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Abstract: Traffic signs are updated quickly, and there image acquisition and labeling work requires
a lot of manpower and material resources, so it is difficult to provide a large number of training
samples for high-precision recognition. Aiming at this problem, a traffic sign recognition method
based on FSOD (few-shot object learning) is proposed. This method adjusts the backbone network of
the original model and introduces dropout, which improves the detection accuracy and reduces the
risk of overfitting. Secondly, an RPN (region proposal network) with improved attention mechanism
is proposed to generate more accurate target candidate boxes by selectively enhancing some features.
Finally, the FPN (feature pyramid network) is introduced for multi-scale feature extraction, and
the feature map with higher semantic information but lower resolution is merged with the feature
map with higher resolution but weaker semantic information, which further improves the detection
accuracy. Compared with the baseline model, the improved algorithm improves the 5-way 3-shot
and 5-way 5-shot tasks by 4.27% and 1.64%, respectively. We apply the model structure to the
PASCAL VOC dataset. The results show that this method is superior to some current few-shot object
detection algorithms.

Keywords: few-shot learning; target detection; FSOD; feature fusion; traffic signs

1. Introduction

A traffic sign intelligent recognition system is the main content of an intelligent
transportation system and advanced driving assistance system. It can not only ensure
the safe operation of vehicles, but also improve the transportation capacity and make the
economy develop rapidly. It has important economic value.

Traffic sign detection and recognition methods based on deep learning has been a
research hotspot in recent years. In 2016, Yang Y et al. [1] proposed a traffic sign recognition
algorithm, which consists of a region proposal module (RPM) and a classification mod-
ule (CM). Although the algorithm improves the performance of traffic sign recognition,
there are still some problems due to its large resource consumption. In 2018, Jia L and
Zengfu W [2] used a fast convolutional neural network (CNN) and a MobileNet structure to
refine the positioning of small traffic signs and improve detection performance, but training
and detection take a long time. In 2019, Zhu et al. [3] proposed a convolutional network
named qNet and sqNet. This network uses a unified macro structure and deep separable
convolution for fast traffic sign recognition, which has higher efficiency in parameters
and calculations. In the same year, Liu Z et al. [4] proposed a traffic sign detection and
recognition method that integrates multi-scale regions, which has good performance in
small traffic sign detection. Yuan et al. [5] proposed an end-to-end learning method. For
small-scale targets, this method can learn more effective features, but it consumes a lot of
resources. In 2020, Chung J H et al. [6] proposed an attention-based convolutional pooling
neural network (ACPNN), which combines the attention mechanism to obtain key features,
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and replaces the maximum pooling with convolution pooling to improve the recognition
accuracy of the model in harsh environments. In the same year, Liu Z et al. [7] proposed a
detection method called DR-CNN, which is based on deconvolution region and performs
well in small target traffic sign detection and recognition. In 2021, Liu Z et al. [8] proposed
a traffic sign detection and recognition network called SADANet. This method uses the
mapping relationship between image representation and multi-scale features to effectively
align the domain distribution of different scales. In the same year, Shen et al. [9] proposed
an effective multi-scale attention module, which aggregates features of different scales,
suppresses clutter information in the background, and constructs an information feature
pyramid for detecting traffic signs of different sizes. In 2022, Dubey et al. [10] proposed a
two-step TSR method, which uses a convolutional neural network as a multi-class classifier.
Compared with other similar methods, this method has better classification accuracy.

Although some classical object detection algorithms have been applied in practice,
most object detection algorithms rely on large-scale labeled data sets to ensure accuracy.
However, in real life, it is difficult to obtain labeled data in some fields, or the cost of
acquisition is very high. For example, with the continuous development of science and
technology, traffic signs are updated rapidly, and the collection and labeling of data sets
will consume a lot of manpower, material, and financial resources.

In response to this problem, more and more researchers have begun to combine the
few-shot learning method [11] with the target detection framework to construct a few-shot
objection detection technology for target detection in the case of few samples [12–14]. Small
sample target detection is more based on the two-stage target detection method. The
detection model is optimized by using the base class and the new class sample set to realize
the detection of image targets in the new class. For example, references [15–17] used Faster
R-CNN as the basic model. In this paper, the two-stage detection method is used and
improved on this basis.

