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Abstract: The application of IoT (Internet of Things) technology to the health monitoring of expansion
joints is of great importance in enhancing the efficiency of bridge expansion joint maintenance. In this
study, a low-power, high-efficiency, end-to-cloud coordinated monitoring system analyzes acoustic
signals to identify faults in bridge expansion joints. To address the issue of scarce authentic data
related to bridge expansion joint failures, an expansion joint damage simulation data collection
platform is established for well-annotated datasets. Based on this, a progressive two-level classifier
mechanism is proposed, combining template matching based on AMPD (Automatic Peak Detection)
and deep learning algorithms based on VMD (Variational Mode Decomposition), denoising, and
utilizing edge and cloud computing power efficiently. The simulation-based datasets were used to
test the two-level algorithm, with the first-level edge-end template matching algorithm achieving
fault detection rates of 93.3% and the second-level cloud-based deep learning algorithm achieving
classification accuracy of 98.4%. The proposed system in this paper has demonstrated efficient
performance in monitoring the health of expansion joints, according to the aforementioned results.

Keywords: IoT; acoustic sensor; fault diagnose and classification; end-to-cloud coordinated

1. Introduction

Over the past few years, the development of transportation infrastructure has led to
the construction of a significant number of bridges. As a result, ensuring bridge safety,
improving operation efficiency, and reducing maintenance costs are of substantial social
and economic significance. For this reason, both government officials and transportation
enterprises have paid close attention to these objectives. Bridge expansion joints, in particu-
lar, are highly susceptible to damage caused by construction defects, vehicle overloading,
and other issues that arise during bridge maintenance activities. Consequently, the effective
monitoring of the health status of bridge expansion joints has become an urgent concern.

Given the recent advancements in computing hardware, Internet of Things devices
have broad application prospects in structural health monitoring. IoT devices can be
efficiently deployed and utilized for monitoring the health status of these structures through
the use of edge computing technology, allowing for terminal-cloud collaboration and
storage-calculation integration, which ensures the safe operation of bridges while reducing
the consumption of resources.

Data acquisition modules for structural health monitoring traditionally rely on various
sensors, including stress sensors [1], acceleration sensors [2], acoustic sensors [3], fiber
optic sensors [4,5], and other sensors. These sensors provide parameters such as vibration
frequency and modal vibration of the bridge structure, enabling the identification of
different health conditions. However, each of these sensors has its own drawbacks, such as
being susceptible to environmental interference, difficult to annotate data, and expensive
to deploy on a large scale [6,7]. Experienced engineers usually rely on the sound of passing
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vehicles to locate faults in bridge expansion joint maintenance. As a result, the system uses
acoustic sensors as data collectors to identify the health status of the bridge. This allows us
to collaborate with experienced engineers to annotate large-scale data accurately.

Various techniques have been developed and implemented in structural health moni-
toring (SHM), including both local and data-based methods. Local techniques are primarily
focused on specific sensor locations and their responses to structural changes. Meanwhile,
data-based methods rely on a larger group of sensors distributed throughout the structure
to collect generalized information on the state of the structure. While both approaches have
their strengths, there are trade-offs to consider. For example, local techniques are highly
sensitive to local damage but may produce false alarms depending on the location of the
installed sensors. Data-based methods, while more robust in detecting global damage, can
be less accurate at identifying localized damage [7,8].

The sound signal is essentially a vibration signal. Presently, a significant amount of
research has been devoted to applying vibration signals in the development of structural
health monitoring algorithms [9]. Traditional signal processing encompasses methods,
such as kurtosis, peak-value factor, and mean root square, to process time-domain signals,
while fast Fourier transform and envelope spectrum transform are used to analyze signals
in the frequency-domain. Nevertheless, these processing techniques are limited by their
susceptibility to environmental factors and poor robustness. The current mainstream
approach is to employ modern signal processing methods to perform an in-depth analysis
of original signals to extract features. Commonly used modern techniques include time-
frequency analysis and modal decomposition.

