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Abstract: In modern applications such as robotics, autonomous vehicles, and speaker localization,
the computational power for sound source localization applications can be limited when other func-
tionalities get more complex. In such application fields, there is a need to maintain high localization
accuracy for several sound sources while reducing computational complexity. The array manifold
interpolation (AMI) method applied with the Multiple Signal Classification (MUSIC) algorithm
enables sound source localization of multiple sources with high accuracy. However, the computa-
tional complexity has so far been relatively high. This paper presents a modified AMI for uniform
circular array (UCA) that offers reduced computational complexity compared to the original AMI.
The complexity reduction is based on the proposed UCA-specific focusing matrix which eliminates
the calculation of the Bessel function. The simulation comparison is done with the existing methods
of iMUSIC, the Weighted Squared Test of Orthogonality of Projected Subspaces (WS-TOPS), and the
original AMI. The experiment result under different scenarios shows that the proposed algorithm
outperforms the original AMI method in terms of estimation accuracy and up to a 30% reduction
in computation time. An advantage offered by this proposed method is the ability to implement
wideband array processing on low-end microprocessors.

Keywords: array manifold interpolation; direction of arrival estimation; wideband sources

1. Introduction

In sound source localization (SSL), also known as acoustic direction of arrival estima-
tion (DoA), the bearing angles (and in some cases range) of sound sources are estimated
from the measurements taken by sampling the acoustic waves generated by the sources
at different positions and orientation in space. SSL for wideband sources can be very
computationally demanding due to the complexity of the existing algorithms. Thus, a low-
complexity and computational efficient algorithm will greatly benefit embedded system
real-time applications with a low-end microprocessor.

Direction of arrival estimation finds application in speaker identification and local-
ization [1,2], source localization in humanoid robots and drones [3,4], ground vehicle
tracking [5], geometrical room modeling [6], and many others. Various direction of arrival
estimation algorithms for narrowband sources have been proposed over the years. Some of
the well-known algorithms include the Multiple Signal Classification (MUSIC) algorithm
and its variants [7,8], the estimation of signal parameters via rotational invariance (ESPRIT)
algorithm and its variants [9], minimum variance distortionless response (MVDR) and its
variants [10,11], the generalized correlation method [12], and many others [13].

In general, most real-life sound sources are wideband signals; hence, the narrowband
assumption adopted for the development of the narrowband beamforming method does
not hold. For wideband sources, the phase difference between the outputs of the sensors is
not only dependent on the direction of arrival, but also on the temporal frequency. Some
methods have been proposed to overcome this challenge. The wideband signal can be
seen as a collection of multiple narrowband signals; hence, the narrowband beamforming
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methods can be applied to each narrowband bin and averaged over the entire wideband.
These approaches are referred to as the incoherent signal subspace method (ISSM). Exam-
ples of such methods are the incoherent MUSIC (iMUSIC) [14], test of orthogonality of
projected subspaces (TOPS) [15], test of orthogonality of frequency subspaces (TOFS) [16],
and weighted squared test of orthogonality of projected subspaces (WS-TOPS) [17]. This
approach suffers not only from severe degradation when correlated multipath exists but
also lacks statistical stability compared to the wideband coherent methods. However, given
sufficient signal-to-noise ratio (SNR), the iMUSIC algorithm performs well yielding sharp
peaks in the beampattern [18]. It requires a frequency selection step as the inclusion of
low-SNR frequency bins tends to degrade the resulting beampattern, and thereby reducing
the source peak and introducing spurious peaks.

An alternative approach to wideband problems is the coherent method. In this ap-
proach, the covariance matrix of the component narrowbands is coherently summed into
one narrowband covariance matrix, whereby the narrowband subspace method is applied
to the universal covariance matrix. This is achieved by multiplying each narrowband cross-
covariance matrix by a focusing matrix and then summed to obtain the steered covariance
matrix. The earliest of this approach was proposed as the Coherent Signal-Subspace (CSS)
method [19]. Other coherent signal-subspace methods have since been proposed: the least
square and total least-square coherent signal subspace (CSS-MTLS) [20], Particle Swarm
Optimization algorithm (PSO) [21], Dir-MUSIC algorithm using the strength proportion
(DirSP) [22], and array manifold interpolation (AMI) [23]. A major advantage of the CSS
methods is their ability to handle correlated sources. On the other hand, the performance of
the CSS is sensitive to the initial values of the directions of arrival. This is because the focus-
ing matrix of the CSS method is dependent on both directions of arrival and narrowband
frequencies, making the initial estimation of the directions of arrivals an intermediate step.

