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Abstract: Prestressed girders reduce cracking and allow for long spans, but their construction requires
complex equipment and strict quality control. Their accurate design depends on a precise knowledge
of tensioning force and stresses, as well as monitoring the tendon force to prevent excessive creep.
Estimating tendon stress is challenging due to limited access to prestressing tendons. This study
utilizes a strain-based machine learning method to estimate real-time applied tendon stress. A dataset
was generated using finite element method (FEM) analysis, varying the tendon stress in a 45 m girder.
Network models were trained and tested on various tendon force scenarios, with prediction errors
of less than 10%. The model with the lowest RMSE was chosen for stress prediction, accurately
estimating the tendon stress, and providing real-time tensioning force adjustment. The research offers
insights into optimizing girder locations and strain numbers. The results demonstrate the feasibility
of using machine learning with strain data for instant tendon force estimation.

Keywords: tendons; prestressed girder; sensors; finite element; machine learning; neural network;
dataset; artificial neural network

1. Introduction

The monitoring of precast construction is gaining attention nowadays [1]. Among
precast members, prestressed structures are of the utmost importance. Prestressing is a
technique in which high-strength steel tendons are stretched or tensioned to induce pre-
compression in concrete. These tendons are commonly stretched between two abutments
and jacked at the end [2]. Using prestressed tendons helps reduce cracking in structures
that require long timespans, such as bridges, parking lots, balconies, water tanks, concrete
pipes, floor slabs, and driven piles. The provision of long spans allows for uninterrupted
space with fewer joints in prestressed structures. [3]. Implementing prestressing techniques
in construction enhances the project’s quality by minimizing the utilization of materials and
streamlining the integration of large component assembly, leading to more efficient and
effective construction. The fatigue and seismic resistance of a structure can be significantly
improved using prestressed concrete, as it increases the overall stiffness of the structure [4].

Prestressed concrete structures have had a significant impact on infrastructure net-
works. However, the prestressing process can be challenging to implement due to the need
for specialized equipment, skilled labor, and strict quality control measures [5]. The lack
of proper equipment and labor can also significantly affect the quality of the structure.
Researchers have attempted to improve the quality of prefabrication through field tests
and numerical simulations [6]. Quality control during prestressing can be achieved by
carefully ensuring that the tensioning capacity and specifications meet relevant standards
for use. The corrosion of steel tendons is a common cause of failure in prestressed concrete.
The proper inspection of tendons can prevent this by identifying broken wires and rust-
ing, which can reduce stress in tendons [7]. In addition, deviations in applied tensioning
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stress can necessitate repeating the entire prestressing process, and excessive prestressing
force can cause significant cracks and blow-outs [8]. Therefore, quality control through
stress monitoring during the manufacturing of precast prestressed structures is critical,
as the long-term behavior of these structures can be unpredictable due to issues such as
corrosion [9].

Monitoring the tendon force is essential to assessing the health and quality of pre-
stressed concrete (PSC). Over time, the prestressing force in tendons may be reduced due
to the long-term effects on prestressing steel. Variations in prestressing stress compared to
design strength can result in cracks, creep, or shrinkage in the structure [10]. If this damage
goes unnoticed for an extended period, it can lead to structural failure. It is particularly
important to monitor tendon force in prestressed structures, as excessive creep may occur
if the tendons are tensioned with a higher force than intended [11]. The behavioral effect of
effective prestress was investigated in several studies [12,13]. Tanchan et al. [14] conducted
a numerical analysis on unbonded tendons. They found that effective prestress has a more
substantial impact on the stress increment in the tendons than on their ultimate moment ca-
pacity. These studies highlight the importance of accurately estimating stresses in tendons
and their impact on various parameters.

In addition to quality control, the prestressing technique is often used to achieve the
desired camber for girders by applying the required tendon force [15]. Camber is the
upward deflection of a member, which tends to return to a neutral state upon applying load.
The camber can be controlled by adjusting the tendon stresses [16]. Tadros et al. [17] noted
that errors in estimating prestressing force and girder self-weight could lead to variability
in the initial camber, causing construction challenges or the rejection of the girder. The
authors suggested using modern methods for calculating the modulus of elasticity, creep,
shrinkage, and other parameters in order to reduce errors in estimating the camber.

The accurate estimation of deflection and strain values is essential for evaluating
the serviceability of prestressed bridges. Several methods have been used to estimate
prestressing force and observe its effects on various parameters [18,19]. J. Hsiao et al. [20]
studied the effect of prestressing force on midspan deflection using hand calculation.
They found that neglecting the P-delta effect resulted in relatively small deflections. In
contrast, by considering the moment of inertia of the gross concrete section, the calculations
resulted in more considerable deflections. Ghallab et al. [21] reviewed equations for
calculating the tendon stress increase at the ultimate stage, but the study was limited to
externally tensioned tendons and did not examine internally stressed tendons. However,
hand calculations are prone to human errors; therefore, software is preferred for fast and
accurate calculations.