Small sample image target detection should not only pay attention to the high-level
semantic information of the classification task, but also extract the low-level image semantic
information and give the exact position of the target in the image. However, since the
support set can provide too few training samples, it is prone to overfitting phenomenon.
Secondly, the target category to be detected has only a small number of labeled samples
for training. When detecting new categories, many candidate boxes unrelated to the target
object are generated, which affects the detection accuracy of the target category. In addition,
due to the large scale difference between the support set and the query set images, it also
brings some difficulties to task detection and recognition.

In order to solve these problems, we propose a traffic sign detection and recognition
method based on FSOD. The main contributions of this paper are as follows:

1. The basic model structure is adjusted so that the network can pay more attention
to the detail information and semantic information of the image, reduce the loss of
image features, reduce the risk of overfitting, and improve the detection performance
in the case of few samples.

2. The ACBAM-RPN module combined with a multi-attention mechanism is proposed
to make the model focus on the candidate boxes related to the target category, reduce
the number of irrelevant candidate boxes, and improve the detection accuracy of the
target category.

3. The multi-scale FPN module is introduced to extract features, and the deep cross-
correlation between support set image features and query set image features is calcu-
lated to obtain more accurate candidate boxes.

2. Methodology
2.1. Background of FSOD

FSOD [17] is a target detection and recognition method. Traditional object detection
and recognition algorithms require a large amount of labeled data to train the model to
accurately detect and classify objects in images. However, collecting such a large data set
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is usually expensive and time-consuming. FSOD aims to learn new categories of object
detection capabilities through a small amount of labeled data. Its core idea is to learn the
general representation of object detection tasks by training on a small amount of labeled
data, and then apply this general representation to new object detection tasks; that is, use a
small amount of labeled data for rapid training and adaptation to new tasks.

The FSOD model consists of two branches: support set and query set. The support set
usually contains a small amount of annotation data and corresponding annotation boxes,
while the query set contains images of new categories that the network has not seen. The
task of the detector is called N-way K-shot detection, where the support set contains a total
of N categories and each category has K samples. The design of this detector can improve
the efficiency and accuracy of the model in small sample detection tasks. The FSOD model
is shown in Figure 1.
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2.2. Improved Network Structure

This paper demonstrates the optimization based on the FSOD network, and the
improved structure is shown in Figure 2.
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In this paper, FPN network and RPN network with an attention mechanism are intro-
duced into query image branch and support set image branch. Specifically, in the support
set image branch, the support set image features are input into the FPN network, and
each support image feature pyramid is obtained through the channel attention mechanism,
which enriches the support set scale space. After obtaining the support image feature pyra-
mid, the multi-scale prototype vector of each class is generated by the weighted prototype
network. The second is the query image branch. The query image is first extracted by the
FPN network to obtain the feature pyramid, and then input to the attention RPN module
designed in this paper to generate candidate regions. Another input of the RPN module is
the extracted support set image feature pyramid. In the attention RPN network, the query
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set feature map of each scale and the support set feature map of the same scale generate
the attention feature map, then generate the RoI feature map through the RPN network,
and finally generate the corresponding RoI feature vector.

3. Materials and Methods
3.1. Adjustment of Backbone Network

FSOD uses Resnet50 model [18] as the backbone network, and the network structure
of Resnet series is shown in Figure 3. However, during the preliminary experiments, it was
found that there was a serious overfitting problem, which was manifested as high accuracy
on the training set but low accuracy on the test set. To solve this problem, the network
structure of Resnet50 is adjusted in this part.
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Specifically, the convolution layers of the first two stages and the last stage of the
network are kept unchanged to ensure the basic feature extraction ability of the network.
At the same time, the number of shallow network layers is increased; that is, two residual
modules are added in the third stage to improve the ability to extract image details, thereby
improving the recognition accuracy. In addition, the number of middle layer network
layers is reduced; that is, four residual modules are deleted in stage 4 to reduce network
computation and detection time. Through these adjustments, the total number of convolu-
tion layers of the network is reduced from 50 layers to 44 layers. Such adjustments make
the network pay more attention to the detail information and semantic information of the
image, reduce the loss of image features so as to better extract the traffic sign image features,
and improve the detection performance in the case of few samples.