The array manifold interpolation (AMI) method [23] is made possible by the series
expansion of the plane wave. This gives a focusing matrix that does not depend on the initial
direction of arrival of the incident signals, but only on the narrowband frequencies [18,23].
This leads to a less computational CSS method for wideband sources. The complexity is
further reduced for the uniform circular array as the sensor spacings are identical [18].
However, AMI depends on the Bessel function of the first kind, which may make the
implementation of this algorithm on embedded systems computationally inefficient.

Following the advances in the fields of embedded systems and Internet-of-Things
(IoT), SSL and DoA methods are now being implemented on embedded systems. They
are sometimes implemented together with other functionality, competing over the com-
putational resources available on the embedded systems. Recent research in the fields of
SSL and DoA has been conducted, where computational complexity is in focus, both on
a model development level [24] and in more implementation on application papers [25].
These are, however, targeting narrowband signals, which cannot be adopted—even with
slight modification—for wideband sources.

In this paper, a modified array manifold interpolation method is proposed for the
uniform circular array of omnidirectional microphones. The proposed method takes
advantage of the Bessel function’s asymptotic property and forms a UCA-specific focusing
matrix. Combining the assumption of low-frequency wideband signals with an adequate
signal-to-noise ratio, the proposed focusing matrix can be approximated as the product
of a discrete Fourier transform (DFT) matrix and a diagonal matrix. The entries of the
diagonal matrix are the nth power of the ratio of the central processing frequency and the
narrowband frequencies. Thus, the computational complexity reduction can be done by
eliminating the calculation of the Bessel function. The simulation and experimentation
results of the proposed method are compared with iMUSIC, WS-TOPS, and the original
AMI method due to these particular existing methods do not require an initial estimate of
the DoA [26]. The proposed modification reduces the computational complexity required
for generating the focusing matrix, and yields a similar direction of arrival estimation
performance to the original AMI method.
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The rest of this paper is organized as follows: the signal model and array manifold
interpolation are described in Section 2, the proposed algorithm is developed in Section 3,
its efficacy is shown by Monte Carlo simulation in Section 4, and the laboratory experiment
reported in Section 5. Finally, the paper is concluded in Section 6.

2. Array Manifold Interpolation

The signal model is described in Section 2.1 where the received data and array manifold
are described. The steered covariance matrix via array manifold interpolation is introduced
in Section 2.2 and applied to the uniform circular array in Section 3.1.

2.1. Signal Model

Considering L (either known a priori or estimated) number of wideband sources
incident on a uniform circular array of radius r with M omnidirectional microphones, as
shown in Figure 1, which illustrates the `th incident source. The bandwidth of the sources
are not necessarily identical but must exist within some overlap bounded by [ fmin, fmax].
The output of the mth sensor is given as:

xm(t) =
L

∑
`=1

s`(t− τ`m) + vm(t) (1)

where s`(·) is the `th incident source, τ`m = kT
` rm/ω is the `th signal’s time-delay-of-

arrival for the mth sensor and the reference point (center of the circular array), ω = 2π f is
the source angular frequency, k` = (2π/λ)[cos(φ`) sin(θ`) sin(φ`) sin(θ`) cos(θ`)]T is the
wavenumber of the `th source, and rm is the position vector of the mth sensor. Furthermore,
in (1), vm(t) is the additive noise on the mth sensor, assumed to be zero-mean spatio-
temporally uncorrelated Gaussian noise with a priori known variance. Assuming the
source and array lie on the same plane (where θ` = 90◦), for the uniform circular array,
the time delay is τ`m = krm cos(φ` − ψm)/ω, where φ` ∈ [0, 2π) is the azimuth angle of
incidence of the `th source and ψm = 2πm/M is the angle between the line from the origin
to the mth sensor and the positive x-axis. The wavenumber magnitude k = |k`| = 2π f /cair,
where f ∈ [ fmin, fmax] is the source-frequency, and cair = 343 ms−1 is the speed of sound
propagation in dry air. With an adequate number of observations, the jth sample of the
discrete Fourier transform (DFT) of the mth sensor’s output:

