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Abstract: Sorts of Li-ion batteries (LIB) have been becoming important energy supply and stor-
age devices. As a long-standing obstacle, safety issues are limiting the large-scale adoption of
high-energy–density batteries. Strategies covering materials, cell, and package processing have been
paid much attention to. Here, we report a flexible sensor array with fast and reversible temperature
switching that can be incorporated inside batteries to prevent thermal runaway. This flexible sensor
array consists of PTCR ceramic sensors combined with printed PI sheets for electrodes and circuits.
Compared to room temperature, the resistance of the sensors soars nonlinearly by more than three
orders of magnitude at around 67 ◦C with a 1 ◦C/s rate. This temperature aligns with the decom-
position temperature of SEI. Subsequently, the resistance returns to normal at room temperature,
demonstrating a negative thermal hysteresis effect. This characteristic proves advantageous for the
battery, as it enables a lower-temperature restart after an initial warming phase. The batteries with an
embedded sensor array could resume their normal function without performance compromise or
detrimental thermal runaway.

Keywords: Li-ion battery (LIB); temperature sensor array; positive temperature coefficient resistor
(PTCR); BaTiO3 ceramics

1. Introduction

Various Li-ion batteries (LIBs) have been becoming the predominant energy supply
and storage devices [1–3]. The safety issues of LIB represented by thermal runaway (TR)
are still not completely avoidable in many practical applications at the current stage.
Thermal abuse, mechanical abuse, and electrical abuse [4,5] are regarded as the most
abusive conditions that induce LIB to deviate from a healthy working state and finally
lead to TR [5]. Sorts of strategies have been considered to reduce the possibility of TR
occurrence, covering the materials level, cell level, and package level systematically [1,6,7].
Considerable research efforts have been dedicated to exploring advanced materials for
various components of LIBs. These include the modification of electrode microstructures
and material compositions [5,6,8], enhancing the electrolyte’s vaporization point and fire
retardancy [5,8], developing temperature-responsive and shutdown separators [5,9–12],
and other related areas.

Since the TR process is accompanied by changes in many physical and chemical signals,
such as voltage, current, temperature, pressure, and gas [13], the safety of the battery can
be inferred by using different sensors to judge them. In the past decades, studies on the
TR of LIB have promoted various methods to detect [14–17] the internal temperature of
LIB. Enlightened by these works, the technologies of monitoring and controlling the state
of charge (SOC) and the state of health (SOH) [6] by physical sensors and virtual sensors
while LIB is working have been proposed [18,19]. Among them, two kinds of positive
temperature coefficient resistance (PTCR) components have been incorporated into LIB.
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The first type involves the incorporation of PTC ceramic rings within the cap structure
of commercial cylindrical LIBs. The second type comprises various special composite
polymer materials that exhibit the PTCR effect. These materials have been extensively
researched and designed as potential solutions to effectively mitigate the occurrence of
TR in LIBs [1,5]. The PTCR effect is characterized by a significant nonlinear increase in
resistance [20] at a certain temperature point or within a very narrow temperature range as
the temperature increases.

For cap-design cylindrical LIBs, the PTC thermistor works as a conductive component
to protect the single cell from excessive current because its resistance increases with temper-
ature. However, for those batteries designed for high-discharge-rate applications as high as
20 A, PTC thermistors are not accepted [1]. Furthermore, PTC thermistors are not found
in commercial prismatic or pouch batteries. For the composite polymers, the PTCR effect
stems from the glass transformation of the polymer matrix. This transformation leads to a
volume expansion of the polymer matrix, causing the conductive path of conductive parti-
cles (acting as filler) to be disrupted [7,20]. It is expected that the resistance of the composite
polymer coated on the cathode will rise rapidly to turn off the LIB before the early stage
of thermal runaway. However, the strategy of LIB protection by the composite polymer
materials’ PTCR effects is limited in practical use. Firstly, most of the polymer materials
show the PTCR effect at a temperature higher than 90 ◦C [21–28]. Notably, the reported
temperature of the SEI layer (solid-electrolyte interphase) decomposing (around 70 ◦C)
or breakdown would be 90–100 ◦C [29], which is related to the first stage of the thermal
runaway reaction. Secondly, the existing PTCR composite polymer is coated on the cathode,
which is not reliable for reacting quickly in other places. For example, it could be more than
20 ◦C lower than that of the core part (>160 ◦C) [30] under a thermal abuse condition. As a
result, the LIB could not be protected effectively. Thirdly, the room-temperature electrical
resistivity of the composite polymer would increase with the heating/cooling cycles [31].
It indicates that the composite polymer materials may cause a worsening of LIB service
characteristics by increasing cell resistance. Meanwhile, the intrinsic thermal degradation
of the polymer [32] makes it hard for the composite polymer to ensure the stability of the
PTCR effect for a long time.

