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Abstract: This paper presents a novel approach for counting hand-performed activities using deep
learning and inertial measurement units (IMUs). The particular challenge in this task is finding the
correct window size for capturing activities with different durations. Traditionally, fixed window
sizes have been used, which occasionally result in incorrectly represented activities. To address this
limitation, we propose segmenting the time series data into variable-length sequences using ragged
tensors to store and process the data. Additionally, our approach utilizes weakly labeled data to
simplify the annotation process and reduce the time to prepare annotated data for machine learning
algorithms. Thus, the model receives only partial information about the performed activity. Therefore,
we propose an LSTM-based architecture, which takes into account both the ragged tensors and the
weak labels. To the best of our knowledge, no prior studies attempted counting utilizing variable-size
IMU acceleration data with relatively low computational requirements using the number of completed
repetitions of hand-performed activities as a label. Hence, we present the data segmentation method
we employed and the model architecture that we implemented to show the effectiveness of our
approach. Our results are evaluated using the Skoda public dataset for Human activity recognition
(HAR) and demonstrate a repetition error of ±1 even in the most challenging cases. The findings of
this study have applications and can be beneficial for various fields, including healthcare, sports and
fitness, human–computer interaction, robotics, and the manufacturing industry.

Keywords: artificial intelligence; deep learning; counting; weakly labeled data; variable length size;
non-uniform shape data

1. Introduction

In recent times, people use more and more new technologies, devices, and sensors
that generate data to support their daily activities. Researchers can use this sensor data to
identify the human body’s actions and movements for human activity recognition, or HAR,
as it is more commonly known. Various sensor types collect data in those settings, such as
the ones that use video and inertial measurement units (IMUs). Sensors provide means to
capture data related to human activities, which can be used to develop machine learning
models for human activity recognition (HAR) and human behavior recognition (HBR).
Achievements have been made in sports and entertainment [1–3], industrial applications [4],
and healthcare [5]. Meanwhile, the academic community is actively researching innovative
sensor technologies for human activity and behavior recognition, including new sensor
designs, applications of traditional sensors, and the usage of non-traditional sensor types [6].
Many studies are currently being conducted to improve existing approaches or solve newly
identified problems for the detection and classification of activities with supervised or
unsupervised techniques. The majority of research studies and applications in the field
of HAR have, up to this point, focused on detecting activities, such as walking, standing,
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and sitting, as well as other daily living (DL) activities [7], and analyzing their characteristics
to generate new insights [8].

Building upon this existing body of work, the scope of our study is to highlight the
counting of events that occur in a given period in different activities of daily human life
(DHL) or daily work life (DWL). We focus on counting the end of an activity to determine
the number of times that activity occurs. By centering our attention on event counting,
we aim to provide a comprehensive understanding of the frequency and occurrence of
specific actions within the broader context of human activities. In daily activities, such as
workouts or sports, it is critical to correctly segment and recognize the type of activity using
a sophisticated model [9]; however, mainly classification models can offer such information.
Besides that, it is important to acknowledge that different fields exhibit variations in
sensor types, signal characteristics, produced by these sensors and face different challenges.
With small adjustments, counting with AI and IMU data can be used in the industry to
solve a variety of problems. Some examples include: (i) Sensor data analysis to monitor the
performance of equipment, detect anomalies, and optimize operations; (ii) Quality control
to count the number of defects or errors and improve the quality of products and reduce
costs; (iii) Safety monitoring to count the number of incidents to improve safety and reduce
the risk of accidents in industrial environments. For example, in an industrial setting where
the tasks are more complicated, workers have many repetitive tasks to complete daily, such
as screwing activities during assembly processes, which they occasionally miscount or
forget to execute [10]. In this regard, we aim to provide people with information and raise
awareness about the number of completed activities.

As Kim et al. [11] stated in their work, counting is one ability that humans usually
acquire from a young age, and while it appears to be a simple task, young people still
need a long period to master it. Comparably, it is challenging to develop a model that can
count the number of completed activities (CA) in a time period, based on data from Inertial
Measurement Units (IMUs) or similar body-worn sensors. With the term “completed
activities”, we refer to the repetitive activities that can constitute a single work step in a
workflow, e.g., the screwing of one screw, which is complete with the tightening of it.