Xm(k j) = A(φ, k j)S(k j) + Vm(k j), j = 1, 2, · · · , J (2)

where J is the total number of frequency samples, A(φ, k j) := [a(φ1, k j) a(φ2, k j) · · · a(φL, k j)]

is the steering matrix, S(k j) = [S1(k j) S2(k j) · · · SL(k j)]
T is the DFT of the incident signals,

Vm(k j) is the DFT of the additive noise, and:

a(φ`, k j) = [eikjr cos(φ`−ψ1) eikjr cos(φ`−ψ2) · · · eikjr cos(φ`−ψM)]T (3)

is the M× 1 array manifold at wavenumber k j. The variable i denotes the imaginary unit,
i.e., i =

√
−1.

The correlation matrix E[X(k j)X(k j)
H ] of the received data at a given wavenumber k j

is estimated as:

Rj =
1
Q

Q

∑
q=1

X(q)(k j)X(q)(k j)
H (4)

where Q is the number of independent measurements and X(q)(k j) = [X(q)
1 (k j) X(q)

2 (k j) · · ·
X(q)

M (k j)] is the discrete Fourier transform of the qth measurement. Superscript (·)H denotes
the conjugate transpose.
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Figure 1. The uniform circular array of omnidirectional microphones with an incident source imping-
ing at azimuth angle φ`.

2.2. The Array Manifold Interpolation Method

The correlation matrix of the observation has been developed for narrowband fre-
quency f j. For wideband sources, the various narrowbands are coherently summed into
one correlation matrix by multiplying each narrowband correlation matrix by a focusing
matrix. One method of achieving this is the array manifold interpolation method (AMI) [23].
This method is introduced in this section for an arbitrary array geometry and then further
simplified for the uniform circular array in the next section.

The mth element of the array manifold of the planar array is represented as a series
expansion of a plane wave, i.e., the Jacobi–Anger expansion as:

[a(φ, k)]m = eikrm cos(φ−ψm)

=
∞

∑
n=−∞

in Jn(krm)e−inψm einφ (5)

= b̃m(k)w̃(φ)

where [b̃m(k)]n := in Jn(krm)e−inψm is nth element of the row vector b̃m(k), and [w̃(k)]n := einφ

is the nth element the column vector w̃(φ), for n = −∞, · · · , 0, · · · , ∞. The function Jn(·) is
the Bessel function of the first kind with order n, rm is the distance between the origin (usu-
ally the center of moment of the geometry) and the mth microphone, and other variables
are as previously defined.

The Bessel function decays exponentially as n� krm; hence, the infinite summation
in (6) can be truncated to a given N such that |Jn(kmaxrm,max)| < ε for n > N, where ε
is an acceptable truncation error. This implies that the length of vectors b̃m(k) and w̃(φ)
is limited to 2N + 1, thus reducing to bm(k) and w(φ), respectively. It is practical to set
N ≥ 2kmaxrm,max. Generally, the array manifold of the array with M total number of
microphones is given by:

a(φ, k) = B(k)w(φ) (6)

where [B(k)]m,n = in Jn(krm)e−inψm , m = 1, 2, · · · , M, and n = −N,−(N − 1), · · · , 0, · · · ,
N− 1, N and w(φ) is as previously defined but for n = −N,−(N− 1), · · · , 0, · · · , N− 1, N.

For wideband sources, the concept of frequency smoothing is adopted to coherently
sum the component narrowband covariance matrices of the wideband source into one nar-
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rowband covariance matrix. This is followed by the smoothing of the mapped narrowband
covariance matrix. For this, we define an M×M focusing matrix T(k j) such that:

T(k j)a(φ, k j) = a(φ, k0), ∀φ. (7)

According to (6) and (7):

T(k j) = B(k0)B(k j)
# (8)

where B(k j)
# = (BHB)−1BH is the generalized inverse of matrix B(k j) and k0 ∈ (kmin, kmax)

is the central processing wave number. It is becomes necessary to choose N and M such
that M = 2N + 1 to ensure B(k j) is nonsingular [18,23].