In general, two approaches are commonly used for monitoring prestressed structures:
the direct onsite monitoring of prestressing tendons and using FEM. The onsite monitoring
of prestressed girders can be carried out using strain-based methods [22–25], some of which
depend on electrical impedance, vibration, and wave velocity [19]. It is challenging to apply
these methods in actual construction sites and structures since the prestressed tendons are
not visible from the outside and are filled with mortar. In other words, onsite monitoring
necessitates direct access to prestressing tendons to be effective, limiting its applicability.
The use of FEM is rapidly gaining fame and is replacing other estimation methods. Turmo
et al. [26] examined the shear behavior of a prestressed concrete beam by modifying the
jacking prestress using a 2D flat-joint numerical model. Other studies [27,28] examined the
impact of changes in the prestressing and aspect ratios on the nonlinear structural behavior
of prestressed concrete segments using FEM. Halder et al. [27] found that the stress in
unbonded tendons before failure varies from 0.66 to 0.94 fpy for longer tendons using FEM,
which are significantly underestimated compared to ACI318-19 code predictions [29,30].
Michael et al. [31] developed a verified 3D finite element model for a parametric study and
observed the behavior of concrete bridges under different loading conditions and tendon
stress increments. Other researchers have investigated corrosion, creep, and shrinkage in
prestressing structures using FEM analysis [10,32]. However, the numerical method can
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be time-consuming and cost ineffective; consequently, more sophisticated and advanced
technology is required for real-time tendon stress estimation.

A more advanced approach to estimating structural stresses in real-time is to use
machine learning (ML) models, also known as surrogate models, to replace computa-
tionally expensive nonlinear numerical simulations [33]. A surrogate model that utilizes
ML models is a simplified and efficient substitute for a complex and expensive model
that is used in engineering and scientific simulations to make predictions and optimize
designs with fewer computational resources. Creating a surrogate model is also called
metamodeling in research fields other than civil engineering [34]. ML models, such as
random forest regression (RFR), XGBoost, support vector machine for regression (SVR),
multi-layer perceptron (MLP), and K-nearest neighbor (KNN), have been used in the past
as substitutes for FEM in different fields of research [35–38]. Other approaches, such as the
Kriging model, genetic algorithms [39,40], Gaussian process regression [28], and Bayesian
interference framework [29], have also been used as surrogates for FE models. However,
this research was limited to predicting the long-term deflections of structures, and further
research is needed to explore the use of ML models for detecting tendon stresses [41].
Junkyeong et al. [42] used embedded elastic–magnetic sensors and machine learning meth-
ods to estimate tendon stresses in prestressed bridges. Giulio et al. [43] detected tendon
malfunction using machine learning on monitored stress data. However, neither of these
studies used a FEM-based surrogate model. Torgeir et al. [44] recently used an artificial
neural network to estimate the tendon stress in unbonded members utilizing a database of
experimental results from the literature. Currently, for real-time prediction, there are few
or no applications of strain-based tendon stress estimation in bonded prestressed members
using machine learning and FEM analysis.

The current study presents a novel framework that employs machine learning tech-
niques to the enable immediate estimation of tendon stress based on strain data. The
novelty of the research is the use of strain data from girders with bonded tendons to predict
tendon stress in real time. The bridge girder’s finite FE model was created based on field
observations. Three ML models, namely random forest (RF), support vector regression
(SVR), and artificial neural network (ANN), were trained using the dataset obtained from
the FE model, which was validated using analytical calculations. The proposed model
demonstrated the most exceptional performance, and hence it was utilized to make accurate
predictions of tendon stresses, affirming the effectiveness of the proposed tendon stress
estimator. The ANN-based calculator enabled real-time stress estimation on new data and
provided insights into the significance of various sensor permutations for optimizing the
sensor number and location.

2. Surrogate Model Framework

The proposed tendon stress estimation model comprises two main components: FEM
and machine learning (ML). The proposed framework is illustrated in Figure 1. The FEM
analysis of the bridge girder was conducted by the varying tendon stress and generating
data. Using the reverse engineering approach, which includes breaking down the individ-
ual components of more oversized products to extract design information, the individual
strain response of the girder was used to estimate the applied stress on the structure. The
FEM input was treated as the ML model output to create a surrogate model that can predict
the tendon stress in real time for inputs in the form of girder strain values and an elastic
modulus, as explained further in section II-D. The concept of this framework includes
training the ML model on a validated FE dataset, and the trained model utilizes strain
data as an input to predict tendon stresses. The input strain values were obtained for field
application from strain gauges that were installed onsite at various girder locations.
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Figure 1. The illustration of the proposed surrogate model framework.

In some cases, the most critical areas of a structure or material may experience high
deformation or stress. It is essential that the sensors are placed in these locations to capture
accurate measurements. The high-stress regions of symmetrical structures can be assumed;
however, the stress distribution differs for unsymmetrical members, and the assumption
cannot be made easily. Therefore, the surrogate model framework also provides information
regarding the best location and number of strain gauges to be installed, based on identifying
the essential features in the ML model.

2.1. Girder Specifications

The selection of the girder was based on two factors. Firstly, the research required
using a bonded tendon girder, which was a prestressed concrete beam with bonded tendons
running along its length. Secondly, the girder was selected from available girders on the
field to validate the accuracy of the FEM model by comparing the results with the analytical
solutions that the field experts performed.

