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Abstract: The primary sight control system of a tank gunner has image stabilization as one of
its primary functions. The image stabilization deviation in the aiming line is a key indicator for
evaluating the operational status of Gunner’s Primary Sight control system. Employing image
detection technology to measure image stabilization deviation enhances the effectiveness and accuracy
of the detection process and allows for the evaluation of image stabilization functionality. Hence, this
paper proposes an image detection method aimed at the Gunner’s Primary Sight control system of a
specific tank which utilizes an enhanced You Only Look Once version 5 (YOLOv5) sight-stabilizing
deviation algorithm. At first, a dynamic weight factor is integrated into SCYLLA-IoU (SIOU), creating
δ-SIOU, which replaces Complete IoU (CIoU) as the loss function of YOLOv5. After that, the Spatial
Pyramid Pool module of YOLOv5 was enhanced to improve the multi-scale feature fusion ability of
the model, thereby elevating the performance of the detection model. Finally, the C3CA module was
created by embedding the Coordinate Attention (CA) attention mechanism into the CSK-MOD-C3
(C3) module. The Bi-directional Feature Pyramid (BiFPN) network structure was also incorporated
into the Neck network of YOLOv5 to improve the model’s ability to learn target location information
and image detection accuracy. Based on data collected by a mirror control test platform, experimental
results indicate an improvement in the detection accuracy of the model by 2.1%. These findings offer
valuable insights into measuring the image stabilization deviation in the aiming line and facilitating
the development of the parameter measurement system for Gunner’s Primary Sight control system.

Keywords: the gunner’s primary sight control system; image stabilization deviation; YOLOv5;
δ-SIOU; the spatial pyramid pool module; BiFPN network; C3CA

1. Introduction

The Gunner’s Primary Sight control system is a critical component of modern tank
fire control systems that ensures accurate target distance measurement and aiming in all
weather conditions. The image stabilization scope is among the principal features of the
aiming scope, enabling the gunner to observe the target and background steadily even
while the tank is in motion [1]. A gyroscope is employed to stabilize the mirror in the
optical path of the scope, compensating for any sight-line deviation caused by the vehicle’s
jerking motion [2]. By measuring image stabilization deviation, the functionality of the
image stabilization scope can be appropriately ensured.

The traditional image detection methods utilize manual feature extraction techniques
such as the Sobel edge detection feature [3], Haar feature [4], and Hog feature [5], among
others. These methods primarily depend on features that were designed manually and
require professionals with specialized knowledge and a complex parameter adjustment
process, resulting in limited generalization ability and robustness. In recent times, with
the emergence of deep learning, image detection is progressively transitioning into this
deep learning era [6]. It is effectively applied in multiple fields, such as carrier chip defect
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detection [7], remote sensing image detection [8], plant disease recognition [9], and scratch
recognition and positioning [10], among other areas. Deep learning models possess strong
fitting and reasoning capabilities while also providing robust and generalizable abstract fea-
ture extraction. Some scholars use the deep learning model; achieving correct identification
and detection of crop diseases may save the crops from damage [8]. In [11], the author in-
troduces a one-time aggregation module to optimize the backbone network structure under
the YOLOv5s network model framework, and experiments are conducted on a self-made
vehicle detection dataset. The experiment shows that the average accuracy of different
object detections is improved, and the detection speed meets the real-time requirements.
Envelope W. et al [12]. employed an improved version of the Siamese network architecture
and incorporated DIoU as a novel loss function, reducing the influence of interference
factors in the complex background on the tracker. In addition, deep learning has also
been applied in the field of medicine. Research [13] proposes a new image segmentation
method based on the K-means clustering algorithm (KMC) and novel fast-forwards quan-
tum optimization algorithm (FFQOA), accomplishing a new early screening method for
the investigation of COVID-19 pneumonia using chest CT scan images. To eliminate subjec-
tivity and limitations inherent in traditional deviation detection, a deep neural network
was implemented to automatically detect the aiming line in image stabilization images and
calculate deviations. This approach enhances efficiency and accuracy [14].