BaTiO3-based ceramics with PTCR effects have been widely used as temperature
sensors, circuit-limiting components, switches, and thermal fuses [20,33]. The resistance of
the BaTiO3-based ceramics can rise by several magnitudes around the Curie Temperature
(Tc). The Tc could be modulated over a wide temperature range by doping chemical
elements. Specifically, the BaTiO3-based ceramics show satisfactory electric stability and
reproducibility in practical application. In this work, BaTiO3-based ceramics with the PTCR
effect were investigated as the embedded temperature sensor for pouch LIB batteries to
achieve multi-point temperature detection. The BaTiO3-based PTCR ceramic sensor was
prepared by the tape casting process. A flexible temperature sensor array was fabricated
with the polyimide (PI) sheet and the hot-pressing process. The temperature sensor array
was then packed into a pouch cell. The Tc of the embedded sensors is modulated from
67, 70, 80, and 90 ◦C, respectively, to satisfy different switch temperatures. The temperature
response of the sensors was measured and reported.

2. Materials and Methods
2.1. Ceramics Preparation

0.99(Ba1-xSrxZryY0.005Ti0.995-yO3)-0.01(Bi0.5Na0.5TiO3) (BSZYT-BNT) ceramics were
prepared as follows: Firstly, the BSZYT-BNT precursor gel was prepared by the sol-gel
method. Barium acetate, strontium acetate, sodium acetate trihydrate, zirconium nitrate
pentahydrate, yttrium nitrate hexahydrate, and bismuth nitrate pentahydrate were used
as raw materials. Deionized water, acetic acid, ethanol, and ethylene glycol methyl ether
were used as solvents. Secondly, the BSZYT-BNT powder was produced by calcining
the dry precursor gel at 750 ◦C and then grinding. Thirdly, the BSZYT-BNT ceramics
were formed by the tape casting process and sintered at 1270 ◦C, and then the ceramic
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slices sized at 2.5 mm × 2.5 mm were obtained by cutting processing. The thickness of the
prepared ceramic slices was ~115 µm. Au electrodes were sputtered on both sides of the
ceramic slices.

2.2. Sensor Preparation

The prepared BSZYT-BNT ceramic slices prepared by the tape casting process serve as
the temperature sensor of the temperature sensor array, which is placed between two layers
of PI sheets printed with copper electrodes and circuits. Then the double PI sheets were
joined together by hot-pressing processing. The thickness of the PI sheet is 30 µm. The
sensor array was designed as a sandwich structure. The sensor elements are located
between the two PI sheets. The copper electrodes were fabricated on one of the sides of the
PI sheets, which is the inner side of the two PI sheets. All the copper electrodes and the
sensor elements were sealed inside the sensor array.

2.3. Measurement and Characterization

The DC resistance of each prepared BSZYT-BNT ceramic sensor was measured by an
electrometer (Keithley Model 6517B) with an operating voltage of 2 V in the test box with
a programmable temperature controller. The resistance-temperature performance of the
prepared ceramic sensor was obtained in a continuous heating and cooling environment.
After the prepared sensor array was embedded in the battery, the resistance-temperature
response of the sensor array was tested in two different scenarios. The first scenario is that
the battery was not charging or discharging, called the static measurement. The second
scenario is that the battery was charging and discharging, respectively, which is called
the dynamic measurement. For the static measurement, the internal ambient temperature
of the testing box varied from room temperature to 100 ◦C with a 5 ◦C/min changing
rate and was held at 100 ◦C for 60 min before cooling down naturally. For the dynamic
measurement, the temperature of the testing box was kept constant at 55 ◦C and 60 ◦C,
respectively, while the battery was charging and discharging.