The specific girder chosen for the study was a 45 m long I-beam girder, as illustrated
in Figure 2, along with its various components. Tables 1 and A1 in Appendix A provide
detailed specifications of the girder, including its dimensions, material properties, cross-
sectional area, and section modulus.
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Figure 2. (a) A half-length side view of I-girder showing strain locations (1–7), along with sections
at start (A-A), in-between (B-B) and middle (C-C) of girder; (b) Anchorage location showing four
tendons at the end block.

Table 1. Girder specifications and material properties.

Parameters Values Units

Steel
Density 7.8 × 10−6 kg/mm3

Elastic Modulus 210,000 MPa
Concrete
Density 2.1 × 10−6 kg/mm3

Elastic Modulus 30,968 MPa
Girder
Length 45,000 mm
Height 2100 mm
Width 1300 mm

The I-beam girder featured four parabolic bonded tendons anchored at both ends.
These tendons allowed the prestressed force to create a camber at the midspan of the
girder. This means that the girder had a slight upward curve in the center, which helps to
counteract the sag that would otherwise occur due to the weight of the girder itself and
any additional loads it may be supporting.

2.2. FEM Modeling

The provided CAD drawings were used to develop a three-dimensional FEM model
(Figure 3) of an I-beam girder using Abaqus software [45]. The software utilizes the implicit
scheme to solve the problem. The model aims to simulate the actual onsite conditions and
validate its accuracy by comparing the results with existing analytical solutions. The girder
specifications used to develop the FEM model are provided in Table 1.
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The main parts of the model consist of the concrete I-beam, steel rebars and tendons.
The girder was modeled as C3D8R, an eight-node linear brick element that has six faces and
four integration points per face. In terms of deformation capabilities, the C3D8R element
can undergo plastic deformation, exhibit large strains, and can handle material nonlinearity.
It can also model crack propagation, contact behavior, and damage evolution. Meanwhile,
a T3D2, a three-dimensional, two-node truss element, was used to model the reinforcement
of steel bars and pre-tensioned tendons. The interaction between the steel and concrete was
modeled as surface-to-surface contact, with embedded constraint properties. The girder
was modeled as a simply supported beam with one end hinged and the other end set as
roller support. The diameter of the steel bars was kept at around 16 mm. The four bonded
tendons were designed using a truss element following a parabolic curve and represented
by embedded constraints. Prestressing was applied to each tendon using a predefined
field, with the tendon stress involved in the x-direction specified as sigma11 in Abaqus
FEM, along the length of the girder. A fine meshing of 50 mm in size was assigned to the
structure. An implicit scheme was utilized by performing a static linear analysis under
gravity load, allowing the model to deform in all directions. The details for process of
girder analysis are presented in the Supplementary Materials.

2.3. FEM Validation

The FEM model of the bridge girder was validated using analytical solutions obtained
from the field. The formulas used to compute the tendon force (Pt), midspan stress at top
fibers ( fct), and bottom fiber ( fcb) of the I-beam girder are mentioned below:

Pt = fpt ApN (1)

fct =
Pt

Ac
− Ptez

Zt
+

Md
Zt

(2)

fcb =
Pt

Ac
+

Ptez

Zb
+

Md
Zb

(3)

The parameters used in the above equations and their values are listed in Table 2.
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Table 2. A comparison of the hand calculation with the FEM model.

Beam Midspan Stresses (MPa) Hand Calculations FEM Model Difference (%)

Top fiber stresses −3.91 −3.76 3.8
Bottom fiber stresses −17.67 −17.1 3.2

The limit of initial prestressing, as per the PCI bridge design manual section 17.8.7 or
ACI 318-19 article 20.3.2.5, is given as follows [30]:

fpt ≤ 0.8 fpu (4)

where the fpt is the initial tensile stress in the tendon after prestressing or re-stressing in
MPa, and fpu is the ultimate tensile strength of the prestressing steel in MPa. The ACI 318
code requires that the initial stress in the tendon is limited to a value that ensures that the
ultimate tensile strength of the prestressing steel is not exceeded.

Based on the analytical solutions, a tendon stress of approximately 1109 MPa was
applied as initial prestressing, less than the tendon stress limit of 1488 MPa provided by
Equation (4). The stress in concrete immediately after the introduction of prestress to the
girder and the resulting deflected shape is shown in Figure 3. The prestressing creates a
camber at the midspan of the girder. This means that the girder had a slight upward curve
in the center, which helps to counteract the sag that would otherwise occur due to the
weight of the girder itself and any additional loads it may be supporting. The girder had a
camber of approximately 35.4 mm, which falls within the limit of 50 mm, as specified by
the ACI 318 standards based on the span length, specific design requirements, and loading
conditions of the girder.

The analytical solutions were compared with those obtained from the finite element
model, and the differences were negligible. This demonstrates the validity of the finite
element model. The comparison results are summarized in Table 2. After validation, as
mentioned in the following sections, the Python script from this basic FEM model served
as a tool to generate data for training ML models.