Finally, this section adds dropout to the fully connected layer of the network, randomly
sets some features of the input data to 0, and discards a certain proportion of features, so
that the data seen by the network is different during each training, thereby reducing the
complexity of the model and the risk of overfitting. The improved Resnet network structure
is shown in Figure 3.

Through these adjustments, we better solve the problem of Resnet50 model overfitting.
The accuracy on the query set has also been significantly improved. This improvement lays
the foundation for the subsequent design and optimization of the model.
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3.2. RPN Module with Multi-Attention Mechanism

In the traffic sign detection and recognition experiment of FSOD, we found that the
data set to be detected contains fewer training samples, and the region proposal network
used for model training needs to be trained on a large number of base classes, which will
cause the network to generate many candidate boxes unrelated to the traffic signs to be
detected and identified, thus reducing the accuracy of detection. To solve this problem, this
section proposes a RPN network based on a fusion multi-attention mechanism.

CBAM [19] (Convolutional Block Attention Module) is an attention module for image
classification tasks. The CBAM module consists of two parts: Channel Attention Module
(CAM) and Spatial Attention Module (SAM). The main idea of the module is to improve
the expression ability of the model by learning channels and spatial attention weights on
the feature map. The channel attention weight is used to adaptively weigh the features
of different channels to improve the channel perception ability of the model. The spatial
attention weight is used to adaptively weigh different spatial positions on the feature map
to improve the spatial perception ability of the model. The structure of CBAM module is
shown in Figure 4.
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The channel attention module is used to enhance the expression ability of CNN on the
channel dimension. Generally, the output of the convolutional layer consists of multiple
channels, each channel corresponding to a feature map. The channel attention module
adaptively adjusts the weight of the feature maps of different channels by learning a channel
weight vector to enhance the expression of important features and suppress the interference
of unimportant features. This channel weight vector is calculated by a global average
pooling and two fully connected layers. For the feature map with input size of H×W×C,
the CBAM module performs global average pooling and maximum pooling respectively
to obtain two compressed feature maps. Then, these two feature maps are input into the
multi-layer perceptron (MLP) for dimension reduction and dimension increase, and the
weight vector used to represent the importance of the channel is extracted. The weight
vector is used to calculate the channel attention weighting coefficient, which can be applied
to each channel in the input feature map to emphasize the most important channel for a
specific task.
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The calculation formula of this sub-module is shown in Formulas (1) and (2). Among
them, FC_max(A) and FC_avg(A) represent the feature vectors of input feature map A under
maximum pooling and average pooling, respectively. W0 and W1 refer to the two layers of
weights in MLP. The σ refers to the Sigmoid activation function, which is used to scale the
output value between 0 and 1. The final channel attention weight coefficient will be used to
weight each channel in the input feature map A to generate a weighted output feature map.

NC(A) = σ([MaxPool(A); AvgPool(A)]) (1)

NC(A) = σ
(

W1

(
W0

[
[AC

max; AC
avg]
]))

(2)

During neural network training, the channel attention module may pay too much
attention to some feature channels and ignore other important feature channels, thus
affecting the robustness of the model. In order to solve this problem, this part improves
the original CBAM channel attention module, splices and fuses the two groups of features
after pooling, and then trains and optimizes the weight parameters W0 and W1 through the
multi-layer perceptron, thereby improving performance of the model. MLP is composed of
two FC layers. The input features of the first FC layer are reduced in dimension to obtain
features, and the hidden layer is activated to obtain the output features. Although the
dimension of the weight vector that represents the importance of the channel extracted
before and after the improvement is the same, the first FC layer that is trained after feature
fusion has more weight parameters. In addition, the second FC layer can mix and calculate
the two parts of features, so as to better fit the correlation between channels, which is
beneficial to calculate the mutual information of the two sets of features and enhance the
expression of key channel features. The process is shown in Formulas (3) and (4), where
[FC_max(A); FC_avg(A)] is the fusion feature after stitching.