3. Results and Discussion
3.1. PTCR Properties
3.1.1. Ceramics

According to the analysis of the SEI layer on graphite negative electrodes in lithium-
ion batteries, the first stage of the thermal runaway reaction is the breakdown of the thin SEI
layer. This breakdown typically occurs at around 90 ◦C [34–37]. Furthermore, the SEI layer
may decompose at a relatively lower temperature of 69 ◦C [38]. Therefore, detecting the
change in the SEI layer at an early stage is important. In the present work, the BSZYT-BNT
ceramics with different Tc were prepared by adjusting the proportions of Sr and Zr. The Tc
of the prepared BSZYT-BNT ceramics is 67 ◦C, 70 ◦C, 80 ◦C, and 90 ◦C, respectively (see
Figure 1).

PTCR characteristics of the prepared BSZYT-BNT ceramics are evaluated by the fol-
lowing parameters: the room temperature electric resistivity (ρ25), the Tc values, the PTCR
jump (calculated by log(ρmax/ρmin)), and the thermal hysteresis ∆T (temperature difference
between the temperatures of T2 and T1, T2 and T1 corresponding to the 10ρ25 values of the
BSZYT-BNT ceramics while cooling and heating, respectively, see Figure 2a).

Figure 2a shows the resistivity temperature response of sample d in Figure 1. The room
temperature resistivity (ρ25) of sample d is 8.1 × 103 Ωcm. In the first stage, the resistivity
rises mildly from 27 ◦C to 62 ◦C. An appreciable increase in electrical resistivity occurs
from 62 ◦C to 65 ◦C. After that, a more dramatic change starts from 65 ◦C to 80 ◦C, when
the electrical resistivity increases from 2.3 × 104 Ωcm to 7.9 × 105 Ωcm and then reaches
its maximum value of 4.4 × 107 Ωcm at 137 ◦C. An almost plateau is observed in the
temperature range from 110 ◦C to 140 ◦C. The Tc value is 67 ◦C, which could match the SEI
decomposing temperature [38] and the self-heating temperature of practical commercial
LIB [29]. The PTCR jump reaches 3.75 and the thermal hysteresis ∆T is around −3.3 ◦C
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resulting from the inevitable thermal hysteresis in the phase transition of BaTiO3. In a
practical case, the negative value of ∆T is profit for the safety of the battery, which means
that the battery could be restarted at a lower temperature after early warning.

Figure 2b shows the reproducibility of the resistivity-temperature response curves
of the sample in Figure 2a. After continuous testing for more than 90 days, the results
show that the Tc and the PTCR jump keep values of 67 ◦C and 3.75 ◦C stably. The ratio of
resistivity change at room temperature is initially less than 20% within the first 14 days
and then stabilizes over time. It suggests that the PTCR characteristics of the sample show
good stability, which is a prerequisite for temperature-control switch applications in LIB.
All the PTCR performances of the prepared samples in Figure 1 are listed in Table 1. The
results suggest that the prepared BSZYT-BNT ceramics could be expected to be an effective
temperature switch sensor to protect the battery before the occurrence of the exothermic
side reaction.
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Table 1. Compositions, sintering, and performance parameters of the BSZYT-BNT
(0.99(Ba1-xSrxZryY0.005Ti0.995-yO3)-0.01(Bi0.5Na0.5TiO3)) ceramic samples.

Sample ρ25
(Ωcm)

Tc
(◦C)

T1
(◦C)

∆T
(◦C)

a 2.3 × 105 70 80.1 −7.6
b 8.9 × 105 80 88.6 −20.4
c 1.4 × 106 90 94.4 −6.7
d 8.1 × 103 67 71.9 −3.3

3.1.2. Temperature Sensor Array

A thin and flexible BSZYT-BNT ceramic sensor array containing nine sensors was
fabricated by using PI sheets printed with copper electrodes and circuits as covers. A
photograph of the prepared sensor array is shown in Figure 3. It is designable for the
fabrication of the temperature sensor array by adjusting the position and number of the
sensitive elements, as well as the size of the PI sheets. Therefore, various LIBs with different
sizes and shapes can be matched. The Tc of the sensors in the prepared sensor array is
around 67 ◦C. Before embedding the battery, the PTCR performance of each sensor was
tested; the ρ-T curves are depicted in Figure 4. Highly similar PTCR effects are performed
by the nine sensitive elements, indicating good consistency in multi-point temperature
detection. Compared with the measurement results in Figure 2a, it suggests that the
encapsulation of PI films does not have any negative impacts on the temperature response
of the sensors.

