the TPM hardware resource, is the basis of data security. This key is placed at the
top of the trust hierarchy, and its private part is inaccessible outside the TPM module.
To increase the level of security and the system’s resilience to failures, a backup of the
cryptographic material stored in the system can and should be prepared. Preparing such a
backup involves duplicating part of the key hierarchy, starting with the ANK key.

The duplication procedure is very similar to the procedure for exporting keys from
a hardware TPM to a software TPM, which is described in Section 3.5. The difference is
that the new ANK key parent comes from another hardware TPM. Once the key hierarchy
is exported, the TPM’s NVRAM and SD data can be straightforwardly copied from one
system to another because duplicate keys protect them.

This approach allows the system (backup) from which the new ANK key parent is
derived to be easily used in case the original KGRD system fails. The only item that would
need to be updated in the backup system, after a failure of the original system, is the
contents of the files stored in SD memory, which is done by simply copying them.

The occurrence of a failure (reboot) of the KS node during the N node registration,
key generation, or renewal procedures will result in an erroneous termination of these
procedures for N nodes. However, there is nothing to prevent the N node from repeating
such a procedure after the KS node has started.

There are two cases to consider if an N-type node fails and needs to run on another
machine. Suppose the N node has previously completed the registration procedure, and a
backup of its cryptographic material has been created on another node. In that case, this
other node, from the point of view of the KGRD system, can immediately take action. If the
given conditions have not been met, the new node should obtain the credentials from the
AC node and start the registration procedure. Once this procedure is completed, the node
will be ready for operation.

Performing the described steps allows you to make the KGRD system immune to the
various failures that various attacks can cause.

3.9.2. Node Replication Attack

The attack is based on adding a copy of another node to a running network. The lack
of security and supervision of the node creates the conditions for replication attacks to
be efficiently executed. Launching such an attack with all the nodes in the KGRD system
is extremely difficult. Each node in the KGRD system has a hardware TPM installed. A
hierarchy of keys in its resources creates a local trust structure. Each key hierarchy begins
with an asymmetric SRK key, which is generated only once and is non-removable. The
TPM stores the private part of this key in the internal structures of the module. This part of
the key is inaccessible for reading. This key secures all other keys used by the node, which
are used to secure the node’s sensitive data.

If an adversary tried to build a copy of the original node, it would have to equip
that copy with another copy of the hardware TPM module. This other TPM module
cannot generate an identical trust structure to the original node. The SRK key of such a
copy, which is at the top of its hierarchy, will undoubtedly differ from the original one.
This different trust structure will make it impossible to read the original data, which is
cryptographically secured.

The KS node is initialised in a secure and supervised area, and once it is fully prepared,
it can start serving N nodes. The KS node generates authenticating data for other nodes
of the system. These data go to new N nodes, via the AC node, using a secure procedure
that is executed in a controlled area. The authenticating data for the N node is the basis for
registering the new node in the KGRD system. Only registered N nodes can request new
keys from the KS node.
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Even if the adversary succeeded in intercepting the credentials intended for a node
at the preparation stage of that node, and this valid node registers with the KS node’s
resources earlier than the fake node, the acquired credentials will already be useless. The
KS node will reject all attempts to register a node already registered. The only chance
for the adversary is to get ahead of the valid node in the registration procedure, which is
difficult because the valid node will start this procedure earlier.

N-type nodes of the KGRD system are most vulnerable to attacks in the preparation
phase before they are registered. For this reason, an important consideration is a need to
perform these activities in a secure and supervised environment outside the nodes’ normal
operating area.

An adversary may use brute force to take over the data stored in the node’s resources.
The TPM module’s Platform Configuration Register (PCR) can be used to prevent such
an action, as it allows for the detection of and response to such unauthorised actions. It is
possible to detect such activities using a mechanism constructed on the PCR registry. The
use of the PCR registry is not the subject of this paper.

3.9.3. Sensor Impersonation

Trying to impersonate a proper node is challenging to do. When preparing a node, the
AC transmits its N_ID and the NTAG tag specially formulated for it to the node. At this
point, the node learns what identifier (N_ID) it will have. The NTAG tag is determined for
each N node by the KS node. The content of the NTAG tag is a SHA256 hash designated
for the string, which is the concatenation of three fields. These fields include:

• N_ID of the node;
• the private part of the ANK key;
• the 4 byte area containing the number of the entry about the description of this node

in the node_desc file.