2.4. Statistical Background of Parameters

An investigation of the statistical properties of the material strength of the concrete,
rebar, and tendon strand commonly used in domestic construction sites was performed
by Paik et al. [46] in order to provide a foundation of reliability-based design codes for
concrete structures. The authors conducted tensile strength tests on concrete, rebar, and
strand samples. They analyzed the test results using statistical methods, including the
standard deviation, mean, and coefficient of variation in the material strength for each
type of material. The authors found that the material strength of concrete had the highest
coefficient of variation, followed by rebar and strand. The study results showed that the
tensile strength of rebar and strand had a relatively low coefficient of variation, indicating
that these materials have fairly consistent mechanical properties. On the other hand,
a higher coefficient of variation was observed in the compressive strength of concrete,
indicating that the mechanical characteristics of concrete may have more variability. Based
on the literature, the parameters selected in the present research for data generation were
the strain values as its strain-based stress estimation, along with concrete elastic modulus
and tendon stress values.

2.5. Data Generation and Preprocessing

The Abaqus script was used to generate a total of 5000 data points, with the elastic
modulus (EM) and tendon stress (TS) serving as input parameters, resulting in strain values
at the locations S1, S2, S3, S4, S5, S6, and S7, as shown in Figure 2a. The strain locations
were set based on the regions in which possible damage could occur, such as the flexural
failure region at the mid and the shear failure region on supports, during overstressed
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conditions. Simulations were performed on a personal computer using an AMD Ryzen™
7-5700G processor and 16 GB of operational memory.

The data generation process involved varying the tendon stress within a range of 100
to 5000 MPa and the elastic modulus within a range of 20,000 to 50,000 MPa. Using the
concept of reverse engineering, the generated data were split into input and output features
for the ML models. The eight input features were the strains at locations S1, S2, S3, S4,
S5, S6, and S7, as well as the elastic modulus, while the tendon stress was taken as the
output label.

2.6. Machine Learning (ML) Models

Past research has shown that the accuracy of ML models that consist of decision trees
is better than those that use artificial neural networks [47]. Therefore, in the present study,
the analysis was performed by increasing the number of hidden layers of an artificial neural
network and using state-of-the-art ML models for comparison [48].

Supervised ML models that rely on decision tree ensembles, such as RFR, are com-
monly employed for regression analysis. In contrast, SVR is a supervised ML model that
utilizes a hyperplane instead of a line to make predictions. In contrast, RFR does not require
feature scaling [49].

This study used a grid search method to determine the optimal parameters for the ML
models, including RFR and SVR. The grid search was conducted using the sci-kit-learn
Python library, and the models were evaluated based on their mean square error or accuracy
for each combination of hyperparameters. In addition to these models, an artificial neural
network (ANN) model was also trained to compare the performance of each model in
terms of percentage errors. The flow chart of the framework is shown in Figure 4, depicting
the training of ML models and the selection of the model with the least MSE for the stress
calculator. The stress calculator is capable of taking inputs from field sensors to estimate
the tendon stress, along with providing suggestions regarding the number of strain gauges
and their locations.
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In this study, the ANN model’s hyperparameters were tuned to obtain a minimum
mean square error score. The ANN architecture comprises a single input layer, two hidden
layers, and one output layer. The number of hidden layers was determined based on the
model performance and overall comparison of the model with other ML models. A total of
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128 neurons for the first hidden layer and 512 neurons for the second hidden layer were
finalized; refer to Figure 5 for the network architecture.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 

Figure 5. Artificial neural network architecture. 

The architecture of the ANN utilizes Relu and linear activation functions. The opti-

mization process utilized the Adam optimizer with a learning rate of 0.001, a batch size of 

256, and early stopping at the lowest validation score at epoch 606. The advantage of using 

the ML model is its ability to make predictions very quickly compared to the FEM model, 

making it ideal for applications in which real-time predictions are required, such as struc-

tural health monitoring. 

In order to train the ML models, the dataset was divided into training and testing 

subsets, where 80% of the data was allocated for training the model, and the rest was re-

served for assessing its performance in the current study. The present study utilized the 

programming language Python and its commonly used libraries for code execution. By 

utilizing CPU and GPU resources, the conducted research effectively trained and evalu-

ated the performance of the proposed ML models. 

3. Results and Discussion 

3.1. Prediction Comparison 

In this section, the outcomes of the ML models for anticipating the tensile stress of 

bridge tendons are presented. The predicted values of the different ML models were in 

good agreement with the observed values. Figure 6 shows the prediction curves of the 

RFR, SVR, and ANN models for the training datasets, respectively. It can be observed that 

the distribution of data points for the RFR model for both the train and test datasets (Fig-

ure 6a,d) lacks a centralized regression fit line to some extent. The data points are slightly 

far from the diagonal line, which indicates a poor model fit. However, the model demon-

strated the ability to provide reliable predictions. 

The RFR model, on the other hand, showed a better fit curve of the predicted versus 

actual values compared to the RFR model for both the training and testing datasets, as 

shown in Figure 6b,e, respectively. However, the fit line is not perfectly centralized, which 

could potentially impact the reliability of the RFR model as a prediction tool. 