The temperature shock test from 60 ◦C to 85 ◦C was carried out on the prepared sensor
array for 12 cycles to evaluate the temperature response time. The values of resistance
and temperature were recorded synchronously while the heat shock and cool shock were
carried out, respectively. The results of one of the sensors in the prepared sensor array are
shown in Figure 5a. The detailed data is given in Figure 5b.
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Figure 3. A photo of the temperature sensor array, where each sensor element is numbered from 1 to
9, and an enlarged view of one typical sensor element on the right side.
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Figure 5. (a) The temperature shock test ranged from 60 ◦C to 85 ◦C for the prepared sensor array for
12 cycles. (b) The details of the first cycle.

Figure 5b gives a clear observation of the resistance response time of the sensor in the
sensor array while a heating and cooling shock were carried out, respectively. It indicates
that it takes around 25 s for the sensor to finish the resistance rising from 0.39 kΩ to 8 kΩ
while the sensor array was moved into the 85 ◦C oil bath from a 60 ◦C oil bath in a thermal
equilibrium state. It suggests that the temperature response of the sensor, ranging from
60 ◦C to 85 ◦C, is around 1 ◦C/s. The reported temperature rise rates in the early TR process
are listed in Table 2. Although there is inconsistency among those results due to different
types of batteries and SOC, it is generally demonstrated that the temperature rise rate is
lower than 1 ◦C/s in the temperature range of 60–85 ◦C. During the cooling, the sensor
showed a similar response time of 25 s as well. Despite the sensor being covered by PI
films, a fast temperature response of around 1 ◦C/s could be achieved by the prepared
sensor array.
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Table 2. Temperature rise rate during thermal runaway experiments.

Test Batteries Capacity SOC Thermal
Runaway Triggers Temperature Rise Rate

Pouch cell [29] 24 Ah 100% Thermal abuse

<0.01 ◦C/min
(T<~70 ◦C)

<1 ◦C/s
(~70 ◦C < T< ~210 ◦C)

Cylindrical cell [39]

14,500: 900 mAh;
18,650: 1100 mAh;
26,650: 2500 mAh;
26,650: 3000 mAh

100% Thermal abuse ≤~1 ◦C/min
(T < 100 ◦C)

Prismatic cell [40] 25 Ah 100% Thermal abuse ≤0.1 ◦C/min
(50 ◦C < T < 150 ◦C)

Pouch cell [41] 7800 mAh 100% Thermal abuse

<0.02 ◦C/min
(T < ~84.17 ◦C)

<1 ◦C/min
(~84.17–35.88 ◦C)

Prismatic cell,
Pouch cell [42] 40 Ah (both) prismatic cell: 148%

pouch cell: 154.6% Electrical abuse
Prismatic cell:
~5.8 ◦C/min

(74–99 ◦C)

Pouch cell:
~11.2 ◦C/min

(55–93 ◦C)

Cylindrical cell [17] 3200 mAh - Electrical abuse ~1.1 ◦C/min
(~20 ◦C < T< ~60 ◦C)

3.2. Static Measurement Inside the Battery

The prepared sensor array was inserted into a pouch cell, as shown in Figure 6.
The implantation of the sensor array is compatible with the pouch cell assembly process
(see Figure 7). Compared to the PTC ring in cylindrical LIBs or the PTC cathode, this
incorporation process does not require additional design for LIB. The resistance temperature
response of the sensor array was tested while the battery was in a static state, which means
it was not in a charge or discharge state. The battery embedded with a sensor array was
placed in the test box with a programmable temperature controller, which was heated
from room temperature to a certain temperature of 5 ◦C/min and then cooled down
naturally. The tests were conducted twice for the highest preset temperatures of 90 ◦C and
100 ◦C, respectively, and are noted as test 1 (see Figure 8a–c) and test 2 (see Figure 8d–f).
Two K-type thermocouples were laid on the top and bottom surfaces of the battery to
record the surface temperatures, which are noted as Ttop and Tbottom (see Figure 6).
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Figure 7. The optical photograph of the fabrication of the pouch cell embedded with the sensor array.
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Figure 8. Temperature and resistance result in the static measurements conducted at the maximum
temperature at (a) 90 ◦C and (d) 100 ◦C. The enlarged views around 70 ◦C during heating and cooling
parts are shown in (b,e) and (c,f), respectively.