The private part of the ANK key is known only to the KS node, and only a valid KS
node can verify the correctness of the NTAG tag. During node N’s registry procedure,
the KS node verifies the NTAG tag’s correctness. This approach gives confidence to the
KS node that it is registering the node N for which it generated this tag. In turn, it gives
confidence to the N node that the correct KS node is registering it. Entangling the sequence
number of the node’s description in the NTAG tag makes it even more difficult for the
adversary to generate a false NTAG tag based on other captured NTAG tags because this
sequence number is known only by the KS node.

During the registration procedure, the KS nodes and the registered node N establish
shared symmetric keys (NSK, NSKsign) to secure a future data exchange. An impersonating
node is unable to take over the registered node’s data.

TPM stores the node identifier N_ID, tag NTAG, and shared keys NSK and NSKsign
in its secure resources. The NTAG tag is critical in countering this attack. This tag is only
stored and transferred in a secured form from the moment it is generated.

3.9.4. Attack on Transmitted Data

Data transmitted over wireless networks are vulnerable to eavesdropping, traffic
analysis, injection of other data, modification, and transmission interruption. The KGRD
system uses node authentication. The KGRD system uses the Encrypt-then-MAC (EtM)
method to ensure the confidentiality and data integrity of all stored and transferred data.
This approach requires two keys, known only to the individual pairs of nodes exchanging
data, to secure the transmitted data. In the KGRD system, a different key pair is gener-
ated for each pair of nodes exchanging data to apply the EtM method. The first key is
used to encrypt the data (confidentiality), and the other is used to determine the HMAC
digest (integrity).

As an additional security feature, the system generates random strings for topics used
by the MQTT service. The mechanisms of the KGRD system ensure that only the parties
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that exchange data will know the content of these topics. The KGRD system distributes
these topics simultaneously with the distribution of cryptographic keys.

3.9.5. Denial of Service

The group of DoS attacks is numerous. An adversary can execute these attacks in the
physical and upper layers. The solutions used in the KGRD system do not address this
type of attack. It is recommended to use known methods to protect KS and N nodes from
this attack independently of the KGRD system.

3.9.6. Routing Attacks

Typical targets of attacks in wireless networks are the routing protocols in use. Such
attacks include Sinkhole Attacks, Wormhole Attacks, False Routing Information, Sybil
attacks, and Selective Forwarding. These attacks require placing a fake node on the network
or manipulating the operation of selected nodes. In a KGRD system environment, the
ability to successfully execute such an attack is minimal. Sections 3.9.2 and 3.9.3 describe
the mechanisms that counter these attacks.

3.9.7. Botnet Activities

Significant threats to IoT networks are botnets. Botnets spread an infection to miscon-
figured nodes as a first step, and then, the infected nodes attack the selected target after the
party managing the bot issues the appropriate command. The Mirai malware is an example
of such a bot [25]. The PCR registry capabilities of the TPM module make it possible to
protect against bot injection, but this solution is not part of the presented KGRD system.

4. Results
4.1. Demonstrator

A demonstrator has been set up to check the operation of the KGRD system. When
building the demonstrator, I assumed it would include one KS-type node, two N-type
nodes (N1 and N2), and a node that would be an MQTT service broker (Broker). The
demonstrator does not have an AC node. In its place, a software package was prepared
that performed the following tasks:

• Exporting these credentials for N nodes to an external node_desc_export file—on the
KS node, export activity extended the function of preparing the credential data for
N nodes.

• Importing credentials for an initialised node N—an initialised node N imports one set
of the credential data from the node_desc_export file before starting the procedure for
initializing that node.

• Setting the list of cooperators of the node being initialized—the initialised node N
obtains a list of N node identifiers from the node_desc_export file.

Preparing the demonstrator was necessary to demonstrate the correctness of secure key
generation and distribution. The steps involved in passing credentials to N nodes before
initialization and registration are critical to system security. The author of the solution is
aware that the solution described above, which replaces the performance of AC node tasks
in the system, does not meet all security requirements. However, these activities do not
directly affect the key generation and distribution process.