NC(A) = σ([FC_max(A); FC_avg(A)]) (3)

NC(A) = σ
(

W1

(
W0

[
[AC

max; AC
avg]
]))

(4)

Figure 5 shows the improved structure.
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The spatial attention module is used to enhance the expression ability of CNN in
the spatial dimension. It adaptively adjusts the contribution of feature maps at different
locations by learning a spatial weight vector to enhance the expression of important loca-
tions and suppress the interference of unimportant locations. Firstly, the input feature A’ is
processed, and the global maximum pooling and average pooling compression channels are
used to transform the multi-channel features into single channels. Then, two single-channel
feature maps are spliced and compressed at the spatial level using a 7 × 7 convolutional
layer. Finally, the weighting coefficient NS (A′) is obtained by using the Sigmoid activation
function, as shown in Formulas (5) and (6), where f represents the convolution operation,
7 × 7 is the size of the convolution kernel, and the meaning of other symbols is the same
as above.

NS
(

A′
)
= σ

(
f 7×7[FC_max

(
A′
)
; FC_avg

(
A′
)])

(5)
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NS
(

A′
)
= σ

(
f 7×7

[
A′Savg; A′Savg

])
(6)

Based on the above description, this paper designs the ACBAM module to multiply
the output of the improved channel attention module and the output of the spatial attention
module to obtain the final attention weight, which is then applied to the original feature
map to obtain the enhanced feature map, thereby improving the performance of CNN.

3.3. Multi-Scale Feature Fusion Module

When the training samples cover a large number of targets of different scales, the
model can be adapted to target detection of different scales through a large number of
training. However, when the number of samples is small, the training samples of different
scales will become insufficient. In the process of small sample learning, due to the large
scale difference between the support set and the query set images, it brings some difficulties
to the detection task.

In order to solve the influence of scale change on the detection and recognition effect
of this method, this part introduces a multi-scale FPN module [20]. The module can extract
features at different levels and fuse information at different scales, so as to effectively solve
the problem of large differences in scales between support set and query set images in
small sample learning, and improve the accuracy and stability of detection.

FPN is a network module used to solve the problem of object scale change in object
detection. The FPN module is mainly composed of a bottom-up feature extraction network,
a top-down feature fusion network, and a horizontal connection between them. The
FPN module can not only extract features effectively, but also generate feature maps with
different resolutions and semantic information according to the scale changes of objects in
the image, so as to improve the accuracy of target detection. The FPN structure diagram is
shown in Figure 6.
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Specifically, FPN uses a bottom-up feature extraction network to extract shallow
features in the network. These features have high resolution and rich detail information,
but they are gradually lost when the scale becomes larger. At the same time, FPN also
uses a top-down feature fusion network to extract deep features in the network. These
features have large receptive fields and abstract semantic information, but gradually lose
detailed information when the scale becomes small. In order to solve this problem, FPN
establishes a horizontal connection between different levels, and fuses features from shallow
and deep layers to form a feature pyramid. Each layer in the feature pyramid contains
feature information of different scales, so that the network can better adapt to targets of
different scales.

4. Experiments
4.1. Data Preparation
4.1.1. Self-Made Dataset

In this paper, we first use the self-made data set to carry out the preliminary ablation
experiment, use the network crawler to capture the traffic sign images in different scenes,
and use the LabelImg tool to mark them. LabelImg is a common visual image object
annotation software, which is often used in object detection. The label file generated by
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LabelImg is an XML file, which follows the standard format of PASCAL VOC. The software
is open sourced in github.

The self-made dataset contains a total of images of straight, nohook, stop, left, cross-
walk, and right. In this part, 15–20 images were randomly selected from these seven
categories to form a small sample data set. As shown in Figure 7.
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When using self-made data sets for experiments, due to the small number of samples,
there will be over-fitting. Therefore, this section first amplifies the data set used, and
expands the data set by data augmentation methods such as rotation, clipping, and scaling
to balance the data, while improving the robustness of the model and avoiding overfitting.
The partially enhanced image is shown in Figure 8.
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Table 1. Number of pairs before and after the enhancement of the dataset.

Category Number of Data before Enhancement Number of Data after Enhancement

Straight 15 329
Nohook 18 368

Stop 16 336
Left 18 374
Slow 17 365

Crosswalk 15 312
Right 16 351

4.1.2. PASCAL VOC Dataset

The PASCAL VOC (VOC) dataset consists of VOC2007 [21] and VOC2012 [22]. There
are 20 types of common targets in life (excluding background classes).