At present, deep neural networks are commonly used in target detection algorithms,
which can be divided into two categories. The first type is a one-stage detection algorithm
based on YOLO or SSD [15]. The other type is a two-stage detection algorithm based on
R-CNN, Faster R-CNN [16], and other methods. Unlike one-stage detection methods that
directly regress borders, in the two-stage detection algorithm, a sequence of candidate
regions is generated by convolution. Additionally, other algorithms for target classification
are employed to improve the accuracy of object detection.

Although the two-stage algorithm is highly accurate but increases the test time exten-
sively [17], in practical engineering, real-time detection is often required. By enhancing
the network structure and incorporating attention mechanisms, the one-stage detection
algorithm can be improved, ensuring both real-time performance and accurate image de-
tection [18]. This study adopts a faster one-stage detection algorithm that detects the image
stabilization of a gunner’s sight. This paper proposes an improved YOLOv5 model for
detecting image stabilization errors in a gunner’s sight. The model builds upon YOLOv5 to
enhance its detection performance. The main research content is as follows:

• In this paper, we employed the image collection device of Gunner’s Primary Sight
control system to collect the image data of the aiming line in the scope of sight. We
created a dataset for the experiment and enhanced it to prevent overfitting issues and
improve the accuracy of the model detection;

• To enhance the performance of YOLOv5’s backbone network, the SPPF module should
be replaced with the SPPCSPC module. This module improves the model’s multi-scale
target fusion ability, detection speed, and detection performance;

• Introduce the Coordinate Attention (CA) in YOLOv5 to enhance the attention of the
model of the aiming line. Moreover, embed the CA into the C3 module to form a new
C3CA module;

• In this paper, we propose a solution for neck network improvement by combining the
BIFPN and C3CA modules. Our solution enhances the model’s characteristics across
different scales resulting in improved semantic as well as location information which
ultimately leads to better detection accuracy;

• The paper utilized the SIoU loss function with dynamic weights and improved it
further, resulting in the δ-SIOU loss function. The experiments conducted proved that
the proposed model not only achieved a high detection accuracy but also had a fast
detection speed.

The rest of this paper is organized as follows. In Section 2, we introduce the image
acquisition device of Gunner’s Primary Sight and establish the aiming line data set used in
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the experiment. Section 3 describes our research on aiming line detection. Section 4 presents
our experimental results and analysis. Section 5 summarizes our work and provides some
suggestions for future work.

2. Data Preparation
2.1. The Collection Device

At present, most of the world’s advanced tanks adopt a high-precision image-stabilized
fire control system. The image-stabilized fire control system allows the gunner to provide a
relatively stable observing environment when observing the target and background using
the sight mirror. The stabilized fire control system mainly controls image stabilization
through upper or lower reflection. The up-reflection image-stabilized fire control system
relies on the gyro stabilization platform as its core. The light path structure of the upper
reflection image-stabilized fire control system is simple and only stabilizes the upper
reflector sight. It provides a large and stable vision. Stable field of view, aiming view will
not turn black when the tank is driving on uneven roads or crossing craters. The upper
reflector image-stabilized fire control system can still ensure stable image stabilization
under the work of night vision and thermal image. Therefore, most newly developed fire
control systems worldwide adopt the upper reflector image-stabilized control.

This thesis focuses on examining the up-reflection of Gunner’s Primary Sight control
system. A mirror control test platform connects the primary components of Gunner’s
Primary Sight control system, and the system is fully constructed using dynamic simulation
technology. An upper computer controls the test platform and simulates the steady-image
condition of the tank’s working status. Use the collection device displayed in Figure 1 to
gather the image-stabilized sight image.
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Figure 1. The schematic diagram of the collection device. Where 1 means the sight, 2 means the
mirror control system bracket, 3 means the collimator, and 4 means the collimator installation bracket.