Raspberry Pi Model B boards with 32 GB SD memory are the base of all four nodes of
the developed demonstrator. All nodes have a hardware TPM module installed (LetsTrust
TPM with Infineon Optiga™ SLB 9670 TPM 2.0 chip). Figure 31 shows a view of the TPM
module and how the TPM module was installed on the Raspberry Pi board. The broker
uses Mosquitto 1.5.1 software to support the MQTT 3.1.1 protocol. An Ethernet interface
was used to exchange data between the demonstrator nodes. Figure 32 shows a view of
the demonstrator.
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The MQTT service uses the connection-oriented TCP protocol to send messages be-
tween the broker and the other nodes in the transport layer. Still, from the point of view of
message transmission, this is a stateless protocol. Therefore, a simplified control mechanism
was introduced for both sides of the data exchange in the KGRD system to have control
over the state of the data exchange protocol. This mechanism is that each node, during
data exchange, after each sending of a message, prepares its environment to handle only
one message from the cooperating node among the messages expected in a given context.
For example, node N1, after sending the nnsk_key_req frame at the beginning of the key
generation and distribution procedure, will wait for only one nnsk_key_ans message from
node KS. This approach allows for control over the system’s data exchange protocol, but it
can handle only one pair of N1 and N2 nodes simultaneously. It will be ready to handle
the next pair after it has finished handling this pair of N nodes. The mechanism used is a
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particular shortcoming of the demonstrator’s implementation, which does not interfere
with the validity of the KGRD system’s solutions.

4.2. Test Cases

Test scenarios were developed for all 12 procedures of the KGRD system described in
Section 3.8, and the system’s operability was verified using them. The most interesting test
case for the KGRD system functions is the generation and distribution of cryptographic
keys. This test case corresponds to a procedure with a similar name, a detailed description
of which you can find in Section 3.8.9. Figure 33 shows the flow of this test as observed
on the consoles of the N1 (a), KS (b), and N1 (c) nodes. In this figure, the arrows show the
transfer of successive frames sent between the nodes participating in the data exchange.
Note the random content of the topics used and the encrypted content of the frames sent.
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Figure 34 illustrates the transfer of messages on the MQTT server during the genera-
tion and distribution of keys for nodes N1 and N2. Note the content of the topics in the
following messages.
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From the data shown in Figure 34, it is possible to deduce the time required to execute
the key generation and distribution steps (the first column of each record gives the time
moment of the start of a given step). Table 3 shows the duration of the selected steps of
this procedure. The execution time per step includes the activities performed by the node
related to the generation and distribution of keys, as well as the activities related to the
preparation and reception of the MQTT message.

Table 3. The durations of selected steps of the key generation and distribution procedure.

Operation Number 1 Time [s]

Generation NNSK, NNSKiv and NNSKsign with the
gen_keys file support (on the KS node) (2) 7

Receiving NNSK, NNSKiv, NNSKsign with the ses_keys
file support (on the N2 node) (4) 4

Update the gen_keys file (on the KS node) (5) 7
Support of ses_key file (on the N1 node) (6) 4

1 The number of the stage shown in Figure 23.

Table 4 shows the durations of selected steps of other KGRD system procedures.
The data in this table were obtained in other experiments that are not described in the
paper. Some items in the table are noteworthy, with times reaching tens of seconds. These
items concern situations for generating asymmetric cryptographic keys or cryptographic
operations using asymmetric keys. The hardware TPM module performs all of these
operations. Fortunately, these operations in the system are performed once. The generation
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and security of symmetric keys do not exceed 1 s, which is the most crucial parameter for
the KGRD system.

Table 4. The durations of selected steps from selected KGRD system procedures.

Procedure Operation Number Time [s]

The KS node initialization procedure 1

Generating local trust structure (SRK, ANK) (1) 40–60
Generate keys NK and NKsign (2) 4
Generating a temporary trust structure
(CCRK, CCK) (3) 15–20

Duplicating and importing NK (4) 8–10
Generate N_ID, TOPIC1 and NK_iv and set
BA address (5), (6), (7) 5–7

The N node initialization procedure 2

Generating local trust structure (SRK, ANK) (1) 40–60
Generate keys NK and NKsign (2) 4
Generating a temporary trust structure
(CCRK, CCK) (3) 15–20

Duplicating and importing NK (4) 8–10
Load N_ID and NTAG (5) 2
Generate NKiv, NKSKiv, NKSKsign,
and TOPIC (6) 4–6

set BA address (7) 1

N node registration procedure 3 Generate NKSK, NKSKiv and NKSKsign,
and node_desc file support (2) 4–5

Data exchange between nodes N1 and N2 4 Acquire data (2) 2
1 The sequence numbers of the stage shown in Figure 10. 2 The sequence numbers of the stage shown in Figure 13.
3 The sequence number of the stage shown in Figures 17 and 21. 4 The sequence number of the stage shown in
Figures 26 and 29.