The analyzed data for our research are sequences of varying length annotated with
weak labels that serve as targets for the machine learning models. Traditional approaches
for handling time-series data often involve dividing the data into fixed window lengths.
However, due to the high variance in activity durations, using a small window for a
long activity or a large window for a short activity can result in the loss of important
information [12]. Up until recently, one commonly used approach required very large
window samples that could fit all activity sizes inside, padding them with a value (typically
zeros) and feeding them as input to the networks. Annotating data, on the other hand, is
usually laborious and time-consuming, and requires considerable attention and precision.

As an overview of the challenges motivating this work, we concentrate on the follow-
ing: (i) spread of valuable information across consecutive sequences, (ii) information loss
caused by using a single, fixed window size for varying-duration activities, (iii) limited
flexibility of models that are more specific for particular data due to manual preprocessing
methods, and (iv) the topic of data annotation. To address the aforementioned issues, we
propose a model design that works with (i) variable length of data as input, (ii) data that
have some form of annotation but is not completely annotated, known as weakly labeled,
(iii) raw calibrated data that are normalized but not subjected to any further filtering,
to reduce complexity, simplify the preprocessing stage, and develop a more robust model in
unprocessed data to achieve counting, (iv) the implemented counting method, integrated
within the model’s training process rather than simply incrementing the count of correctly
classified instances, and (v) fewer training parameters than existing model architectures in
the literature to enable suitability for deployment on devices that have limited processing
and power resources. Our approach aims to improve the model’s ability to accurately
count the activities performed by a user, rather than just detect them. To the best of our
knowledge, this is the first study that investigates the counting of completed activities and
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tasks, in a way that goes beyond counting the quantity of previously correctly recognized
activities from a classifier, employing an LSTM [13] for counting patterns in a sequence.

Counting is an essential skill that humans employ in their daily lives across a wide
range of activities and tasks. Whether it is a simple task or a more complex one, the ability
to accurately count holds immense value and can benefit from technological assistance
in various fields. According to our literature review, studies in this area mostly used
video-capturing sensors and have been conducted in the sports or medical sector.

Fang et al. [14], in their study, explored the possibility of counting the number of items
in a display and raise the question, “Can a recurrent neural network learn to count things?”,
with their findings favoring a positive answer. While they also used an LSTM model, our
model takes as input unfiltered accelerometer data relating to human activities in daily life.
In a different setting, the authors of [15] proposed to count repetitive activities in a video
by sight and sound using an audiovisual model, which differs from our approach among
others in the choice of the sensors, since we aim to use body-worn sensors. In ref. [16],
the MM-Fit dataset is introduced, which contains data from inertial sensors and ambient
video sensors capturing full-body workouts. A single 3D accelerometer worn at the chest
is employed in [17] to recognize four types of workouts and count repetitions after the
workout is firstly determined and classified by their algorithm. Another study focused on
fitness exercises is the one by Ferreira et al. [18], where the authors select camera sensors
for realizing their approach to do workout repetition counting. The researchers in [19]
designed and implemented a body capacitance-based sensor and employed a residual
deep convolutional network that uses dilated convolutions for recognizing and counting
gym workouts, while their approach had competitively high counting accuracy, we opt for
sensors available in devices of daily use, such as smartwatches or smartphones, and utilize
unfiltered data in our approach. In [20], with 91% of the used Cross-fit exercises having
an error within a margin of ±1 repetition, the authors used a vibration signal during their
data collection and trained a neural network for counting that relied on whether an input
window contains a repetition start. However, our model uses only weak labels as target
data for its variable-size input, which requires less human annotation effort than models
with dense labels.