Time-frequency analysis is a vital tool for signal processing, which can simultaneously
display the characteristics of the time domain and frequency domain on the same image.
Several methods widely used for time-frequency analysis are the discrete wavelet transform
(DWT), short-time Fourier transform (STFT), and the dual-tree complex wavelet transform
algorithm based on these methods [10]. These algorithms facilitate signal denoising and
feature extraction, among other subsequent operations. Therefore, they are useful in various
applications, especially in fault diagnosis [11,12].

Mode decomposition algorithms are essentially nonlinear methods for analyzing
signal frequency-intensity distributions. These include the Empirical Mode Decompo-
sition (EMD) algorithm proposed by Huang et al. [13] in 1998, the Ensemble Empirical
Mode Decomposition (EEMD) algorithm introduced by Huang et al. in 2009, which al-
leviates mode-mixing effects by adding white noise [14], and the Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm proposed by
Torres M.E. et al. in 2011, which adds noise to the decomposition process for processing [15].
Previous studies [16,17] have explored the use of these methods for feature extraction and
classification. However, the EMD algorithm’s lack of mathematical interpretability, mode-
mixing effects, and endpoint effects, along with its high time and space complexity, pose
significant challenges.

In 2014, Dragomiretskiy et al. [18] proposed a new adaptive signal decomposition
method, Variational Mode Decomposition (VMD), which utilizes strict variation equations
to derive optimal solutions yielding a good modal decomposition effect and a strict the-
oretical underpinning. The research conducted by Marco Civera and colleagues shows
that the VMD algorithm outperforms the CEEMDAN algorithm in the field of structural
health monitoring (SHM) when the signal is highly noisy. Additionally, VMD also exhibits
better frequency shift tracking ability during signal decomposition. Moreover, VMD takes
nearly 1/20th of the computation time compared to CEEMDAN in processing the same
signal [19]. Based on its theoretical underpinning and advantages mentioned above, VMD
will be considered for further processing of signals in this study.

Data-driven methods based on machine learning and deep learning models are in-
creasingly used in equipment fault detection due to advancements in hardware computing
power. A plethora of conventional algorithms, such as Support Vector Machine (SVM),
Random Forest, Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM),
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and others [16,17,20,21], have been employed in fault diagnosis. Moreover, the integration
of biologically-inspired optimization techniques, such as Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), and Grey Wolf Optimization (GWO), has been pursued to
enhance the precision of fault diagnosis and prediction [22–26].

Li et al. proposed a new method for identifying multiple parameters of concrete dams
via an integration of polynomial chaos expansion and slime mold algorithm. Unlike
other optimization techniques, this method preserves a high level of precision while
reducing the computational burden. Nevertheless, the accuracy of this method relies
on the norm selection and degree of the polynomial employed [25]. H. Tran-Ngoc et al.
introduced an ANN-PSO-GA optimization algorithm to enhance the accuracy and reduce
the computational complexity of artificial neural networks. By contrast to the conventional
PSO method, this combined optimization mechanism yields better precision and lower
computational demands. Notwithstanding, the authors acknowledged that while ANN
requires fewer computational resources, its ability to extract features falls short of deep
learning approaches, such as CNN [26].

Nevertheless, the potential of these data-based algorithms is constrained by the ca-
pability of the device and the size of the dataset. Although they have vast potential for
application, they are not mature yet.

The direct application of modern signal processing, machine learning, parameter
optimization, and other related algorithms to edge computing puts high demands on the
computing power and power consumption of edge devices. As a solution, this paper
utilizes the progressive algorithm design concept and bifurcates the algorithm into two
levels. During normal times of the expansion joint, low-computing-demand algorithms are
executed to minimize the high load on edge device hardware resources. Edge computing
can execute these algorithms solely based on its computing power. It can efficiently
monitor devices’ health status while reducing data transmissions. In cases of an abnormal
expansion joint, complex algorithms such as modern signal processing will denoise and
extract features from signals, ultimately providing accurate judgment and classification.
This strategy can effectively resolve the issue of prolonged processing time and high
computing power, and resource demands due to complex data processing.

This paper makes the following contributions:

1. A low-power and high-efficiency edge computing system is designed in this paper
for “edge-cloud collaboration” and “storage-computation integration”. The system is
capable of monitoring bridge expansion joints’ health status periodically.