In contrast, the artificial neural network model showed a better centered fit line than 

the other models in both the testing and training datasets (Figure 6c,f). The predictions of 

this model are more consistent as they are well balanced across different values. 

S3

S2

S1

EM

S4

S5

S6

S7

TS

Input Layer € 

Hidden Layer € 

Hidden Layer € 

Output Layer € 

Figure 5. Artificial neural network architecture.

The architecture of the ANN utilizes Relu and linear activation functions. The opti-
mization process utilized the Adam optimizer with a learning rate of 0.001, a batch size
of 256, and early stopping at the lowest validation score at epoch 606. The advantage of
using the ML model is its ability to make predictions very quickly compared to the FEM
model, making it ideal for applications in which real-time predictions are required, such as
structural health monitoring.

In order to train the ML models, the dataset was divided into training and testing
subsets, where 80% of the data was allocated for training the model, and the rest was
reserved for assessing its performance in the current study. The present study utilized the
programming language Python and its commonly used libraries for code execution. By
utilizing CPU and GPU resources, the conducted research effectively trained and evaluated
the performance of the proposed ML models.

3. Results and Discussion
3.1. Prediction Comparison

In this section, the outcomes of the ML models for anticipating the tensile stress of
bridge tendons are presented. The predicted values of the different ML models were in
good agreement with the observed values. Figure 6 shows the prediction curves of the
RFR, SVR, and ANN models for the training datasets, respectively. It can be observed
that the distribution of data points for the RFR model for both the train and test datasets
(Figure 6a,d) lacks a centralized regression fit line to some extent. The data points are
slightly far from the diagonal line, which indicates a poor model fit. However, the model
demonstrated the ability to provide reliable predictions.
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The RFR model, on the other hand, showed a better fit curve of the predicted versus
actual values compared to the RFR model for both the training and testing datasets, as
shown in Figure 6b,e, respectively. However, the fit line is not perfectly centralized, which
could potentially impact the reliability of the RFR model as a prediction tool.

In contrast, the artificial neural network model showed a better centered fit line than
the other models in both the testing and training datasets (Figure 6c,f). The predictions of
this model are more consistent as they are well balanced across different values.

The reliability of the ANN model for the prediction can be attributed to its ability to
generalize well. In addition, a good fit model is often characterized by residual plots, where
the distance of the points from the zero line is small. Thus, the normal distribution of the
residual plot displayed in Figure 7a confirms that the ANN model fits the provided dataset.

Figure 7b displays the training and testing loss values as a function of epochs before
early stopping. The decaying curves of the training and validation loss run parallel to each
other, with a relatively small difference between them. This indicates that the model is
optimal, as both the training and testing loss are minimized, and there is no evidence of
over-fitting or under-fitting based on the RMSE values, as explained in Section 3.2.

Further, the performance evaluation of ML models is performed by utilizing the mean
squared error (MSE) as the loss function [50], and it is calculated using Equation (5).

MSE =
1
n

n

∑
i=1

(yi − yi)
2 (5)



Sensors 2023, 23, 5040 11 of 20

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 6. Predicted and observed values of (a) ANN trained correlation model, (b) SVR trained cor-

relation model, (c) RFR trained correlation model, (d) ANN test correlation model, (e) SVR test cor-

relation model, and (f) RFR test correlation model. 

The reliability of the ANN model for the prediction can be attributed to its ability to 

generalize well. In addition, a good fit model is often characterized by residual plots, 

where the distance of the points from the zero line is small. Thus, the normal distribution 

of the residual plot displayed in Figure 7a confirms that the ANN model fits the provided 

dataset. 

Figure 7b displays the training and testing loss values as a function of epochs before 

early stopping. The decaying curves of the training and validation loss run parallel to each 

other, with a relatively small difference between them. This indicates that the model is 

optimal, as both the training and testing loss are minimized, and there is no evidence of 

over-fitting or under-fitting based on the RMSE values, as explained in Section 3.2. 

 

(a) (b) (c)

(d) (e) (f)

(a) (b)

Figure 7. (a) The residual plot of ANN model, and (b) optimization cost of ANN model in terms
of MSE.

The coefficient of determination (R2), RMSE, and mean absolute error (MAE) are some
of the popular evaluation matrices used in this study (see Equations (6)–(8)). The R2 acts as
a goodness-of-fit tool by describing how well a regression line fits the data points.

Compared to other evaluation metrics, the (R) MSE increases the weight on large
errors and is, therefore, more appropriate for the dataset used in this research. Additionally,
the measurements obtained from RMSE are in the same units as the response variable,
making it preferred for comparing the performance of ML models.

R =

n
∑

i=1
(yi − µε)(yi − µp)

σεσp
(6)

RMSE =

√
1
n

n

∑
i=1

(yi − yi)
2 (7)

MAE =
1
n

n

∑
i=1
|yi − yi| (8)

where yi and yi are experimental and predicted values; n is number of data points; σε and
µε are the standard deviation and average of the experimental values, respectively; and σp
and µp are the standard deviation and average of the predicted values, respectively.