Weakly labeled data can be beneficial for deep learning algorithms in certain situations
and refer to data that are only partially labeled, meaning that they have some form of
annotation, but not all the information is present. This type of data is less expensive and
time-consuming to obtain than fully labeled data, and it can be used to train deep learning
models in a semi-supervised manner. The authors in [21] proposed an attention-based
convolution neural network to process weakly labeled human activities and recognize them.
The dataset contains information only about the type of activity that occurred in a sequence
of sensor data. A weakly labeled dataset was also included in a Dual Attention Network For
Multimodal Human Activity Recognition Using Wearable Sensors in [22], where they blend
channel attention and temporal attention on a CNN, for multimodal HAR. The activities
that are contained in the dataset are walking, jogging, jumping, going upstairs, or going
downstairs, and have a significant difference from the activities that we explore and the
way that we create our training dataset. In a related field, for locomotion activities, several
studies explored step counting using IMUs or smartphones [23], including approaches that
utilize deep learning techniques. One such approach is the attention-based LSTM model by
the authors of [24], which has been shown to effectively count steps with high accuracy.
However, unlike the continuous and repetitive movements associated with step counting,
our approach concentrates on hand-performed activities that involve discrete movements.
Furthermore, our model maintains simplicity regarding processing resources, low power
consumption, and suitability for edge computing devices.

Raw data as input for the models have the advantage of reducing the need for pre-
processing techniques, which can be a time-consuming and resource-intensive task. In our
study, we refer to the public dataset’s raw calibrated data that have not been subjected
to any further preprocessing steps other than normalization. When working with raw



Sensors 2023, 23, 5057 4 of 16

data, the model can automatically learn useful features from the data, which can save
computational resources and reduce the risk of human error. Important contributions
have been made by Shen et al. in [25], where they proposed a workout tracking system
that uses smartwatches to accurately and efficiently track both cardio and weightlifting
workouts without the need for user input. Their counting strategy begins with detecting
and labeling weightlifting sessions, followed by a naive peak detection algorithm based
on auto-correlation results. They filter out non-repeating signals and calculate the number
of repetitions by counting detected peaks. Likewise, Prabhu et al. in [26] also based
their approach on classifying the activities before counting with a peak detector method.
Their research aims to identify the most effective artificial intelligence model for repetition
counting in LME exercises to be used in wrist-worn rehabilitation programs.

In their work, Taborri et al. [27] implemented the following algorithms, one for
recognizing activities based on SVMs and one for counting actions related to workers
in the industry. Twenty-three body-worn sensors collected data from the participants,
which were divided into windows of 0.6 s and had features such as mean, standard
deviation, maximum, and minimum, were computed for each activity. Physical exercises
for indoor and outdoor environments were used to recognize the real-time segmentation
and classification algorithm in [28]. The method they proposed requires one sample of data
for each target exercise; however, once more, the counting relies on accurate classification of
the activities. Another algorithm in the context of human activity recognition that segments
repetitive motion is the one presented by the authors in [29]. This algorithm was utilized
to identify similar location patterns in indoor localization and addresses the problem of
subsequence search in univariate and multivariate time series. An automated segmentation
way and labeling of single-channel or multimodal biosignal data using a self-similarity
matrix (SSM), generated with the feature-based representation of the signals, is proposed
by the authors in [30]. Examples of data with the few-shot learning were employed
by Nishino et al. [31] to recognize workouts using a wearable sensor including data
augmentation and diversification techniques for their data to achieve repetition counting.

In our approach, we leverage deep learning models to extract features and train them
to accurately count activities using public datasets that contain raw and calibrated data of
human activities performed with hands. As with many machine learning techniques, we
normalize the raw calibrated acceleration data before we feed them to the deep learning
model. However, we do not apply additional preprocessing steps or filtering to the data.
Moreover, the sensor placement described by the dataset’s authors in [32] is essential to
recreating the study’s results. To train the model, we divide the data into segments of
variable sizes with weak labels that utilize only the number of repetitions of activities for
each sequence as the target value. Hence, the model learns to count activities regardless of
the sequences’ size, which is important for real-world applications, where activity durations
may vary.