The collimator is primarily composed of a mirror body and an optical system. The
lighting group is installed in front of the matte glass collimator, with a rating adjustment
range from 0 to 500 Lx. A lighting group with an adjustable brightness range from 0 to
500 Lx is installed in front of frosted glass. The installation bracket frame of the collimator
is constructed from stainless steel and has an adjustable thickness of the steel plate. Figure 2
depicts the schematic diagram of the collimator installation. The reticle has small squares,
with each measuring at an angle value of 4’, amounting to 60 small grids per line, and with
a total of 60 lines.
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Figure 2. The schematic diagram of the collimator collection device. Where 1 is the frosted glass, 2 is
the milky glass, 3 is the reticle, 4 is the filter, and 5 is the objective lens group.

2.2. Aiming Line Image Example

The image collection process in the CCD system employs industrial cameras with
WP-UT2000M from WORK POWER. Equipped with the USB 3.0 interface, the camera
boasts a remarkable capacity for collecting and transmitting data quickly. Moreover, the
megapixel capability is as high as 20, and the frame rate is 18 per second. Mounting on the
mirror control system bracket, the Gunner’s Primary Sight has both the camera and the
stabilizing head and the lower mirror body fixed on it. Imitating the gunner’s sight system
function in a specific battle circumstance is facilitated via the control device. The camera
consistently gathers images under varying light and position. Figure 3 illustrates partial
data on the accumulation of aiming lines.
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Figure 3. The aiming line image acquisition example.

The images of the aiming line were captured several times using a camera placed
in different positions and lighting angles by a collection device. Thirteen videos were
recorded and collected, which were then segmented into individual frames. Similar frames
from the same video were screened and sampled, and 8629 images were collected to create
a dataset of aiming line images used in this study. The aiming line images were labeled
using Labelme software. The dataset was divided into training, test, and verification sets in
a ratio of 7:2:1, as shown in Table 1.

Table 1. Data division.

Dataset Training Testing Verification Total

Line of sight Images 6040 1725 864 8629

In this paper, we aim to enhance the accuracy of the detection model and prevent
overfitting using various techniques such as random rotation, translation, scaling, and
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cutting [19]. As a result, a dataset will be built and utilized in the experiment reported in
this paper. Part of the effect diagram after the data enhancement is shown in Figure 4.
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3. Improve YOLOv5 Model

In this section, an Introduction to the YOLOv5 network is first presented. Next, based
on the basic YOLOv5 structure, replace the SPPF with the SPPCSPC module, and embed
the CA into the C3 module to form a new C3CA module. In addition, the combination of
BIFPN structure is employed to modify the YOLOv5s structure, to improve the accuracy of
aiming line detection are introduced. In the end, the improved SIoU (δ-SIOU) is used as
the loss function of our model. Figure 5 shows the diagram of the process for applying the
modified YOLOv5s model to aiming line detection of Gunner’s Primary Sight.
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3.1. YOLOv5 Basic Model

The YOLO series is a classic and widely-used algorithm within the one-stage detection
approach. Several members of the YOLO series have been proposed over time, including
YOLOV1 [20], Yolov2 [21], YOLOV3 [22], YOLOV4 [23], YOLOV5 [8], and many others. Its
target detection performance has been continuously improved. In this paper, we adopt
the smaller-sized and more accurate YOLOV5 model as our neural network structure.
As part of the YOLO family, YOLOv5 is a representative end-to-end target detection
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network. The YOLOV5 network structure consists of four main components: input layer,
backbone network, neck network, and head network. Figure 6 presents the structure of the
YOLOV5 network.
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Figure 6. YOLOV5 network structure.

As shown in Figure 6, the detected image is fed into the network’s input end. The
backbone network then extracts target features in the image while the neck network
integrates multi-scaled features. Lastly, based on features extracted by the neck network,
the head network generates the feature vector utilized in generating the boundary box and
predicting the categories in the image.