5. Discussion

For each system procedure, test scenarios were prepared. The scenarios were used
to check the operation of the KGRD system. The results of these tests confirmed the
correct operation of the KGRD system. The previous chapter only presents selected results
that illustrate the system’s operation during key generation and distribution. The results
presented here show that the data sent in each step of the procedure are not in an explicit
form. This observation is particularly relevant for the content of the frames sent and the
topics used.

Table 4 shows selected data on the time required to perform selected tasks. All these
periods are given in seconds. It might seem to be a very long time. Using the MQTT service
to exchange data considerably impacts the size of this time. It is also significant that each
of these tasks requires multiple cryptographic operations. Depending on the task, the
operations may include obtaining keys and initialization vectors for these operations from
cryptographically secure locations, symmetric or asymmetric encryption, and HMAC hash
determination. The most significant values occur in procedures for creating local trust
structures. These operations require the generation of several asymmetric keys and, despite
hardware support by the TPM, take tens of seconds. The good news, in this context, is that
the most time-consuming steps are performed once. The demonstrator uses an Ethernet
interface with a high bandwidth compared to the weak links used by IoT network nodes.
Indeed, the use of such links will increase these times. However, it is worth noting that a
key acquisition time of a few or several seconds for IoT devices is not a critical value. What
is essential for these devices is ensuring security and the short transfer time of secured data,
which did not exceed 2 s in the experiments.

The AC node’s tasks have been replaced by special procedures, described in
Sections 3.8.3 and 3.8.5, to simplify the demonstrator’s implementation. Preparation of the
implementation of the original AC node will be the subject of future work.
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The basis of the solution presented in the article is a hardware TPM v.2.0 module. The
use of this module provides a number of capabilities that significantly impacted the design
of the solution. These properties of the module include:

• hardware generation of asymmetric and symmetric cryptographic keys;
• hardware generation of random numbers with high entropy;
• secure storage of cryptographic material of the internal NVRAM of the TPM;
• creating key hierarchies that can be used to build local trust structures;
• hardware support for encryption/decryption;
• support for Platform Configuration Registers that can be used for protection and

attestation; internal node resources (this property was not used in the presented study).

The effect of the hardware implementation of the TPM module is that it has some
limitations. These limitations include:

• a limited list of supported asymmetric algorithms—RSA2048, RSA3072, RSA16384,
ECC256, ECC384, and ECC521 are available;

• a limited list of supported symmetric algorithms—3DES, AES128, and AES256 are available;
• a limited list of supported hash functions—SHA-1, SHA256, SHA384, SHA512, and

HMAC are available;
• the ability to generate key hierarchies based on RSA keys only;
• some hardware implementations do not support certain functions, e.g., encryption and

decryption for symmetric algorithms. This problem was essential to implementing the
solution to the previously published solution concept.

There are many solutions for lightweight cryptographic algorithms, the characteristics
of which can be found in [26]. The solution demonstrator selects those supported by the
TPM v.2.0 module and meets NIST [27] requirements. These include RSA-2048, AES-128,
SHA-256, and HMAC using SHA-256.

A limited number of writes characterise NVRAMs. In the case of the NVRAM of the
TPM module, this will not be a problem because this memory is only uprooted for writing
during the preparation and registration phase of each node (both KS and N types). Then,
the number of writes will not exceed 100 in each TPM module. During regular system
operation, only the contents of the NKSKiv vector on N nodes will require writes, as the
other fields will only be read. The NKiv vector will be read-only. If some entries from a
file in SD memory need to be encrypted/decrypted, an initialization vector will be needed.
The contents of NKiv, N_ID, and the position of this entry in the file determine this vector.

The most sensitive part of the system is the procedure for preparing a node until it
is registered. At each node’s life stage, it would be easiest for an adversary to defeat the
system’s safeguards. Therefore, these activities should be performed in a protected and
controlled environment outside the area of the regular operation of system components.
Section 3.9.2 presents the details.

As presented, the KGRD system is not equipped with mechanisms to counter DoS-type
attacks. Mechanisms similar to those used in traditional IT systems to increase the system’s
resistance to such attacks can be used.

A hardware TPM module makes it possible to use its PCR register to construct a
detecting and notifying mechanism for unauthorised tampering with the hardware and
software configuration resources of each KGRD system node. Using such a solution will
immunise the system nodes, which can be placed in physically weakly protected areas.
Such a solution will be the second task in future work.
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