As shown in Figure 8, in both tests, the resistance of the sensor is almost unchanged
around R25 in each test below the temperature of 50 ◦C. This temperature corresponds to
the top side of the battery because the array was near the top side (see Figure 6) of the
battery. In test 1, as shown in Figure 8b, an obvious jump in resistance is performed at 65 ◦C,
and then it rises to 10 times R25, i.e., 4460 Ω at 72.6 ◦C. Around 90 ◦C, the resistance reaches
2.0 × 104 Ω. During the following cooling section, the resistance drops rapidly to 4460 Ω at
69.9 ◦C, as marked in Figure 8c. In test 2, a larger PTCR jump is observed. As is shown in
Figure 8d,e, R25 is 389 Ω, and the resistance soars to 3890 from 65 ◦C to 75 ◦C, then rises to
1.8 × 104 Ω at 90 ◦C and 3.1 × 104 Ω at 100 ◦C, which is almost two orders of magnitude
of R25. After a holding stage of temperature at 100 ◦C for 60 min, the battery naturally
cooled down. The resistance value of the sensor decreases as the ambient temperature
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cools. A clear observation is shown in Figure 8f. It reveals that the resistance of the sensor
decreases to 3890 Ω at 72.2 ◦C. The thermal hysteresis ∆T in test 1 and test 2 is −2.7 ◦C
and −2.8 ◦C, respectively, indicating similar switching behavior. The static measurements
confirm the repeatability in temperature detection of the temperature sensor array in the
internal environment of LIB.

3.3. Dynamic Measurement Inside the Battery

The dynamic test of the sensor array was carried out while the battery was charging
and discharging. The charging and discharging behavior of the battery and the resistance
change of the sensors in the array are recorded simultaneously. The results are shown
in Figure 9. In order to detect the resistance change of the sensor near the Tc region, the
tests were conducted at 2C and 2.5C rates at ambient temperatures of 55 ◦C and 60 ◦C,
respectively. The battery embedded with a sensor array was kept in the test box at 55 ◦C
and 60 ◦C for 60 min so that the battery could obtain a total thermal balance with the
ambient temperature before the test. The test starts with a 2C rate charge at 55 ◦C and a
2.5C rate at 60 ◦C, respectively. The subsequent discharging operations were not started
until the internal temperature of the battery cooled down to 55 ◦C or 60 ◦C completely.
Then, the test restarts with a 2C rate discharge at 55 ◦C and a 2.5C rate discharge at 60 ◦C,
respectively. An NTCR (negative temperature coefficient resistance) thermistor was used
in the sensor array to detect the internal temperature in real-time as a reference. The
temperature line (green line) shown in Figure 9 is indicated by the NTCR thermistor. The
resistances of the sensor at 25 ◦C, 55 ◦C, and 60 ◦C are 389 Ω (shown in Figure 8d), 610 Ω,
and 720 Ω, respectively.
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Figure 9. Current and voltage changes of the LIB during the charging and discharging processes, and
the corresponding resistance changes of the embedded PTCR thermistor in (a) 55 ◦C and (b) 60 ◦C
external thermostat environments, respectively.
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As shown in Figure 9, the internal temperature of the battery would rise while working.
Compared to the charging stage, less heat is generated during the discharging stage. The
related values are listed in Table 3.

Table 3. The maximum temperature and resistance during the dynamic test.

Environment
Temperature 55 ◦C 60 ◦C

Process 2C Charging 2C Discharging 2.5C Charging 2.5C Discharging

Tmax (◦C) 63.7 63.3 70.2 69.3
Rmax (×103 Ω) 0.86 0.82 3.03 2.22

For the 2C rate charging at the ambient temperature of 55 ◦C, the maximum internal
temperature of the battery is 63.7 ◦C, and the resistance of the sensor rises from 610 Ω to
860 Ω, implying the temperature is not high enough to activate the PTCR effect. For the
2.5C rate charging at the ambient temperature of 60 ◦C, the highest internal temperature is
detected as 70.2 ◦C, and the resistance of the sensor increases from 720 Ω to 3030 Ω. An
obvious soring of the resistance is observed. During this period, the resistance exceeds
1000 Ω at 67 ◦C, which is the Tc of the sensitive element. Therefore, the temperature sensor
possesses high resolution to identify the temperature difference in the critical temperature
range. Additionally, the time of the Tmax is consistent with that of the current and voltage
values in the charging and discharging courses, respectively. It reveals that the sensor
recorded the internal temperature variation over time. The performance of the battery with
and without a sensor embedded was compared after charging and discharging 500 cycles
at 55 ◦C with a 1C rate (see Figure 10). The results show that the implantation of the sensor
caused a decrease in initial capacity of 5% (from 2381 mAh to 2261 mAh). However, the
capacity retention of the two batteries during the 500 cycles was almost identical, with
94.8% for the battery with the sensor embedded and 94.3% for the battery without the
sensor. This indicates no continued decay in capacitance after the sensor was embedded.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 14 
 