3.2. Improved Spatial Pyramid Pooling—SPPCSPC

Since its launch in 2021, YOLOv5 has undergone updates, specifically in version
YOLOv5_6.0, where the original SPP module was replaced with the SPP structure, as
illustrated in Figure 7, thus increasing the rate under the same conditions. To enhance
the model’s detection performance, this study adopts a new spatial pyramid pooling
module, specifically the SPPCSPC structure. This structure employs three different sizes of
pooling cores for better detection. This structure employs three different sizes of pooling
cores. To further integrate the detection target characteristics, the study introduced a novel
pooling method based on a nuclear structure and parallel convolution nuclear structure
for better detection. Figure 7 presents the SPPCSPC structure. The literature [24] reports
the superiority of the SPPCSPC structure over SPP and SPPF in terms of improving the
model’s ability to fuse multi-scale targets. Figure 7 illustrates the SPPCSPC structure.
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The actual application of the Space Pyramid Pool Compressible Split-Attention Convo-
lution (SPPCSPC) module exhibits better performance than SPP and SPPF structures. The
SPPCSPC structure improved the model’s ability to fuse targets across multiple scales. This
study involved the generation of a group of 32,512,256,256 random numbers, which were
iteratively processed through the three structures for a total of 50 experimental rounds.
The comparative results of the experimental operation speed, based on the requirements
of the three structures, are presented in Table 2. The speed comparison table shows that
the processing speed of random numbers using the SPPCSPC is faster than the processing
speed of the other two structures.

Table 2. The comparative results of the space pyramid pool operation operation speed.

Name Times/ms Parameters

SPP 146.1487 7,225,885
SPPF 135.0896 (+11.0591) 7,235,389

SPPCSPC 120.2242 (+25.9245) 13,663,549

3.3. Attention Mechanism
3.3.1. Coordinate Attention Mechanism Structure

The attention mechanism has been a significant development in the image and nat-
ural language processing and has demonstrated its efficacy in enhancing model perfor-
mance [25]. The parameters of deep learning models, which increase to improve their
expressiveness during neural network learning, often result in information overload. By
focusing on the most relevant information amidst the available information, the attention
mechanism enables models to reduce attention on extraneous information, thereby improv-
ing task efficiency and accuracy [26]. It can reduce the attention of irrelevant information
to improve the efficiency and accuracy of task processing of the model.

This paper aims to detect the aiming line error in the image stabilization of a specific
tank Gunner’s Primary Sight control system under steady-image conditions. To improve
the detection capacity of the model for the aiming line, this paper introduces the coordinate
attention mechanism (CA). By enhancing the model’s attention to the location information
of the aiming line, this study improves its accuracy in recognizing the aiming line. Figure 8
shows the structure of the CA attention module.
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The CA attention mechanism incorporates information about the target location into
the channel [14]. The CA attention mechanism replaces the original two-dimensional global
pooling with two one-dimensional pools for feature coding. The CA can aggregate along
two directions, capture remote dependencies in one, and retain precise location information
in the other. Finally, the generated feature maps are encoded to obtain directional and
locational information. Although the global pooling method is commonly used to encode
global spatial information, it compresses this information and makes retaining location
details difficult. To better capture accurate location information, the CA transformed global
pooling into a one-dimensional feature encoding operation.
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First, select two pooling cores with dimensions (H, 1) and (1, W), respectively, which
will be applied along the horizontal and vertical directions of each channel. The expression
for the output of a specific channel with height h can be represented as follows:

zh
c =

1
W ∑

0≤i≤W
xc(h, i) (1)

In the same way, the output of a c-channel with a width of w can be represented as:

zw
c =

1
H ∑

0≤j≤W
xc(j, w) (2)

where xc is the eigentensors.
Through the above two kinds of transformation, feature aggregation is carried out

independently for the two spatial directions, generating a pair of directional perception
feature maps. This method allows the channel attention to capture long-range dependencies
in one direction while preserving accurate location information in the other direction. This
improves the model’s positional accuracy.

3.3.2. Extended C3 Module

The C3 module is a prevalent component of the YOLOV5 model, which forms the
backbone and neck networks. It is a network model that incorporates the CSPNet network
structure design concept into the fundamental residual model. Structurally, it enhances the
CNN learning capability, minimizes internal loss, and decreases calculation bottlenecks.
By incorporating the C3 module, it can cut down on the computational costs of network
models while also ensuring accuracy, leading to more optimal industrial use. The specifics
of the C3 module’s structure are shown in Figure 9.
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The C3 module uses two parallel convolution operations to reduce the size of the
feature maps by half. One of the branches links to the Bottleneck module after the Conv
layer, while the feature diagram of the other branch connects through the Concat operation.
The concatenated feature maps undergo C3 module processing and output the final feature
map after the convolutional layer.