2. Materials and Methods
2.1. Counting Approach

Counting repetitions in a sequence is a fundamental problem in various fields, such
as speech and image processing, bioinformatics, and cognitive science. Many methods
for counting can be deployed, the majority of which require hand-crafted rules, feature
extraction and statistical methods, or rule-based systems to manually count objects or
events. As was described previously, neural-network-based approaches can be used to
count repetitions in a sequence with a combination of CNNs and RNNs or encoder-decoder
architectures, trained on a labeled dataset of sequences, to learn a mapping between the
input sequence and the number of repetitions. Focusing on a system that can handle weakly
labeled data while being less reliant on human intervention and more automated can reduce
the complexity of the counting process, make the model more robust, and provide flexibility
for applying the method to a wide range of problems.
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Weakly labeled data offers a cost-effective and efficient alternative to acquiring fully
labeled data, as it is less expensive, time-consuming, and tedious. This type of data enables
the use of semi-supervised learning approaches, which can be beneficial when considering
the annotation cost associated with large and complex datasets. By leveraging weak
labels, the model is encouraged to learn more generalized patterns in the data, leading
to improved performance on unseen examples. For our experimental setup, we use IMU
acceleration data from daily human activities performed at a quality control checkpoint
in a car maintenance scenario that captures activities relevant to the inspection process.
Thus, it provides a representation of real-world conditions by addressing the complexity
of variable-length data, to develop robust and realistic models for activity counting and
recognition tasks.

Despite the fact that counting repetitions in a sequence with variable-length data
is more challenging than counting repetitions in a sequence with fixed-length data, this
structure is more realistic because data from signals, time series, texts, and other sources
have varying length. Using fixed-length tensors for the data can be efficient in certain
situations because they simplify the problem, as the model only needs to process a fixed
amount of data, regardless of the length of the input sequence. Furthermore, because the
libraries and software tools required to build the model are more widely accessible, its
implementation and deployment may be simpler. However, using variable length tensors
can also be beneficial in many situations. They allow the model to handle input sequences
of different length, which is important when dealing with complex real-world data and
activities of various length. Additionally, variable-length tensors enable the model to
process the entire input sequence at once, rather than only a fixed-length subset of it, which
can be valuable when the position of the repetitions is not known in advance.

In our approach for counting, we use data from public datasets that contain data
from human activities in the car manufacturing industry, recorded with IMU sensors. We
create sequences of data that have a variable size and we obtain a weak label for each
sequence. The label shows the executions number of one type of activity observed in
the sequences, which is fed into an LSTM regression model built with the ragged tensors.
For each sequence that is input to our algorithm, one single count is predicted as the output.

2.2. Dataset

The data used for this study are part of the Skoda Public dataset [32], which includes
repetitive activities regarded as single, discrete actions as opposed to continuous activities,
such as walking or running. The example signals of the manipulative gestures of the dataset
that were performed in a car maintenance scenario, visualized in Figure 1, are “write on
notepad”, “open hood”, “close hood”, “check gaps on the front door”, “open left front
door”, “close left front door”, “close both left door”, “check trunk gaps”, “open/close
trunk”, and “check steering wheel”. These activities were recorded for about 3 h by
20 sensors placed on one subject’s left and right upper and lower arms. For each sensor,
there are acceleration values on the x, y, and z axes that are calibrated in milli-g units
(1000 = earth gravity vector, which in S.I. units would be 0.001 g or 0.00981 m/s2 ), and the
sensor sample rate is approximately 98 Hz, as stated by the dataset’s authors.

The objective of this work is to count how many times one activity happened in a
period of time, e.g., detect in the data patterns how many times the person closed the
hood in the activity “close engine hood”. The dataset contains a dense label for each
sample, which allows the detection of the end of the activity. The weak label targets
are generated by “recording” one repetition for each task completion. Therefore, for
the training phase, for every instance where a task is successfully completed, a single
repetition sample is marked as “activity end”. By using this approach, we create weak
annotations that indicate the presence of completed repetitions, allowing the model to learn
and recognize the patterns associated with activity completion. We normalize the data
with minmaxscaler [33] in a range of [0, 1] and divide it into variable-size sequences. By
using an algorithm to generate an array of random numbers, we split the entire dataset
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into segments, which define the sample length of the sequences, as shown in Figure 2.
For example, if we want to generate 20 sequences of variable-length data, the algorithm
will create 20 random numbers between 0 and the dataset’s maximum index value. Next,
we replicate the original data for each activity to provide our model with a larger dataset to
train, without using data augmentation techniques for generating variation in the signal’s
patterns. This expanded dataset introduces greater variability in the unique length of
activity sequences and the number of activities contained within them, thereby enhancing
the model’s robustness.