For the small sample target detection task, the data set contains three classification
criteria: {bird, bus, cow, motorbike, sofa} are selected as the new class in Split1; five
categories of {aeroplane, bottle, cow, horse, sofa} are selected as new classes in Split2; and
in Split3, {boat, cat, motorbike, sheep, sofa} are selected as new classes.

4.2. Evaluation Methods

When using the model for prediction, it is usually necessary to classify the prediction
results into positive samples and negative samples. The prediction results can be evaluated
by two indicators: precision and recall. The precision rate refers to the proportion of true
positive samples in the samples predicted as positive samples, while the recall rate refers to
the proportion of true positive samples in the samples predicted as positive samples. The
setting of the threshold will affect the calculation results of the precision rate and recall rate,
so different combinations of precision rate and recall rate can be obtained by changing the
value of the threshold. The precision and recall values under different thresholds are plotted
as PR curves. The horizontal axis is the recall rate and the vertical axis is the precision
rate. Generally, the PR curve shows an overall trend; that is, the higher the accuracy, the
lower the recall rate. The area of the PR curve, also known as average precision (AP), is an
important indicator of model performance, as shown in Formula (7).

AP =

1∫
0

p(r)dr (7)

AP50 refers to the AP value when the IOU threshold is 0.5; that is, the accuracy of
the detection results when the overlap between the detection box and the real box reaches
more than 50%. AP75 is the AP value when the overlap between the detection box and
the real box reaches more than 75%. These indicators can more comprehensively evaluate
the performance of the target detection model and provide more detailed and accurate
evaluation results. They play an important role in selecting the appropriate threshold and
algorithm optimization.

4.3. The Results of Ablation Experiments
4.3.1. RPN Module with Multi-Attention Mechanism

In order to verify the effectiveness of the improved RPN module proposed in this
paper, this part designs relevant ablation experiments on self-made data sets. In this
section, 5-way 3-shot and 5-way 5-shot tasks are used for testing. The test results are shown
in Table 2.
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Table 2. ACBAM-RPN module ablation experiment. Expression for each category in the table: A
represents the original channel attention module in the original CBAM, B represents the improved
channel attention module, and C represents the spatial attention module in the original CBAM.

Method Self-Made Dataset
(5-Way 3-Shot)

Self-Made Dataset
(5-Way 5-Shot)

A B C AP50 (%) AP75 (%) AP50 (%) AP75 (%)

14.39 14.39 19.70 15.15√
14.85 14.39 19.92 15.14√
15.34 14.72 21.15 15.28√
14.75 14.41 19.83 14.67√ √
15.11 14.43 20.27 15.71√ √
16.26 15.32 22.19 16.22

As can be seen from Table 2, after introducing the improved ACBAM module in this
paper, in the case of 5-way 3-shot, the average accuracy of the network on AP50 is increased
by 1.87%, and the average accuracy on AP75 is increased by 0.93%. In the case of 5-way
5-shot, the average accuracy of the network on AP50 is increased by 2.49%, and the average
accuracy on AP75 is increased by 1.07%. According to the above experimental results, the
ACBAM attention mechanism proposed in this paper can effectively improve the detection
performance of traffic signs in the case of small samples.

4.3.2. Multi-Scale Feature Fusion Module

In order to verify the necessity of introducing multi-scale FPN module, this part
designs relevant ablation experiments on self-made data sets. In this section, two groups of
tasks, 5-way 3-shot and 5-way 5-shot, are tested. The test results are shown in Table 3.

Table 3. FPN module ablation experiment. Expression for each category in the table: A represents the
query branch that introduces the FPN module, and B represents the support branch that introduces
the FPN module.

Method Self-Made Dataset
(5-Way 3-Shot)

Self-Made Dataset
(5-Way 5-Shot)

A B AP50 (%) AP75 (%) AP50 (%) AP75 (%)

14.39 14.39 19.70 15.15√
16.19 14.43 21.37 15.72√
16.60 14.44 21.21 15.21√ √
17.12 14.96 22.95 16.82

It can be seen from Table 3 that when the FPN module is introduced at the same time in
the query branch and the support branch, the accuracy of the network on AP50 is improved
by 2.73%, and the accuracy on AP75 is improved by 0.57% in the case of 5-way 3-shot. In
the case of 5-way 5-shot, the accuracy of the network on AP50 is improved by 3.25%, and
the average accuracy on AP75 is improved by 1.67%. According to the above experimental
results, it can be seen that in the case of small samples, the introduction of FPN module on
both support branch and query branch can effectively improve the detection performance
of traffic signs.