2. A platform was developed to simulate and collect data on expansion joint damage.
The platform was augmented with an edge data collection device to capture a sub-
stantial amount of accurately annotated data, which was appropriate for developing
subsequent algorithms.

3. A two-level classifier mechanism is proposed in this paper, which is particularly
suitable for edge computing. The proposed mechanism is combined with template
matching algorithms, which run exclusively on edge devices, and neural network mod-
els with different computing power requirements that reduce the computing power
demands in practical applications and improve the monitoring accuracy and efficiency.

2. Progressive Two-Level Fault Diagnosis Algorithm
2.1. Overview

The initial step in diagnosing faults in expansion joints based on sound data is to
extract valid segments of the raw data. Then these extracted segments are input into a
two-level classifier. In the first level, a template-based algorithm with low computational
consumption is utilized for performing preliminary diagnosis. The algorithm involves
Fast Fourier Transform (FFT) and Automatic Peak Detection (AMPD). This algorithm is
suitable for use on edge computing devices. The second level of classification employs a
CNN based on VMD for accurate diagnosis. As shown in Figure 1.
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Figure 1. Algorithm overview.

2.2. Slice (Extract Valid Segments)

The device provides 30 s of raw data, and the sample rate is Fs, yielding 30 × Fs data
points. Valid segments refer to sound segments captured when vehicles pass over the
expansion joint, which has been tested to last about half a second. Thus, the algorithm
extracts a valid segment containing 1 s of sound data consisting of Fs sample points.

The algorithm establishes three sliding windows to traverse the entire raw data,
including a main window of length Fs and two subordinative windows, each of length
Fs/4. The maximum amplitude value of each sliding window is computed. The algorithm
considers a segment valid only if the maximum amplitude value of the main window is at
least six times greater than the maximum value of either one of the subordinative windows
and selects the main window as a valid segment in such instance.

However, the maximum amplitude value of the selected segment may not lie at the
window’s center, which may cause disruption to subsequent algorithms. Consequently, we
adopt an iterative approach whereby we use two sliding windows of length Fs/2 positioned
on either side of the maximum amplitude value to reposition the maximum value at the
window’s center until the process converges.

The effect of the slice algorithm is shown in Figure 2.
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2.3. Automatic Peak Detection (AMPD)

Felix Scholkmann et al. [27] proposed the Automatic Multiscale Peak Detection
(AMPD) method for detecting peaks in periodic noise signals and quasiperiodic signals.
However, the algorithm mentioned in the literature is computationally expensive in terms
of time and space complexity, prompting us to simplify it to some extent. Results from
experiments have verified that the simplified algorithm performs well in detecting peaks
and envelopes for non-periodic signals.

Let S be a univariate signal sampled uniformly and represented as [s1, s2, . . . , sFs]. The
simplified steps of the AMPD algorithm based on the multiscale approach are as follows:

Step 1: Calculate the Local Maximum Magnitude Matrix (LMM). Firstly, determine
the local maximum scale of the signal S using the sliding window method. Assign k to
range between 1 and Fs/2 + 1 and i to range between k and Fs/2 − k for the sliding window.
When the following conditions are met:

si > si−k and si > si+k (1)

The corresponding scale wk expands accordingly with the sliding. After the sliding
process, the scale matrix W = [w1, w2, . . . , wFs/2+1] is obtained.

The method of acquiring the maximum scale image is simplified, reducing the space
complexity of the original algorithm from O (n2) to O (n), although this may come at the
expense of the algorithm’s effectiveness in certain exceptional situations. This simplification
eliminates the least squares fitting process and reduces the time required for operation.

Step 2: Determine the maximum window length, Lmax, by obtaining the value of k
that corresponds to the maximum scale on the scale matrix.

Step 3: Scan the entire dataset by sliding a window obtained in Step 2. When si
represents the maximum value of a Lmax length window, a peak is identified. Obtaining all
peaks of the original signal can be achieved by following the above method.

For a periodic signal, the peak interval remains fixed, whereas, for a non-periodic
signal, this algorithm is capable of effectively capturing the peaks of each interval. Refer to
the illustration below for more clarity.