The focused and frequency-smoothed covariance matrix is evaluated as:

R̃ =
J

∑
j=1

T(k j)RjT(k j)
H (9)

where J is the total number of selected frequency samples as in (2) and Rj is as previously
defined in (4). In order to guarantee an improved performance, the frequency samples in
the signal bandwidth that corresponds to the J highest DFT magnitudes are selected to
avoid low-SNR frequency samples.

3. The Proposed Method
3.1. For the Uniform Circular Array

For the uniform circular array, rm = r ∀m and ψm = 2πm/M. Thus, the matrix B(k)
as defined in (6) can be expressed as:

B(k) =
√

MFJ(k) (10)

where F is a M× (2N + 1) unitary DFT matrix defined as:

[F]m,n =
1√
M

e−i 2π
M mn,

m = 0, 1, · · · , M− 1
n = −N, · · · , N

(11)

and J(k) ∈ C(2N+1)×(2N+1) is a diagonal matrix with entries:

[J(k)]n,n = in Jn(kr). (12)

By setting M = 2N + 1, F becomes an invertible square matrix. Thus, the focusing
matrix is expressed as:

T(k j) = FD(k j)F−1

= FD(k j)FH (13)

since F is a unitary matrix. Matrix D(k) is a (2N + 1)× (2N + 1) diagonal matrix with
diagonal entries:

[D(k j)]n,n =
Jn(k0r)
Jn(k jr)

. (14)

3.2. The Proposed Focusing Matrix

In this section, the original array manifold interpolation method has been introduced
and further simplified for the uniform circular array. For an embedded implementation of
such an algorithm, a high-end microcontroller capable of implementing the Bessel function
evaluation will be required. This requirement translates to higher cost for some low-budget
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applications. To eliminate the complexity required for the calculation of the Bessel function,
the proposed algorithm exploits a property of the Bessel function, which allowed for the
total elimination of its computation.

According to the asymptotic property of the Bessel function, for orders n far greater
than the argument, the Bessel function can be approximated as Jn(kr) ≈ J̃n(kr), where:

J̃n(kr) :=


1

Γ(n + 1)

(
kr
2

)n
for n ≥ 0

(−1)n

(−n)!

(
2
kr

)n
for n < 0

(15)

given that 0 < kr <
√

n + 1, ∀n > 0, assuming the least order of n = 0 [27] (p. 364). This
small-argument approximation makes it possible to further simplify (14) to:

[D̃(k j)]n,n =

(
k0

k j

)n

=

(
f0

f j

)n

(16)

for n = −N, · · · , 0, · · · , N, given that 0 < kr < 1. This condition is obtainable for a combi-
nation of source frequency and small radius uniform circular array. The diagonal matrix
D(k j) simply reduces to a matrix D̃(k j) of nth power of the ratio of the central processing
frequency f0 and the narrow band frequency f j, and thus, eliminating the computation of
the Bessel function of the first kind, and the focusing matrix in (13) then becomes:

T̃(k j) = F D̃(k j) FH (17)

Finally, the steered covariance matrix is calculated using (9). Though this method
adds additional matrix multiplication compared to the CSS method [19], it eliminates the
initial estimation of the directions of arrival, which includes several matrix multiplications
depending on the algorithm used. This focusing matrix (compared to other wideband
methods) could be useful in tracking moving sound source as one focusing matrix is needed
if the frequency spectrum of the source remains fairly constant. Furthermore, the proposed
focusing matrix also does not depend on the radius of the uniform circular array, making it
suitable for any circular array of any radius given that 0 < kr < 1 is fulfilled.