The ML models utilized the three-fold cross-validation method to evaluate their ability
to make predictions on new data, providing a more comprehensive understanding of the
model’s performance.

The results of R2, RMSE, and MAE for the different ML models are summarized in
Table 3. The ANN model achieved the best performance, with R2 value of 0.9984, followed
by the SVR model (R2 = 0.9971) and RFR model (R2 = 0.9717). The RMSE values for the
training and testing data were similar, with a slightly low RMSE value for the training data,
indicating that all the ML models were optimal. None of the models in this study were
under-fit or over-fit, as the models were selected after hyperparameter tuning. However,
when considering the RMSE values in Table 3, the lowest error was observed for the ANN
model, which also had a high R2 score. Therefore, the ANN model was selected to predict
the tendon stresses in the stress calculator.
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Table 3. Performance evaluation of ANN, RFR and SVR ML models.

Matric ANN SVR RFR

Train
R2 0.9984 0.9971 0.9717
RMSE 0.0404 0.0532 0.1703
MAE 0.0313 0.0451 0.1166

Test
R2 0.9978 0.9971 0.9746
RMSE 0.0462 0.0540 0.1586
MAE 0.0312 0.0454 0.1255

The performance of the ML models was compared with that of the finite element
method model used for predicting the tensile stress of bridge tendons. The ML models
were preprocessed and optimized to achieve high accuracy. All the models performed
efficiently, with the ANN model showing the highest accuracy. The ANN model was then
used to validate the prediction results using out-of-sample data as input values and was
compared to the FEM results, which require more computation time for execution. The
validation results are mentioned in Table 4. The prediction error of the models on the
testing dataset was less than 10%. However, the performance of the ANN model was better
for all metrics, with a percentage difference of only 0.4%, followed by SVR (2.2%) and RFR
(3.02%).

Table 4. The comparison of ML model prediction with FEM model for validation.

Model Tendon Stress Difference (%)

ANN 1305 0.4
SVR 1272 2.2
RFR 1339 3.0
FEM 1300

3.2. Strain Gauge Optimization

The most important factor while observing any civil engineering structure under
various loading conditions is its response in the form of strains or deflection. The strain
values that show the most fluctuation in response to external loading can result in critical
strain values, and the location of such critical strain values on a structure is of great
importance. To observe the change in the girder strain values at different girder locations
while changing the tendon stress, a graph is generated from FEM data for a particular
elastic modulus value, as shown in Figure 8. It can be observed that the strain variation
at the S7 strain location seems to be high, as the stress response at the midspan is more
prominent compared to other positions. The pattern of variation of strain from high to
low starts from S7, followed by S1, S2, S6, S3, S4 and S5. However, the variation pattern
may not be the same for other input parameters; therefore, a more optimized method is
required to find the preferable locations of strain gauges considering all input and output
data variations.

In the present research, the inputs are mostly strain values, which are assumed to
be obtained from the strain gauges attached at different locations to the bridge girder.
To determine the most relevant features for evaluating the structure, the impact of each
feature on the predictions of the trained model was estimated and ranked using the feature
permutation importance method. This method involves randomly shuffling the values of
a single feature and measuring how much the RMSE score increases as a result. Feature
importance assigns a score to each feature in the provided data. The score reflects the
degree of importance or relevance of the feature with respect to the output variable. The
higher the score, the more significant the feature is to the output variable. As depicted in
Figure 9, the feature S7 seems to have the highest RMSE score due to the reliance of the
model on this feature for model prediction, followed by S5 and S2. The input features other
than S7, S5 and S2 were of less importance, as shuffling the values of such features has
a limited effect on the model error. The EM feature was neglected, as the motive is the



Sensors 2023, 23, 5040 13 of 20

optimization of the strain gauge’s location and number; therefore, only features including
strain values were considered.
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Figure 9. Permutation feature importance plot with increasing RMSE.

Based on the observations, the optimal sensor location can be predicted. For instance,
the inputs S7 and S5 represent the strain values located at the mid-bottom and mid-top,
respectively, of the girder (as shown in Figure 2). The middle region of a simply supported
beam under load is typically prone to maximum flexural stresses, while the regions near
the supports are prone to maximum shear stresses. Therefore, variations in the S7 and
S5 strain values are likely to be attributed to flexural stresses, while variations in the S2
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strain value (located near the supports) are likely to be attributed to shear stresses. It can
be concluded that the permutation importance graph correctly identified the locations of
critical strain values. The optimal number of strain gauges was decided by ranking the
features based on their importance scores, and then the top features with the highest scores
were selected. The value of the feature number was determined based on the desired level
of feature importance and the complexity of the model. The total three number of strain
gauges S7, S5, and S2 were selected as an optimal number of strain gauges. In the field,
strain gauges can be attached at these critical strain positions, providing an optimal number
and location of gauges for structural health monitoring purposes.