The result of AMPD is shown in Figure 3.
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2.4. Template Matching-Based Determination Algorithm (First Level)

The algorithm based on templates is similar to human intuition. A basic template is
provided for comparison by analyzing the frequency domain curve of valid segments. This
enables us to distinguish the type of valid segment. The specific process is as follows:
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Step 1: Perform FFT on the time series S of the valid 1 s segment, transform the time
domain signal with weakly rule-based to the frequency domain (taking only the first half
of the FFT result due to symmetry) using a sampling rate of Fs.

S f f t = FFT(S, Fs) (2)

S f f t_ log = 20× log10 S f f t (3)

Step 2: Utilize the AMPD algorithm to extract the peak values from frequency domain
sequences, and the upper contour is obtained as Peaks.

Peaks = AMPD(Sfft_log) (4)

Step 3: The signal in the frequency domain is partitioned into 20 identical intervals.
The representative value of each interval is determined by selecting its maximum peak
value. These 20 maximum peak values constitute the higher contour of the signal.

env = [peakmax1, peakmax2, . . . , peakmax20] (5)

Step 4: Select N valid 1 s segments (usually equal to the number of segments in
2–3 days) and repeat steps 1–3 above to obtain the upper contour envi. Based on the upper
contour matrix Env of the N segments, choose the maximum and minimum values at each
point, and extend them outward by specific values tolup and toldown, respectively. This
produces two boundaries of the defined region, the upper boundary Regionup and the
lower boundary Regiondown.

Env = [env1; env2; . . . ; env20] (6)

Regionup = envmax + tolup
Regiondown = envmin + toldown

(7)

Step 5: For a valid 1 s segment, steps 1–3 are taken to obtain its upper contour envtest.
These 20 data points are then compared with a pre-defined region. If more than 10 points
lie outside the region, the segment is judged as abnormal; 1–10 points suggest an anomaly
in the segment, and all points within the region indicate the segment is normal.

Step 6: After each maintenance of the expansion joint, repeat steps 1–4 to update
the template to account for any changes in the condition of the equipment and seek to
enhance the system’s robustness while also minimizing the impact that equipment aging
and updates to system components have on the accuracy of the algorithm.

2.5. CNN Classifier Based on VMD Denoising (Second Level)

The valid segments sent to the cloud are decomposed by VMD into several intrinsic
mode functions (IMF) with different central frequencies. Then correlation coefficients are
used to denoise. The reconstructed time series is then input into the CNN for fault diagnosis
and classification.

2.5.1. Variational Mode Decomposition (VMD)

VMD is a novel adaptive signal decomposition method that was proposed by
Dragomiretskiy [16] in recent years. The method constructs a variation equation and
searches for the optimal solution to that equation. The original signal is placed into the vari-
ation model. It then decomposes the original signal into adaptive components by solving
the variation model. VMD is a fully non-recursive decomposition method, which effectively
mitigates mode aliasing and endpoint effects that may appear during the decomposition of
signals through EMD. VMD decomposes complex signals into numerous analysis signals
with unique central frequencies and sparsity features using Wiener filtering and Hilbert
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transform. It also computes the marginal spectrum of each analysis signal. Afterward,
VMD shifts the central frequency of each mode using the displacement property of the
Fourier transform through multiplication by ejwkt, demodulates each mode’s spectrum to
the baseband, and estimates the broadband using L2 norm. The final variation constraint
model is presented as the VMD equation:

min
{uk},{ωk}

{
K
∑

k=1

∥∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f (t)

(8)

In the above constraint model, f represents the input signal, t represents time, δ(t) repre-
sents the Dirac distribution, ∗ represents convolution operation, and {uk} = {u1, u2, . . . , uK}
represents intrinsic mode functions (IMF). {ωk} = {ω1, ω2, . . . , ωK} represents the central
frequency of each IMF. In order to facilitate the calculation and ensure the absolute integra-
bility of each component, a quadratic penalty factor-alpha, and a Lagrange multiplier factor
λ(t) are introduced to obtain an extended Lagrange expression. The variational constraint
problem is then transformed into an unconstrained problem.