3.3. Approximation Error

The proposed algorithm is based on the small-argument approximation of the Bessel
function of the first kind as given in (15). However, the Bessel function occurs in ratio as
in (14) for the uniform circular array. In this section, the resultant approximation error on
matrix D(k j) is analyzed. Towards this, the approximated Bessel function is equal to the
true value plus an approximation error. That is:

J̃n(kr) = Jn(kr)± ε, ε > 0 (18)

where ε is the approximation error and expressed as:

ε =
∞

∑
m=1

(−1)m+1

m!Γ(m + n + 1)

(
kr
2

)2m+n
. (19)
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For the ± sign in (18), the ‘+’ sign applies for n ≥ 0. When n < 0, ‘+’ sign applies for even
n, and ‘−’ sign applies for odd n, respectively. The ratio in (16) becomes:

[D̃(k j)]n,n =
Jn(k0r)± ε0

Jn(k jr)± εj
(20)

and the approximation error ∆D of matrix D(k j) is thus:

∆D = [D(k j)nn − D̃(k j)]n,n

=
±εj Jn(k0)± ε0 Jn(k j)

Jn(k j)[Jn(k j)± εj]
(21)

which shows that the approximation error increases as |k0 − k j| increases. This implies that
choosing k0 as the median of the selected high-SNR J bins will reduce the approximation
error. As shown in Figure 2, a plot of |∆D| versus n and k jr ∈ [0.2, 1] and k0r = 0.7, which
shows that the least error occur about k jr = 0.7, where |k0 − k j| = 0.
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Figure 2. Plot of approximation error ∆D versus order n and kjr ∈ [0.2, 1] for k0r = 0.7, showing the
approximation error increases as the separation distance between processing frequency and other
bins increases.

3.4. Computational Complexity

The computational complexity of the proposed method is compared against those of
iMUSIC, WS-TOPS, AMI, and proposed method. Recall that M is the number of sensors,
J is the number of narrow band frequency bins (J′ < J is the total number of selected
processing frequency bins for the WS-TOPS method), Q is the number of snapshots, and
L is the number of sources. Table 1 shows the matrix multiplication complexities, while
Table 2 shows the matrix decomposition complexities for the methods under comparison.

Table 1. Matrix multiplication complexity comparison.

Method Matrix Multiplication

iMUSIC O(J(M− L)(2M + 1) + JQM2)
WS-TOPS O(J′(J − J′)[2LM(M− L) + L2 M + 2LM2] + (J − J′)QM2)

AMI O((M− L)(2M + 1) + JM2(Q + 4M))
Proposed Method O((M− L)(2M + 1) + JM2(Q + 2M))
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Table 2. Matrix decomposition complexity comparison.

Method Eigen Decomposition Singular-Value Decomposition

iMUSIC O(JM3) not required
WS-TOPS O(JM3) O(L3(J − 1)J′)

AMI O(M3) not required
Proposed Method O(M3) not required

The computational complexity of computing the Bessel function of the first kind Jn(kr)
with accuracy 2−v at the rational point is O(v log3vs.log log v) [28]. The evaluation of
kn(a ζ-digit number) requires O(log nM(ζ)), where M(ζ) is the time complexity of the
multiplication algorithm. For the Harvey–Hoeven algorithm, M(ζ) = O(n log n), which
results to O(n log2 n) [29]. The computational complexity in the procposed methods is
further reduced by defining the focusing matrix T(k j) as:

[T(k j)]mr ,mc =
N

∑
n=−N

(
f0

f j

)n

Wn(mr−mc) (22)

where mr, mc = 1, 2, . . . M and W := ei 2π
M . This eliminates the O(2JM3) complexity for

the matrix multiplication in (13) for T(k j). Plots of the matrix multiplication complexity
versus number of sensors and versus number of narrowband frequency bins are shown in
Figure 3a and 3b, respectively.

(a) Complexity versus M

Figure 3. Cont.



Sensors 2023, 23, 5061 9 of 16

(b) Complexity versus J

Figure 3. Plot of the matrix multiplication complexity versus (a) number of sensors M for J = 100 bins,
L = 2, Q = 5, and J′ = 0.1J, (b) number of frequency bins J for M = 6, Q = 5, L = 2.

It is observed that the matrix multiplication complexity involved in the iMUSIC is
always lower. However, the matrix multiplication complexity of the proposed method is
always less than the original AMI and the WS-TOPS.