Figure 1. This figure shows examples of the signals that represent each class of the Skoda Public dataset
with different colors. Starting from left to right (a) Notepad, (b) Open close hood, (c) Gaps front
door, (d) Open close left door, (e) Close both left door, (f) Check trunk gaps, (g) Open close trunk,
(h) Steering wheel. For all the activities, samples are taken from the X-axis accelerometer on the right
hand. The activities of the “open hood” and “close hood” as well as the “open left door” and “close
left door” are displayed together as “open close hood” and “open close left door”, since they are
always consecutive. The acceleration is provided in milli-g units.

Figure 2. This figure presents the non-uniform shape input for the neural network. We visualize
on top of the image time-series data that will be divided into five distinct example sequences of
segmented acceleration data with varying duration, number of samples, and weak labels that have a
range from 1 to 10 counted activities. The blue squared line shows the start and end of each activity
within each sequence. The weak label is generated by the number of spotted endings (red arrow)
inside each individual sequence.
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The labels for each sequence in this dataset are produced by the number of spotted
endings or finished tasks in the sequences, where the last timestamp of each observed
activity adds 1 count to the final label of each unique sequence. Figure 2 visualizes the
division of a time series into sequences of variable size and how the weak labels are formed.
The term “weak labels” in our method denotes the absence of data annotations that map
the start and end of an event in the sequence. The number of activities in the sequence is
the only information of the sequence that the model utilizes as a target value.

We divided the subsets of activities into 600–900 sequences, where 100 of each type
were left as a test dataset, as presented in Table 1, and 10% of each training dataset was used
as a validation set. Consecutive activities, such as “open left front door” and “close left
front door”, were merged into one class, as explained in Figure 1. In this case, the algorithm
must count +1 when one of the activities of interest is happening. In the last entry of the
table with the label “combined activities”, one can see results with 8000 training sequences,
for a class that is generated with combined data from all the previous classes in a single
one. Every activity that is not a null class will be counted in this scenario, to distinguish
between an occurring activity and null class without considering the type of activity. We
created 8000 varying-length sequences from all classes, of which 7000 were used to train the
network. Despite the more complex approach, employing variable-size sequences allows
us to extract the most valuable information from our data without padding.

Table 1. This table lists the overall summary results for accuracy and MAE across all activity classes
for the test datasets. As one can see, it contains nine separate datasets of activities. For each activity,
the samples of the original dataset, the variable length training sequences created from the data,
the range of the number of activities within the sequences, the test sequences, and the results such as
the dataset accuracy and mean accuracy in 100 sequences of each test dataset are available. The counts’
range shows the maximum number of activity counts contained in 100 sequences of different lengths
of the test dataset. The mean percentage accuracy provides an overall assessment of the model’s
performance by displaying the average deviation of the predicted number of repetitions from the true
value across all test sequences, whereas the dataset accuracy assesses the model’s ability to predict
the precise number of repetitions accurately. The last entry in the table represents a class where all
the data from all classes were combined into one class and then split into variable-length sequences
so that the model is trained on more complex data. In that case, the model learns a larger variety of
patterns from all classes as a single activity class and must identify between the activity class and the
null class to perform the counting.

Training A/A Activity No of Samples in Original Dataset Training Seq. Range Counts in Test Seq. Test Seq. Test Dataset Accuracy MAE Mean % Accuracy in Test Seq.

1 Steering wheel 51,904 500 0–08 100 60/100 0.4 72.19
2 Check trunk gaps 70,000 500 0–07 100 89/100 0.11 91.66
3 Notepad 74,000 500 0–06 100 92/100 0.08 96.12
4 Open close hood 186,399 800 0–07 100 70/100 0.3 78.58
5 Open close left door 82,000 600 0–12 100 68/100 0.33 80.22
6 Gaps front door 60,000 500 0–09 100 84/100 0.18 90.38
7 Close both left door 72,000 500 0–06 100 75/100 0.25 79.22
8 Open close trunk 95,000 600 0–10 100 74/100 0.26 81.65
9 Combined activities 705,904 7000 0–11 1000 765/1000 0.242 81.29