L({uk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

+‖ f (t) −
K
∑

k=1
uk(t)‖2

2

+ < λ(t), f (t)−
K
∑

k=1
uk(t) >

(9)

where α is a secondary penalty factor and λ is the Lagrange operator. By using the
alternating direction multiplier algorithm, the saddle point of the Lagrange function is
obtained, which is the optimal solution of the constrained variational model, with the mode
component uk and the central frequency ωk.

In this model, K is set at 8, the penalty factor alpha is 7000, and a maximum of
500 iterations are performed. After VMD, our valid data segments are decomposed into
eight modes, im f1 to im f8, and are arranged in ascending order of their central frequency.
The decomposition result is shown in Figure 4.
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2.5.2. Mode Reservation Based on Pearson Correlation Coefficient

The Pearson correlation coefficient is computed between the eight mode components
and the original signal. The formula for calculating the Pearson correlation coefficient of a
single IMF component is given below.

r = ∑n
i=1 (Si − S)(IMFi − IMF)√

∑n
i=1 (Si − S)2

√
∑n

i=1 (IMFi − IMF)2
(10)

where S represents the original signal, S represents its mean value, IMF represents a mode,
and IMF represents its mean value.

The degree of relatedness between each IMF component and the original signal is
obtained by calculating the formula. The correlation between the IMF component and
the original signal is greater when |r| is closer to 1. Three IMF components with the
smallest correlation coefficients are removed, and noise attenuation is completed, followed
by feature enhancement. Figure 5 illustrates the denoising effect.
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2.5.3. CNN Classification

The convolutional neural network (CNN) is a type of artificial neural network that
has been widely applied in various fields, such as speech recognition and computer vision.
It has greatly contributed to significant advancements in these fields. CNN is usually
implemented using the popular and powerful framework BVLC Caffe [28,29] from the
University of California, Berkeley.

CNN has three principal layers:

• the Convolutional Layer, which is responsible for extracting features;
• the Max Pooling Layer, which down-samples input data and reduces data volume

without impairing classification results.
• the Fully Connected Layer, which is responsible for classification tasks.

In this study, each valid segment S after denoising and FFT is reconstructed as a square
matrix Sr_ f f t, which was subsequently utilized as the input of CNN. The CNN network we
built has the following topology, which is shown in Figure 6:

• The first convolutional layer has a 1D input and a 5 × 5 kernel, producing 16D output
channels. Additionally, it has a padding size of 2 and a stride of 1.

• The second convolutional layer has a 16D input and a 5 × 5 kernel, producing 32D
output channels. It also has a padding size of 2 and a stride of 1.

• A fully connected layer with 32,768 units.
• A dropout layer to prevent overfitting during the training process.
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• A fully connected layer with 128 units.
• Finally, a fully connected layer with 3 units is employed for classification.
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To accelerate convergence learning and introduce nonlinearity into the proposed sys-
tem, ReLU (Rectified Linear Unit) layer is applied to all convolutional and fully connected
layers, which sets all negative activation values of a given input to zero by utilizing the
following function: f (x)−max(0, x).

After each ReLU layer, a Max Pooling layer (down-sampling layer) with a 2 × 2 filter
is applied to decrease the spatial dimension.

3. Periodical Monitoring System
3.1. Overview

The health monitoring system for bridge expansion joints comprises two components:
cloud server and edge data acquisition and processing devices, as illustrated in Figure 7.
Further, edge data acquisition and processing devices can be subdivided into three modules:
data acquisition, processing, and transmission.
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3.2. Cloud Server

In this section, we utilize Tencent Cloud for managing the devices. The cloud service
platform is responsible for managing the devices online, which includes tasks such as
timing startup, switching the devices to engineering mode, updating parameters such as
sampling rate, etc. Furthermore, some software algorithms are deployed on the cloud server.
During the system runtime, the collected sound data and diagnostic results are saved.

3.3. Edge Data Collection and Processing Device

MEMS microphones are installed in edge devices under the expansion joints of the
bridge to regularly collect 30 s sound data. The Microcontroller Unit (MCU) in the edge device
processes the data, such as extracting effective segments and executing first-level algorithms.