4.3.3. Ablation Experiments

In order to verify the effectiveness of each improved method, ablation experiments
were performed on self-made data sets. Firstly, the corresponding data enhancement
operations, including rotation and mirroring, are carried out on the annotated data sets to
achieve the purpose of data balancing. In this section, FSOD is taken as the baseline network,
and 5-way 3-shot and 5-way 5-shot tasks are used for training. The aforementioned
improvement methods are combined to verify the improvement of network performance
by different modules. The results are shown in Table 4.
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Table 4. Experimental comparisons of each combination in the feature extraction network.

Model
Method Self-Made Dataset

(5-Way 3-Shot)
Self-Made Dataset

(5-Way 5-Shot)
Improved RPN FPN AP50 (%) AP75 (%) AP50 (%) AP 75(%)

Baseline 14.39 14.39 19.70 15.15
A

√
16.26 15.32 21.37 15.72

B
√

17.12 14.96 21.21 15.21
ACBAM-FSOD

√ √
18.66 15.91 22.95 16.82

Comparing baseline with models A, B, and ACBAM-FSOD, it can be seen that the
performance of the model is improved by improving the RPN module and introducing the
FPN network. The improved ACBAM-FSOD, whether in the 5-way 3-shot task or in the
5-way 5-shot task, achieved better results in AP50 and AP75 evaluation indicators.

The detection results of the ACBAM-FSOD model on the self-made data set are shown
in Figure 9.
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4.4. The Results of Comparative Experiments

In order to further verify the effectiveness of ACBAM-FSOD, this section conducts
comparative experiments on the PASCAL VOC dataset, and selects target detection algo-
rithms such as Meta RCNN [23], TFA (two-stage fine-tuning approach) [24], and MPSR
(multi-scale positive sample refinement) [25] for comparison. The algorithms are evaluated
according to AP50 (AP value when IOU threshold is 0.5) and AP75 (AP value when IOU
threshold is 0.75). In order to make a more comprehensive experimental comparison, this
section uses three different division methods, namely, split1, split2, and split3, as shown in
4.1.2. With these three criteria, the model is compared and analyzed experimentally. The
experimental results are shown in Table 5.

Table 5. Comparative experimental results on public datasets.

Method/Shot
Split1 Split2 Split3

1 3 5 10 1 3 5 10 1 3 5 10

Meta RCNN 19.9 35.0 45.7 51.5 10.4 29.6 34.8 45.4 14.3 27.5 41.2 48.1

TFA2 39.8 44.7 55.7 56 23.5 34.1 35.1 39.1 30.8 42.8 49.5 49.8

MPSR 3 41.7 51.4 55.2 61.8 24.4 39.2 39.9 47.8 35.6 42.3 48.0 49.7
Ours 45.8 54.3 56.9 62.1 27.9 40.0 40.4 47.6 34 43.2 48.5 49.8

It can be seen from Table 5 that the detection performance of ACBAM-FSOD on
the CCTSDB dataset is partially superior to other algorithms. Compared with the Meta
RCNN method, this method has obvious advantages in each task. Compared with the TFA
method, when the division criteria are Split1 and Split2, the proposed method has obvious
advantages in each task. When the partition condition is Split3, the proposed method has
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obvious advantages in other tasks except the 5-way 5-shot task. Compared with the MPSR
method, the proposed method has obvious advantages in each task when the division
standard is Split1. When the splitting criterion is Split2, the proposed method has obvious
advantages in other tasks except the 5-way 10-shot task.

The detection results of the ACBAM-FSOD model on the PASCAL VOC dataset are
shown in Figure 10.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 14 
 

 

(multi-scale positive sample refinement) [25] for comparison. The algorithms are evalu-
ated according to AP50 (AP value when IOU threshold is 0.5) and AP75 (AP value when 
IOU threshold is 0.75). In order to make a more comprehensive experimental comparison, 
this section uses three different division methods, namely, split1, split2, and split3, as 
shown in 4.1.2. With these three criteria, the model is compared and analyzed experimen-
tally. The experimental results are shown in Table 5. 