 

Figure 9. Current and voltage changes of the LIB during the charging and discharging processes, 
and the corresponding resistance changes of the embedded PTCR thermistor in (a) 55 °C and (b) 60 
°C external thermostat environments, respectively. 

As shown in Figure 9, the internal temperature of the ba ery would rise while 
working. Compared to the charging stage, less heat is generated during the discharging 
stage. The related values are listed in Table 3. 

Table 3. The maximum temperature and resistance during the dynamic test. 

Environment  
Temperature 

55 °C 60 °C 

Process 2C Charging 2C Discharging 2.5C Charging 2.5C Discharging 
Tmax (°C) 63.7 63.3 70.2 69.3 

Rmax (×103 Ω) 0.86 0.82 3.03 2.22 

For the 2C rate charging at the ambient temperature of 55 °C, the maximum internal 
temperature of the ba ery is 63.7 °C, and the resistance of the sensor rises from 610 Ω to 
860 Ω, implying the temperature is not high enough to activate the PTCR effect. For the 
2.5C rate charging at the ambient temperature of 60 °C, the highest internal temperature 
is detected as 70.2 °C, and the resistance of the sensor increases from 720 Ω to 3030 Ω. An 
obvious soring of the resistance is observed. During this period, the resistance exceeds 
1000 Ω at 67 °C, which is the Tc of the sensitive element. Therefore, the temperature sensor 
possesses high resolution to identify the temperature difference in the critical temperature 
range. Additionally, the time of the Tmax is consistent with that of the current and voltage 
values in the charging and discharging courses, respectively. It reveals that the sensor 
recorded the internal temperature variation over time. The performance of the ba ery 
with and without a sensor embedded was compared after charging and discharging 500 
cycles at 55 °C with a 1C rate (see Figure 10). The results show that the implantation of the 
sensor caused a decrease in initial capacity of 5% (from 2381 mAh to 2261 mAh). However, 
the capacity retention of the two ba eries during the 500 cycles was almost identical, with 
94.8% for the ba ery with the sensor embedded and 94.3% for the ba ery without the 
sensor. This indicates no continued decay in capacitance after the sensor was embedded. 

 
Figure 10. Cycling performance in charging and discharging the ba ery with/without the 
temperature sensor array buried at 55 °C and 1C. 

4. Conclusions 
In summary, a flexible sensor array with BSZYT-BNT sensors was developed. The 

PTCR sensors show fast and reversible temperature responses. They also have high 
thermal sensitivity and satisfactory stability. Specifically, the thermal switching 

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

2100

2200

2300

2400

2500
C

ap
a

ci
ty

 r
et

e
n

tio
n

 (
%

)

 without sensor
 with senosr

Cycle number

C
a

pa
ci

ty
 (

m
A

h
)

Figure 10. Cycling performance in charging and discharging the battery with/without the tempera-
ture sensor array buried at 55 ◦C and 1C.



Sensors 2023, 23, 5049 12 of 14

4. Conclusions

In summary, a flexible sensor array with BSZYT-BNT sensors was developed. The
PTCR sensors show fast and reversible temperature responses. They also have high thermal
sensitivity and satisfactory stability. Specifically, the thermal switching temperature of
67 ◦C matches well with the temperature at which the SEI decomposes. The significant
increase in resistance at thermal switching temperatures makes it easy to achieve the switch
function. These properties have not been achieved using previous ceramic PTC devices.
Batteries embedded with this sensor array show unaffected battery performance at normal
temperatures and could be expected to shut down rapidly under abnormal conditions, such
as overheating and shorting. They can also resume normal function without compromising
performance after intervention and repeated use. Compared with previous approaches,
the present work provides a reliable, fast, and reversible strategy that can achieve both
unaffected battery performance and improved safety. It could be believable that this
strategy holds great promise for practical battery applications.
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