Through site, investigations and sound signal analysis using high-performance equip-
ment such as phones, normal and abnormal expansion joints have a characteristic frequency
in the lower frequency band. Specifically, features within the band of 3 kHz are sufficient
for detecting faults. As a result, a sampling rate of 8 kHz is applied for the bridge expansion
joint health monitoring system. However, during subsequent iterations, the sampling rate
can be manually adjusted to meet the needs of different types of expansion joints and faults.

Given the network conditions at the bridge, as well as the desire for efficient data
transmission and low power consumption, the 4G-Cat1 module with an extended antenna
is chosen for data transmission. The module connects to the MCU using a pin header,
enabling inter-board communication through the serial port protocol. The MCU uses AT
commands to control Cat1. Results are sent to a remote server using the HTTP protocol.
If necessary, data are returned to the cloud server for accurate classification using the
second-level algorithm. Moreover, the data transmission module receives data, such as
switch signals, between engineering and normal operation modes and server settings,
which satisfies the need to set specific parameters for different scenarios.

The edge device is shown in Figure 8.
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3.4. System Operation Process

The process is shown in Figure 9. Procedures carried out by the edge device are
represented in the blue box, while those executed by the cloud server are represented in the
yellow box. A detailed explanation of the procedures inside the white box will be provided
in the subsequent text.

3.4.1. Device Boot Initialization

The edge devices located at the bridge expansion joint are scheduled to wake up and
receive instructions from the server. The devices check whether the firmware version stored
in the firmware update folder on the server matches that inside the device. If firmware
versions do not match, the updated firmware code is sent to the device using the HTTP
protocol and remotely updated via the bootloader, which is deployed in the MCU. After
updating, the device reads the server-issued parameter settings, which include the boot-up
interval, sampling time, and sampling rate, and completes the initialization process. If
there is a match, the edge device reads the parameter settings and performs subsequent
operations, including data collection and processing.



Sensors 2023, 23, 5090 11 of 18

Sensors 2023, 23, x FOR PEER REVIEW 11 of 18 
 

 

Given the network conditions at the bridge, as well as the desire for efficient data 
transmission and low power consumption, the 4G-Cat1 module with an extended antenna 
is chosen for data transmission. The module connects to the MCU using a pin header, 
enabling inter-board communication through the serial port protocol. The MCU uses AT 
commands to control Cat1. Results are sent to a remote server using the HTTP protocol. 
If necessary, data are returned to the cloud server for accurate classification using the sec-
ond-level algorithm. Moreover, the data transmission module receives data, such as 
switch signals, between engineering and normal operation modes and server settings, 
which satisfies the need to set specific parameters for different scenarios. 

The edge device is shown in Figure 8. 

 
Figure 8. Edge data collection and processing device. 

3.4. System Operation Process 
The process is shown in Figure 9. Procedures carried out by the edge device are rep-

resented in the blue box, while those executed by the cloud server are represented in the 
yellow box. A detailed explanation of the procedures inside the white box will be pro-
vided in the subsequent text. 

 
Figure 9. System operation process. 

3.4.1. Device Boot Initialization 
The edge devices located at the bridge expansion joint are scheduled to wake up and 

receive instructions from the server. The devices check whether the firmware version 
stored in the firmware update folder on the server matches that inside the device. If firm-
ware versions do not match, the updated firmware code is sent to the device using the 
HTTP protocol and remotely updated via the bootloader, which is deployed in the MCU. 

Figure 9. System operation process.

3.4.2. Data Acquisition and Processing

After the initialization of the equipment, the device enters the acquisition mode and
sets the necessary parameters for data collection. Then, the device conducts valid segment
extraction. These extracted valid segments are then sequentially input into the first-level
algorithm that is deployed in the MCU. Once the first-level algorithm extracts the features,
it checks for the existence of the corresponding template file. If the template file does not
exist, it is created and initialized. If it already exists, the number that determines whether
to update the template and the template interval is read. The device then checks whether
it is in engineering mode. If it is indeed in engineering mode, the default result output is
set to normal, and the template is reinitialized. However, if it is not in engineering mode,
the number is compared against the preset threshold. If the number is greater than the
threshold, the health status judgment is conducted. Conversely, if the number is less than
the threshold, the feature of this segment is used to update the template, and the default
output result is set to normal.