2.3. Counting Algorithm

A fixed window approach is a commonly used method for segmenting time-series
data before using them as input to deep learning models. The segmentation is based on
characteristics of the event that we want to identify, such as its periodicity, frequency,
and length, among others. Despite their ease of implementation and interpolation with
other libraries, fixed-length tensors with a predefined shape have limitations. For example,
they are not well suited to handling non-uniform shape data, such as sequences of varying
length, without the need for padding or truncation, which can result in additional noise to
the data, increase in the computation time, information loss, and storage inefficiency, and it
may not always be appropriate. To address the above issues, we used TensorFlow’s ragged
tensors [34], which support variable-length sequences of samples.
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In this study, nine sub-datasets were used with our algorithm to count activities,
with nine separate trainings for each subset. Figure 3 shows the architecture of the model
that is used for the counting task. The acceleration data are separated into variable-length
sequences, each of which comprises several activities and is used as input data, as was
previously mentioned. The weak label that the model uses as target data is the total
number of activities in each sequence. The model learns to relate acceleration data to the
number of activities, so when we feed as input “ new unseen” acceleration data of variable
length, it outputs the number of spotted activities. The annotation provided no information
about the location of activities within the sequence, nor does it provide any additional
supporting details to guide the model. A large grid search was deployed to explore the best
combination of parameters for the number of layers, learning rate, batch size, optimizer,
loss function, and activation functions to use in our network. We experimented with
various hyperparameters to achieve the best performance. For the number of layers, we
tried configurations ranging from one to three time-distributed layers and one to 4 Lstm
layers. For the learning rate, we tested values such as 0.01, 0.001, 0.0001, and 0.00001. We
also explored different batch sizes, including 2, 4, 8, 16, 32, and 64. As for the optimizer,
we experimented with Adam, RMSprop, and SGD. We evaluated loss functions, such
as mean squared error, mean absolute error, and Huber loss. Finally, we tried different
activation functions, such as ReLU, tanh, and sigmoid, to achieve the optimal performance
on our task.

As shown in Figure 4, two dense layers were used at the beginning of the model to
reduce the dimensions of the input data before entering the LSTM. The first dense layer is
composed of 60 neurons (number of input signals), and the second consists of 2 neurons
with the rectified linear unit (RELU) as an activation function. Two custom layers are then
placed after an LSTM layer that outputs a three-dimensional sequence and has one neuron
with a linear activation function. The custom masking layer thresholds the signal and
converts the output of the LSTM to a more binary format, and xthen, the counting layer
counts the regions where the signal value is not zero and summarizes them to one final
number, as shown in Figure 3, of the output’s graph. After experimenting with several
parameter values as mentioned above, a batch size of 2 with a learning rate of 0.0001 and the
“Adam” optimizer were selected for optimizing the model. The algorithm’s performance is
evaluated using the Huber loss as the loss function, which is a combination of the mean
squared error (MSE) loss function and the mean absolute error (MAE) loss function. This
combination improves the performance of the model when outliers are present in the data,
which is possible in our study because the input sequences were generated arbitrarily.
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Figure 3. This figure presents an example of the model architecture that was used for the counting of
activities. The acceleration data are divided into variable-length sequences and then used as input to
the model. For each sequence, there is one weak label that is generated by the number of activities
that are included in the sequence. Two time-distributed dense layers process each sensor reading
independently before entering an LSTM layer where we get an output for each time step. Since the
input data have a variable size, ragged tensors are employed for this task. The output of the LSTM
part is inserted into a mask layer that detects values above a threshold and converts the signal into a
square form before it continues to a layer that detects the created “edges” of the square shape and
gives a final summation of all edges of the sequence to one single number.
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Figure 4. From left to right, this image presents the network’s diagram of the counting model
with the input (60 acceleration signals) of variable length and output of 1 number. Moreover,
the hyperparameters include Huber loss, ADAM optimizer, a learning rate of 0.0001, and a batch size
of 2. An example of a learning curve for the training and validation sets demonstrates the model’s
performance during training. The x-axis represents the number of training epochs, while the y-axis
represents the loss metric.

3. Results

In our study, we applied deep learning approaches to acceleration data to count the
number of activities in variable-length sequences, as presented in the model architecture.

The ground truth in Figure 3 is two activities in the illustrated example sequence. It is
evident that the LSTM outputs a signal with two peaks, which is then converted to a binary
format by the masking layer, and we count +1 at the edge of each square area. Two is the
final result predicted by the model for the specific input sequence. Figure 4 visualizes the
learning curve of the training and a validation loss to present the model’s performance
during the training of the “notepad” dataset. After each training, we evaluated the model
with unseen data sequences of the same class, and the results show that the model can
predict very close to the weak label.