Table 5. Comparative experimental results on public datasets. 

Method/shot 
Split1 Split2 Split3 

1 3 5 10 1 3 5 10 1 3 5 10 
Meta RCNN  19.9 35.0 45.7 51.5 10.4 29.6 34.8 45.4 14.3 27.5 41.2 48.1 

TFA2 39.8 44.7 55.7 56 23.5 34.1 35.1 39.1 30.8 42.8 49.5 49.8 
MPSR 3 41.7 51.4 55.2 61.8 24.4 39.2 39.9 47.8 35.6 42.3 48.0 49.7 

Ours 45.8 54.3 56.9 62.1 27.9 40.0 40.4 47.6 34 43.2 48.5 49.8 

It can be seen from Table 5 that the detection performance of ACBAM-FSOD on the 
CCTSDB dataset is partially superior to other algorithms. Compared with the Meta RCNN 
method, this method has obvious advantages in each task. Compared with the TFA 
method, when the division criteria are Split1 and Split2, the proposed method has obvious 
advantages in each task. When the partition condition is Split3, the proposed method has 
obvious advantages in other tasks except the 5-way 5-shot task. Compared with the MPSR 
method, the proposed method has obvious advantages in each task when the division 
standard is Split1. When the splitting criterion is Split2, the proposed method has obvious 
advantages in other tasks except the 5-way 10-shot task. 

The detection results of the ACBAM-FSOD model on the PASCAL VOC dataset are 
shown in Figure 10. 

 
(a) (b) 

Figure 10. Visualization results of VOC dataset image detection. Expression for each category in the 
figure: (a) is the detection result of the model on the support set, and (b) is the detection result of 
the model on the query set. 

5. Conclusions 
The current detection and recognition methods of traffic signs require a large number 

of data samples for pre-training, the traffic sign update iteration is fast, and the collection 
and labeling of related data sets will consume a lot of manpower, material, and financial 
resources. To solve this problem, a series of experimental studies were carried out based 
on the FSOD model. Aiming at the problems of serious overfitting and excessive candi-
date boxes unrelated to objects caused by insufficient sample size in the detection and 
recognition process, this paper proposes adjusting the network structure and a design for 
an RPN module that integrates improved attention. Aiming at the problem of low detec-
tion and recognition accuracy due to the large change of sample scale in the process of 
detection and recognition, this paper introduces a multi-scale FPN module. Through a 
series of ablation and comparison experiments, the proposed method shows good perfor-
mance in small sample target detection tasks. 

Because most of the current small sample target detection methods are based on the 
two-stage target detection method, it is difficult to meet the real-time requirements. At 
present, most of the research on target detection in the case of small samples pays more 

Figure 10. Visualization results of VOC dataset image detection. Expression for each category in the
figure: (a) is the detection result of the model on the support set, and (b) is the detection result of the
model on the query set.

5. Conclusions

The current detection and recognition methods of traffic signs require a large number
of data samples for pre-training, the traffic sign update iteration is fast, and the collection
and labeling of related data sets will consume a lot of manpower, material, and financial
resources. To solve this problem, a series of experimental studies were carried out based on
the FSOD model. Aiming at the problems of serious overfitting and excessive candidate
boxes unrelated to objects caused by insufficient sample size in the detection and recognition
process, this paper proposes adjusting the network structure and a design for an RPN
module that integrates improved attention. Aiming at the problem of low detection and
recognition accuracy due to the large change of sample scale in the process of detection and
recognition, this paper introduces a multi-scale FPN module. Through a series of ablation
and comparison experiments, the proposed method shows good performance in small
sample target detection tasks.

Because most of the current small sample target detection methods are based on the
two-stage target detection method, it is difficult to meet the real-time requirements. At
present, most of the research on target detection in the case of small samples pays more
attention to the improvement of detection accuracy in different tasks, but less attention
to real-time problems. To solve this problem, it is necessary to continue to carry out
experimental exploration to further improve the performance of target detection in the case
of small samples.
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