3.4.3. Data Transmission and Diagnose

If the running of the first-level algorithm results in abnormal or suspicious outcomes,
the second-level algorithm must run. Conversely, if normal outcomes are acquired, the
server only receives diagnostic results, which inform the expansion joint condition of the
maintenance personnel responsible for the bridge.

Once the first-level algorithm has finished processing, the cloud server acquires the
running results of this algorithm and assesses the flag indicating whether the second-level
algorithm is running. If the second-level algorithm needs to execute, the valid segments
are reserved and dispatched to the data transmission module. Utilizing the CNN model
deployed on the server, the received data are categorized and diagnosed more meticulously,
culminating in the output of diagnostic results.

3.4.4. Enter the Low-Power Sleep Mode

After the device completes the above three steps, it transitions into a low-power mode,
where it awaits awakening for the next operational cycle.

After measuring, an edge device only consumes 2 mAh of power during the activation
process while carrying out procedures such as data collection, preliminary assessment, and
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data transmission. Notably, the current in low-power mode is only a few microamps. With
six daily activations, its energy consumption reaches 16 mAh. Equipped with a 40,000 mAh
battery, the device would be expected to operate for two or more years while taking into
account aging and voltage factors affecting its power supply.

3.5. Expansion Joint Damage Simulation Data Collection Platform

Bridge expansion joint failure data collection is quite challenging, and labeling is an
issue. Currently, there is no available dataset regarding sound segments of joint expansion
failures. The study aims to create a well-labeled and balanced dataset for algorithmic
research by building a simple expansion joint damage simulation data collection platform.
For this purpose, the platform is composed of two crosswise connected aluminum alloy
structures and rubber between two types of connecting pieces that simulate the rigid and
flexible components of real expansion joints. The experiment utilized a spinning top car
and a scale to ensure consistency in the speed of the car during the simulation. As shown
in Figure 10.
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Different failure situations can be observed by adjusting the fixed position of the con-
necting piece, and this flexibility allows researchers to gather the required data. This platform
provides a trustworthy source of data for testing expansion joint failure diagnosis algorithms.

4. Results
4.1. Overview of Dataset

The main data used in the algorithm proposed in this article are provided by the
bridge expansion joint damage simulation platform mentioned in the third section. Here,
we simulated three situations: normal, main connection loose (MCL), and subordinate
connection loose (SCL). Normally, the screws between the primary connection plates and
the main body of the analog bridge, including the screws between the two types of con-
nection plates, are tightly fastened. The term “main connection loose” signifies the screws
becoming loose or dislodged between the main connection plate and the bridge’s bodies,
while “subordinate connection loose” refers to the screws becoming loose or dislodged
between the main connection plate and the subordinate connection plate.

We collected 500 sets of effective fragments for the verification of the fault diagnosis
algorithm, as shown in Table 1. The training set and test set are divided in a ratio of 7:3.
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Table 1. Composition of the dataset.

Data Type Number

Normal 500
Main Connect Loose 500

Subordinate Connect Loose 500

The comparison of the time-domain and frequency-domain of the collected three
signals is shown in Figures 11 and 12.
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Figure 12. Comparison in the frequency-domain.

A comparison of the three signals shows differences both in the time domain and
frequency domain. In particular, there are obvious differences between the normal seg-
ments and the faulty segments. Thus, applying a template-matching algorithm for initial
classification is considered a practical approach.

While the frequency domain distribution differences may not be as prominent for
both types of faulty segments, their characteristic frequencies differ around 2–3 KHz after
undergoing VMD, which is illustrated in Figure 13. Therefore, it is feasible to reconstruct
the signal using VMD and then proceed with further classification.
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4.2. Results Based on Template Matching-Based Determination Algorithm

The study examines the performance of the template-matching algorithm using a
dataset derived from a simulation platform. The dataset is segregated into normal and
faulty data, and ten valid segments are selected from the normal category to initialize the
templates. The resulting template intervals are illustrated in Figure 14.
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The residual segments are subjected to the feature extraction and comparison algo-
rithm presented in the second section, which yields an initial classification result of the
data. The outcome of the classification is tabulated in Table 2.
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Table 2. Outcome of the first-level classification.