3.3. Strain Distribution of Girder

To ensure satisfactory performance, the stresses during the prestressing process can be
customized to meet the desired level. The present research uses a range of tendon stresses
to obtain the I-beam girder’s response for generating a dataset, among which the FEM
contour plots are depicted in Figure 10 for a tendon stress of 1100 MPa to 3000 Mpa. The
increase in applied stress increased the hogging of the girder, resulting in more tension
and compression at the top and bottom fibers of the girders at the midspan, respectively.
The color contour shows the high response of the girder to external forces at the anchorage
and midspan location; this verifies our assumption regarding the selection of the strain
gauge locations at the support and midspan. The observation of the contour plots depicts
that with the aid of FEM, the prestressing forces can be customized to achieve the desired
level of performance. The strains at the bottom fibers of the midspan for an applied tendon
stress of 1100 MPa and 3000 MPa were −15 µε and −54 µε. The corresponding cambers
were 35.6 mm and 199.7 mm since, as mentioned in section II.C, the cambers are specific
for each girder based on ACI 318 [51]. Therefore, the present research makes sure that the
strain and deflections are within the standards.
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Figure 10. The contour plots of I-beam girder in response to a tendon stress of 1100 MPa, 2000 Mpa,
2300 Mpa, 2500 Mpa and 3000 Mpa.

3.4. Prestress Losses

It is, however, crucial to note that the prestress force used for computing the stress
will not remain constant over time, and the stresses may vary due to the increase in the
concrete strength and modulus of elasticity with time. Therefore, the complete analysis
and design of a prestressed concrete member must take into account the effective force of
the prestressed tendon at the significant stage of loading, along with the corresponding
material properties that are applicable during the relevant period of the structure’s lifespan.
The most common stages in which stresses and behavior are evaluated are immediately
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after transferring the prestress force to the concrete section and at the service load stage,
where all losses of prestress have occurred [52].

The present research deals with the first stage, that is, the initial phase of pre-tensioned
prestressing in bonded tendons. For tendons and concrete, the ACI code limits the allowable
stresses on both by limiting the maximum stress that the tendon exerts on the concrete.
However, even if the initial stress is applied based on the limit specified in Equation (4), it is
noteworthy to analyze the change in the tendon stress along the length of the girder caused
by the loss resulting from the elastic shortening (ES), creep in concrete (CR), shrinkage
in concrete (SH) and steel relaxation (RE) under the self-weight of the pre-tensioned
prestressed girder during the initial stage, which has a duration of 30 days. The percentage
loss for ES was 8%, and CR (7.5%), SH (3.2%) and RE (1.5%) were computed as per the ACI-
ASCE committee 432 method [53]. The total loss (TL) was 20%, which was in accordance
with the simplified computation of the total loss by PCI committee [54].

Upon cutting tendons, the initial loss of prestress in pre-tensioned concrete members
occurs, and the prestressing force is transferred to the member. This transfer causes
the simultaneous shortening of both the concrete and tendon, which is termed elastic
shortening. The reflection of the losses during the initial stage of prestressing can be
observed in the FEM analysis results, which clearly showed the reductions in the tendon
stress caused by ES across the length of the girder due to the bond defined as embedded
property between the prestressing steel and concrete. Figure 11 depicts the variation in
the tendon stress across different sections of the prestressed I-beam girder at an initial
prestressing of 1109 MPa. The tendon stress at each section is different, and the section
illustrates high tendon stresses, close to what was applied, at both ends of the girder, which
reduces while moving towards the midspan.
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Figure 11. The inspection of prestressing at different sections of girder.

The average tendon stress at the anchorage location (support) and at the midspan
were 1075 MPa and 1014 MPa; the significant loss of stress at the midspan was due to
bending movements, since concrete and steel are treated as a single section once bonded,
leading to a loss of 8.5%, which is close to the calculated loss of ES. Out of TL, the rest of the
loss of 11.4% (127 MPa), due to other factors, was compensated by adding it to the initial
prestressing and modifying the limit mentioned in Equation (4) to an Equation (9).

fpt + 127MPa ≤ 0.8 fpu (9)
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The reduction in prestressing across the length after the FEM analysis and after the
addition of TL is depicted in Figure 12 in the form of a parabolic curve. The percentage
loss from the initial stress at each section for each curve is also mentioned. The FEM results
illustrate the maximum stress at the mid, and after the addition of a loss in stress, the mid
tendon stress was 887 MPa, with a total loss of 20%. The observation shows that if certain
strains at a particular section due to tendon stress at that section serve as input to the ML
model, then after the addition of a loss in stress, the predicted tendon stress will be close
to the actual initial stress being applied in the field. If the girder is monitored beyond the
initial stage, where only the self-weight was considered, the difference in prediction at
the initial stage and after the application of a service load can be estimated to monitor the
long-term losses.
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Figure 12. The variation in the tendon stress across the length of the girder compared to the applied
prestress.

4. Practical Considerations

One of the promising outcomes of the developed framework is its ability to monitor
the initial tendon stress so that it is within the limits, as per ACI 318-19 [30]. Ensuring limit
controls the excessive creep, cracks or shrinkage, and ultimately protects the structure from
failure. In addition, properly monitoring the tendon stress during prestressing provides
the assurance of achieving the desired camber in the girder. Apart from advantages
such as computational efficiency and cost effectiveness, the surrogate model has made it
convenient to utilize strains or deflection measurements at different girder locations for the
serviceability evaluation of the prestressed bridges.