3.5. Direction of Arrival Estimation

For the uniform circular array, a new focusing matrix for coherently summing the nar-
rowband covariance matrices has been proposed in Section 3. Using the steered covariance
matrix, any narrowband subspace direction of arrival method or maximum likelihood esti-
mator can be adopted. In this paper, the MUSIC [7] algorithm is applied as the narrowband
subspace method to the focused covariance matrix. The direction of arrival is, thus, the
direction corresponding to the peaks of the beampattern:

Y(φ) =
[
a(φ, f0)

HUNUH
Na(φ, f0)

]−1
, (23)

where UN is the noise subspace of R̃ for proposed method. For higher SNR, the number of
sources can easily be obtained by detecting a sharp decrease in the ordered eigenvalues
of R̃. Another alternative is to assume that the number of sources is equal to the number
of sensors minus 1, i.e., M− 1, since that is the highest number of sources the array can
detect. Furthermore, for the MUSIC algorithm, overestimating is not as detrimental as
underestimating the number of sources. The estimation can then be corrected by iteration,
where the number of prominent peaks given by the initial assumption is adopted as the
number of sources until a finer beampattern is obtained. Other algorithms for estimating
the number of source can be adopted [30,31]. The summary of the proposed algorithm is
captured in the block diagram in Figure 4.
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Figure 4. Block diagram showing the summary of the proposed method.

4. Monte Carlo Simulations to Test the Efficacy of the Proposed Method

The efficacy of the proposed algorithm is evaluated in this section. For this purpose,
the performance of the proposed method is compared against that of the iMUSIC, WS-
TOPS, and the Original AMI. The choice of these methods for comparison is mainly because
they do not require initial estimation of the direction of arrival.

4.1. Root-Mean-Square Performance

The incident signal is modeled as band-limited real-valued zero-mean Gaussian ran-
dom variables sampled at a sampling frequency of 12 kHz at various signal-to-noise ratios
and 5 snapshots of 8192 times samples each. This chosen frequency band guarantees
that the maximum kr is less than 1. The array is a uniform circular array consisting of
M = 6 omnidirectional microphones with radius r = 4.5 cm. For the signal bandwidth
( f ∈ [400, 1213]Hz), 100 narrowband frequencies (obtained using fast Fourier transform)
were used. The root-mean-square error of the proposed algorithm is compared against
that of iMUSIC, WS-TOPS, and original AMI method for a single source located at 120◦

with different SNR ranging from −10 dB to 40 dB. Figure 5 shows the plot of the root
mean square estimation error versus the SNR for the methods under comparison. Each
point in Figures 5 and 6 represents the root-mean-square error value of 100 iterations.
The proposed method slightly outperforms the original AMI method for low-frequency
wideband sources.

Figure 5. Plot root-mean-squared error versus signal-to-noise ratio for the iMUSIC, WS-TOPS,
Original AMI, and proposed algorithm using simulated data.
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Figure 6. Plot root-mean-squared error versus signal-to-noise ratio for the iMUSIC, WS-TOPS,
Original AMI, and proposed algorithm using simulated data of f ∈ [166, 500]Hz.

To ascertain the relative performance of the proposed method for low frequency
signals, the bandwidth of the signal is limited to f ∈ [166, 500]Hz. The root-mean-squared
error versus SNR is shown in Figure 6. This shows that the performance of the proposed
method is consistent with the original AMI. Furthermore, both outperform the WS-TOPS
for low-frequency wideband sources.

4.2. Computational Efficiency of the Proposed Algorithm

The difference in the computational complexity of the proposed algorithm and original
AMI method has been discussed in Section 3.4. The computational time interpretation
of this improvement is studied in this section. The proposed algorithm saves processing
time by cutting the time taken to generate the diagonal matrix D(k j) by up to 30% on
average using MATLAB R2020b on a Core i7 computer. The reduction in computation time
is expected to increase when used on lower processors and in embedded microcontroller
systems. This is expected as the elimination of the Bessel function for each order n reduces
the number of calculations by the processor.

5. Experimental Evaluation

The MiniDSP UMA-8 mic array was used for the experiment. As shown in Figure 7,
it is a circular board of 4.5 cm radius, which has seven onboard omnidirectional MEMS
microphones in total: six uniformly placed around the circumference and one at the
center [32]. For the purpose of this experiment, only the six circumferential microphones
were used to match the uniform circular array described for this study. The incident sound
source is white noise located at an azimuth angle φ = 120◦, recorded at a sampling rate of
48 kHz, playing through a loudspeaker.