For two of the activities of the Skoda Dataset, we visualize example results of the
weakest and best cases of the model’s predictions in variable-length data sequences. In
Figure 5, one can see the graph showing the ground truth and prediction of the model
for the activity “writing in notepad”. There, we trained the model with 500 sequences of
variable size and variety in the number range of contained activities. The findings indicate
that the model predicts 92 out of 100 correctly, while the remaining 8 predictions have an
error of one activity. Similarly, even though the model predicted less accurately for the
dataset’s “steering wheel” class, the predictions have a maximum error of one activity, as
shown in Figure 6. Table 1 contains information regarding the training data and the results
of all dataset activities. The discussion section provides further details about the results.

The table shows in approximation the number of data samples contained in the original
dataset for each class, the number of training and test sequences, the range of the number
of activities included in different sequences, the accuracy in the test data, the mean absolute
error, and the mean % accuracy of test sequences in the test data.



Sensors 2023, 23, 5057 11 of 16

Figure 5. The figure presents the ground truth (red dots) and prediction (blue dots) of the model
for 100 unseen sequences of data. The input data are from the notepad writing activity of the Skoda
dataset. The algorithm for counting predicted accurately 92 out of 100 activities. A line connecting
the two numbers shows the difference in the incorrectly predicted sequences. The largest error per
sequence observed in the graph is 1 count.

The “notepad” class has the smallest MAE, 0.08, and the highest mean % accuracy,
while the “steering wheel” class has the highest, 0.4, and the lowest mean % accuracy. In
the “combined activities” class, the algorithm counts interesting activities in a sequence,
regardless of the activity type, in a dataset consisting of all classes combined into a single
one. The table lists 8000 training sequences of varying length, of which 7000 were used for
the network’s training. Randomly, 1000 sequences were kept as test data, and the number
of activities in 765 out of 1000 was predicted correctly. From those 1000 sequences, 230 had
an error of ±1 counts, 3 of them an error of 2 counts, and 2 of them an error of 3 counts.
As shown in the table, the mean accuracy is presented as a percentage, representing the
average accuracy of 100 sequences from each test dataset. For example, for the “open close
trunk” dataset, the mean accuracy for the 100 test sequences is 81.65%. This means that
we found the accuracy of the model for each predicted sequence of this test dataset, and
subsequently, provide an average estimate of the accuracy across all the test sequences to
evaluate the performance of the model. The dataset accuracy evaluates the model’s ability
to predict the exact number of repetitions accurately, while the mean accuracy gives an
overall measure of the model’s performance by indicating the average deviation of the
predicted number of repetitions from the true value across all test sequences.
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Figure 6. The figure presents the ground truth (red dots) and prediction (blue dots) of the model
for 100 unseen sequences of data. The input data are from the steering wheel activity of the Skoda
dataset. The algorithm for counting predicted accurately 60 out of 100 activities. A line connecting
the two numbers shows the difference in the incorrectly predicted sequences. The largest error per
sequence observed in the graph is 1 count.