To provide a more accessible method for estimating the stress in tendons during
application, a more user-friendly approach is required. Therefore, for real-time tendon
stress estimation, the stress estimator is proposed. The stress estimator takes, as input,
the elastic modulus and strain values that are monitored in the field from the sensor and
returns the tendon stress applied on the girder in real time. For safety purposes, the stress
calculator considers the initial tendon stress limit provided in Equation (9). The predicted
tendon stress is then compared to the stress limit to determine whether it is within the limit
or not. If stress exceeds the provided limit, the user can issue a warning to check the design
tendon stress during the prestressing process, ensuring quality control.

In addition, the ANN tendon stress calculator displays the sequence of strain variations
from high to low for strain gauges at different locations of the girder, and an optimum
number of strain gauges is suggested. The strain at S7, located at the midspan of the girder,
showed the highest strain fluctuation when the tendon stress was applied. Therefore, it is
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convenient to place the strain gauges at locations in which the strain varies the most. The
user-friendly calculator can be used prior to sensor placement to best optimize the sensor
location and number.

This exploratory study presents some limitations based on simplifying a numerical
model. The impact of environmental factors, such as humidity and temperature fluctua-
tions, can influence stress and strains, which is one of the limitations of this study. The
present study suggests the use of more real-world data in order to create accurate models
that represent actual prestress losses.

Further, the type of girder used can differ; therefore, for each girder type, there is a
requirement for an updated FE model to provide a training dataset. Once the model is
trained, the tendon stress is easily estimated using the proposed framework.

The ANN-based tendon stress calculator can be modified for future use as an appli-
cation that receives sensor data from the cloud, predicts the stress values, and suggests
critical strain values to give a warning for safety assessment, and can propose optimal
gauge number and locations.

5. Conclusions

The present research demonstrates the feasibility of using an ANN-based surrogate
model framework to predict the stress in the tendons of a bridge girder. The research
implemented a novel approach involving machine learning-based tendon stress estimation
and strain gauge optimization in real time using the strain data from the FE model as inputs
to a ML model.

Among other models, the ANN has the most accurately generated R2 values of 0.998
and 0.997 for the training and testing datasets, respectively. The average prediction error
or MAE was less than 10% for the ANN and SVR depicting the sound prediction of the
models. However, the ANN model with the lowest RMSE values demonstrated the best
performance; therefore, it was selected for the surrogate model framework.

The proposed surrogate model framework using ANN estimated the tendon stress
in real time, with only a 0.4% difference between it and the FEM model, where mostly
strains at different girder locations were specified as inputs. The ANN-based tendon
stress calculator showed a practical benefit of using the proposed framework, via the
addition of the computed prestress loss (11.4%) to the predicted results. The added loss
compensated for the losses expected on the field, and the estimated stress was compared
with the standard limits for quality assurance and structure safety. The present framework
can be utilized in situations where only strain data are available to monitor the tendon
stress for the purposes of structural health monitoring.

Further, the proposed model utilizes permutation importance to select appropriate
locations and the number of strain gauge to be installed. The sensor with the most strain
variation was found to be located at the midspan (S7), as expected from the behavior of a
simply supported girder bridge. Therefore, the sensors can be placed at locations where
there is more strain variation. In the present research, three strain gauges were suggested
at locations S7, S5 of the midspan, and S2 at the support, thereby providing the advantage
of improved structural health monitoring and reducing unnecessary gauge installment.

The proposed surrogate model is a feasible and quick means of tendon stress estima-
tion. The framework can be utilized for issuing warnings during the prestressing process to
keep tendon stress within specified limits. In the present scenario, during the prestressing
process, it is crucial to monitor the tendon stress in real time to check whether it is within
the standard limits or not to avoid any consequences due to over or under-prestressing.
Apart from the adaptability, the ML models are easy to use, making them accessible to a
wide range of users. The research focuses on the efficient use of the ML model to replace
FEM models for the tendon stress estimation of bridge girders. Tendon stress estimation
benefits the industry by enhancing the safety and reliability of prestressed structures.

An application that utilizes the Internet of Things (IoT) to monitor girders during
prestressing in real time is recommended as future work.
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Appendix A

The values of some of the important parameters are provided in Table A1.

Table A1. The provided parameters of I-beam girder for tendon stress estimation.

Parameter Symbol Values

Tendon stress (MPa) fpt 1109
Tendon ultimate stress (MPa) fpu 1860
Tendon yield stress (MPa) fpy 1580
Area of each tendon (mm2) Ap 2635
Concrete area (mm2) Ac 1.084 × 106

Total number of tendons N 4
Eccentricity of prestressing force from Neutral axis (mm2) ez 935
Section modulus for top fibers (mm2) Zt 6.159 × 108

Section modulus for bottom fibers (mm2) Zb 6.135 × 108

Bending moment at mid-span (Nmm) Md 6703.8 × 106
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