The experiments demonstrate how the proposed algorithm performs across signal-
to-noise ratio, various wideband frequency ranges (i.e., kr ∈ [krmin, krmax]), and various
broadband sizes. Noise is added at varying SNR from −20 dB to 40 dB with a step of 10 dB.
f ∈ [200, 600] is the filtering range for the experiments.
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(a) (b)

Figure 7. The uniform circular array and the experimental setup. (a) The uniform circular array
using a MiniDSP UMA-8 system [32] and (b) the experimental setup and environment, using sounds
from a Harman Kardon Onyx 5 wireless loudspeaker, while measuring distance and angle from the
loudspeaker to the array system.

5.1. Root-Mean-Square Error Performance versus Signal-to-Noise Ratio

Additive white Gaussian noise of various SNR was added to the recorded signal and
the direction of arrival estimated. For each value of SNR, 100 independent estimations
were carried out and the root-mean-square error (RMSE) was taken. Figure 8 shows the
plot of the RMSE versus SNR for both the proposed and the original AMI method, N = 2,
and the frequency range was divided into 30 bins. As shown in Figure 8, the proposed
algorithm outperformed the original AMI method.

(a) Root-mean-square error in degree.

Figure 8. Cont.
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(b) Root-mean-square error in degree plot in logarithm.

Figure 8. Plot of root-mean-squared error versus signal-to-noise ratio for the proposed algorithm and
original AMI method using recorded data.

5.2. Performance by Central Processing Frequency

In this section, the performance of the proposed algorithm across kr is studied. To
ensure every other parameter is the same but the kr, the magnitude of the frequency bins
is shifted across the frequency. By doing so, only the krmin, k0r, and krmax vary. For the
recorded signal used, the DFT magnitudes for f ∈ [50, 460] (the dominant bins) were shifted
in steps of 100 Hz. The central frequency for each case is the median of the selected bins.
The RMSE performance versus the central processing frequency f0 (or k0r) is plotted in
Figure 9, which shows that the proposed algorithm performs similarly to the original AMI.
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2000
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0
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15
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Figure 9. Plot of root-mean-squared error versus central processing frequency f0 (k0r) for the pro-
posed algorithm and original AMI method using recorded data.

5.3. Performance for Different Types of Sources

The proposed algorithm is further tested for various sources. For the experiment, the
following sound sources were used: car engine, water fall, hovering drone, electric fan,
and train engine. For each sound, the source is moved to four locations, and the direction
of arrival estimated using the original array manifold interpolation and the proposed
modified method. The average estimation errors for each source type are reported in
Table 3 where the bold entries highlights the minimum value in each row.
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Table 3. Average estimation error for different source types.

Source Original AMI (◦) Proposed Algorithm (◦)

Car engine 2.9969 2.4972
water fall 0.6235 0.4362

Hovering drone 1.8102 1.3730
Electric fan 2.3723 0.6860

Train engine 1.0628 1.2502

The performance of the proposed algorithm is shown to outperform the original AMI
for all the sound types but the train engine, as shown in Table 3. This goes to show that
the proposed method performs similarly to the original AMI, while offering a significant
reduction in computational complexity.

6. Conclusions

For the uniform circular array, the steered covariance matrix method based on array
manifold interpolation is more computationally efficient compared to other coherent covari-
ance matrix averaging. This is due to the fact that the steering matrix in the array manifold
interpolation method is independent of the source direction of arrival. It has been shown in
this paper that by applying the small-argument approximation of the Bessel function, the
nth power of the ratio of the Bessel function of different orders are reduced to the nth power
of the ratio of the processing frequency and the narrowband frequencies. This led to a signif-
icant reduction in the computation time for the diagonal matrix component of the focusing
matrix, while achieving similar localization accuracy for low-frequency wideband sources
compared to the original AMI method. This simplified algorithm eliminates the need
for high-performance microprocessors for the implementation of real-time low-frequency
wideband sound source localization on the embedded system. Furthermore, the proposed
focusing matrix is independent of the array radius, making the focusing matrix reusable
for the frequency bins if the signal spectrum remains fairly constant over time.
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