Data Real Type Total Quantity The Quantity
Judged as Normal

The Quantity Judged as
Fault or Suspected

Normal 490 460 20
Main Connect Loose 500 31 469

Subordinate Connect Loose 500 38 462

After calculation, the final diagnostic accuracy is 93.3%. The false alarm rate (the total
number of normal segments wrongly judged as abnormal/the total number of normal
segments) is 4%, and the missed detection rate (the total number of anomalous segments
wrongly judged as normal/the total number of anomalous segments) is 6.9%.

Considering the practical application process, a device may receive more than 20 sound
segments per day. Therefore, the occasionally missed detection can be acceptable. Nonethe-
less, false alarms may lead to unnecessary labor costs. As a result, in the actual application,
a wide tolerance range is established in the template area to minimize false alarms while
keeping the missed detection rate as low as possible.

4.3. Results Based on CNN

The study conducted in this experiment utilizes the CNN model to analyze a dataset
obtained from a simulation platform. The final outcome of this experiment is demonstrated
in Figure 15. The loss function reached a convergence point after the 50th iteration with the
inclusion of 350 training samples. The tested accuracy results from the confusion matrix
display exceptional classification achievements, attaining 98.4%, which indicates that the
classification task is completed impeccably.
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5. Discussion

1. Obtaining well-annotated data in real-world environments is challenging, causing
our work to rely on data gathered only from a simulation platform, which has differences
from the actual environment and mechanical structure of the bridge expansion joint. Despite
having performed well on simulated data, the two-level classification algorithm may require
further modifications to be applicable to actual scenarios based on environmental factors.

To address the above concerns, the first-level algorithm proposed in this paper is
adaptive and can continuously update the template based on environmental changes,
which has strong robustness. Moreover, we have currently deployed our system to collect
data from some actual bridge expansion joints. Additionally, in future research, we will use
these data to construct datasets to verify and improve the algorithm.

2. The second-level algorithm utilizes CNN, which requires a significant amount
of data. While this approach performs well on simulated datasets, its judgment capacity
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becomes limited in the absence of sufficient data. Meanwhile, research in other data-
driven algorithms (such as machine learning, deep learning, and optimization) remains
insufficient. One potential area of future study is to establish a complete dataset and
employ optimization algorithms such as GWO to optimize model parameters. However,
this approach still lacks flexibility and adaptability. Alternatively, another research direction
is to develop an unsupervised fault diagnosis model capable of adapting to complex
factors such as environmental shifts and equipment aging, which could impact the bridge
expansion joint and the judgment effect of algorithms.

6. Conclusions

In this paper, we have developed an IoT system to meet the periodical monitoring
requirements of the health status of bridge expansion joints. The system deploys a pro-
gressive two-level classification algorithm for data processing. Specifically, edge devices
perform data preprocessing and template matching, while the cloud server handles further
data processing for noise reduction and CNN precise diagnosis. Additionally, we have
carried out testing using the Expansion Joint Damage Simulation Data Collection Platform
and developed a dataset. Based on this dataset, the first-level algorithm has achieved an
accuracy rate of 93.3%, and the second-level algorithm has achieved a 98.4% accuracy rate.

The system has the following advantages:

• Low power consumption—The system enables the periodic switching of edge devices
between normal operation and low power consumption sleep by AT commands, the
energy consumption is only 2 mAh of power during a single operation, and the current
in low-power mode is only a few microamps;

• Low computing power demand—A progressive two-level fault diagnostic algorithm can
allocate computing power between edge devices and cloud servers in a reasonable manner.

• High accuracy—The result shows that the algorithm proposed in this paper can
accurately identify faults in expansion joints.

• Robustness—The system can automatically update parameters and fault diagnosis
templates regularly to adjust to environmental changes.
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