4. Discussion

The current study confirms that it can count interesting events in time series with
more flexibility concerning the size of each input sequence from a model that uses (i) solely
normalized data, (ii) weak labels, and (iii) deep learning. According to our method’s
preliminary findings, when we train the model for specific activities, our algorithm can
accurately predict, in most cases, the number of times an event is repeated in a sequence.
For some of the activities, the prediction is better than others. For example, activities such
as “open close hood” and “open close left door” contain patterns of both opening and
closing the object, which can possibly create a larger confusion for the model to recognize
the pattern. The lower results were achieved for the steering wheel class. The wheel
rotates three times in each direction, clockwise and counterclockwise, before switching.
In this case, the orientation for each side within the same sequence may be contributing
to the confusion, or the data may not be sufficient for the model’s design and a deeper
architecture or new data may be needed to capture the dependencies. Likewise, for the
“combined activities” class, in each sequence, the model may contain patterns from one
or more different activities that need to be counted. However, due to the weak labels,
no other information about the activity type is available, except for the total number of
events contained in each. The consistently small error, typically within the range of ±1,
demonstrates the effectiveness of our current architecture in accurately counting activities.
However, it also highlights the potential for further research and improvements to reduce
this error even further and achieve even more precise activity counting results.
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The model must be trained on a dataset of labeled sequences where the number of rep-
etitions in each sequence is known, regardless of the architecture being used. To address the
diversity in the different activities without padding and by utilizing the entire information
of the sequence, weak labels that are less time consuming and variable-size sequences are
used. Nevertheless, it is important to note that using weakly labeled data does introduce
certain limitations since the data are only partially labeled. A more comprehensive target
for the model might be provided, for example, by a second model trained with information
on the type of activity occurring, the location, the duration, or even data examples to use for
training. In our case, we developed our ragged tensor model using calibrated data, that we
normalized on a range of [0,1] to ensure a common scale. We selected the calibrated version
because it is in S.I. units and can be replicated by anyone even though the raw data of the
public dataset with our model provided comparable results. Additionally, the calibrated
data support the use of any sensor that takes readings using the same units, not just the
specific sensor that the dataset’s authors used in their study. Despite the benefits of ragged
tensors, such as efficient storage and easy handling of variable-length data, working with
them proved to be challenging, requiring additional effort and consideration of alternative
approaches, as some operations, libraries, and software tools outside of the TensorFlow
environment are not currently sufficiently supported.

Counting with deep learning can be beneficial for a variety of fields, such as health care,
to monitor and track physical activity levels and rehabilitation progress, sports and fitness,
to track and analyze athletic performance, robotics applications, to detect and track human
movements for use in collaborative robots, identifying actions and events in industrial
settings, etc. These are only a few examples of how counting with AI can be used for the
analysis and interpretation of IMU data in industrial applications. Although depending on
the problem that needs to be addressed and the kind of data that are accessible, a specific
application must be selected and modifications and optimizations must be completed.
Furthermore, merging AI with technologies such as edge computing, IoT, and cloud
computing for data analysis in real time and making decisions based on the results can
improve these applications. Initial contributions in this direction have been made in [35],
where the authors discuss the transition to real-time models, as well as in [36], where
the authors introduce their system that uses wearable sensors to capture online data and
perform activity recognition using Hidden Markov Models.

Our next steps include the improvement of the current model to count activities from
data that are not collected in laboratory settings to enable better generalization and make
it more robust across various sources of IMU data. Counting different activities within
one sequence would be another challenge to address. Besides that, it is interesting to
investigate the potential application of our method to other time-series data. However, it is
important to consider individual differences in movement patterns that may be influenced
by factors such as body size, gender, and age. One approach is to use a diverse dataset of
individuals with varying body sizes, genders, and ages to train a deep-learning model that
can generalize to new individuals and accurately estimate their movements. Additionally,
optimizing the placement of the sensors can improve the accuracy of the model and reduce
the need for unnecessary sensor data, which can be an obstacle in the learning process.

5. Conclusions

In this paper, we presented a counting method for activities and tasks to identify
the end of an activity based on raw calibrated acceleration data that are weakly labeled.
The generated sequences from the data have variable sizes instead of a fixed window size,
which restricts the system to operate with specific settings and makes it more challenging
to fit different types of activities with varying duration. An LSTM model for regression
analysis was developed for the task where we tested its performance with data from
different classes of the Skoda dataset for HAR. Our research focuses on using raw calibrated
data rather than preprocessed or filtered data to build models that are more resistant
to changes in their settings and generalize better to different scenarios. Furthermore,
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when fully labeled data are not available, the use of weak labels reduces the expense of
data annotation.

Our results indicate that our method can count instances of activities when it corre-
sponds to a single type and has shown promising results when training input data contain
multiple types of activities. This is supported by the findings in the aforementioned cases,
which state that the error for the sequences was always within ±1 iteration. Our next stages
will involve testing the model using more complex data collected under real-world condi-
tions and making it more robust against outliers and different sources of data. Thorough
investigation and application of this method in other domains, such as object detection
in videos, can also be included in the scope of the counting problem while adapting the
approach to work with the minimum required sensor signals to produce accurate results to
create user-friendly solutions that can be used during the daily work life.
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