In this paper, we have implemented the Channel Attention (CA) mechanism within the
C3 module. We have connected the CA module to the C3 module that lacks the Bottleneck’s
support. The input to the CA attention module is given through a convolutional layer.
The two parallel branches are then operated and connected through the Concat layer. The
remaining part of the C3 module is kept unchanged. As shown in Figure 10, this integration
has led to the creation of the C3CA module.



Sensors 2023, 23, 5039 9 of 21Sensors 2023, 23, x FOR PEER REVIEW 9 of 21 
 

 

ConcatInput Output

Conv
k1,s1

Conv
k1,s1

Conv
k1,s1

Bottleneck

CA Module
 

Figure 10. The structure of the C3CA module. 

3.4. Improved Neck Network 
Unlike the top-down characteristic fusion network, YOLOV3, which is depicted in 

Figure 11a, YOLOV5 introduced the bo om-up characteristic pyramid structure based on 
the original FPN feature fusion network. This structure, called FPN + PAN, is depicted in 
Figure 11b. The use of this structure enhances both semantic and location information, 
leading to improved detection accuracy of the model’s object targets [25]. However, FPN 
+ PAN only merges features of the same size during feature merging, resulting in 
inadequate fusion of the characteristics for different scales of the model. To address this, 
we propose the bi-directional Feature Pyramid Network structure (BIFPN), which is 
depicted in Figure 11c. BIFPN more fully fuses different scale features, further improving 
the model’s ability to detect objects. 

Ｐ７

Ｐ６

Ｐ５

Ｐ４

Ｐ３

（ａ）　ＦＰＮ

Ｐ７

Ｐ６

Ｐ５

Ｐ４

Ｐ３

（ｂ）　ＰＡＮｅｔ

Ｐ７

Ｐ３

（ｃ）　ＢｉＦＰＮ

Ｐ６

Ｐ５

Ｐ４

 
Figure 11. The schematic diagram of the feature fusion network. 

The BiFPN incorporates cross-scale connections and weighted characteristic fusion 
to reduce the scales and increase efficiency. First, to simplify the structure, it removes 
nodes that contribute insignificantly to the feature network. These are nodes that have a 
solitary input and are not merged with other inputs. 
1. Cross-scale connection: Initially, the structure is simplified by removing nodes that 

do not contribute significantly to the feature network. This involves having only one 
node that does not fuse with any other input edges. Further, to a ain a higher level 
of feature fusion, each bidirectional path is considered a feature network for repeated 
superposition; 

2. Weighted Feature Fusion: Conventional methods may result in the loss of effective 
information due to the addition of features after unifying scales of varying features. 
To address this, we have adopted a Fast Normalized Fusion (FNF) feature based on 
the softmax function. Formula (3) shows that the FNF feature effectively retains more 
information during the characteristic fusion process while also accelerating the train-
ing speed; 

Figure 10. The structure of the C3CA module.

3.4. Improved Neck Network

Unlike the top-down characteristic fusion network, YOLOV3, which is depicted in
Figure 11a, YOLOV5 introduced the bottom-up characteristic pyramid structure based on
the original FPN feature fusion network. This structure, called FPN + PAN, is depicted
in Figure 11b. The use of this structure enhances both semantic and location informa-
tion, leading to improved detection accuracy of the model’s object targets [25]. However,
FPN + PAN only merges features of the same size during feature merging, resulting in
inadequate fusion of the characteristics for different scales of the model. To address this, we
propose the bi-directional Feature Pyramid Network structure (BIFPN), which is depicted
in Figure 11c. BIFPN more fully fuses different scale features, further improving the model’s
ability to detect objects.
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The BiFPN incorporates cross-scale connections and weighted characteristic fusion to
reduce the scales and increase efficiency. First, to simplify the structure, it removes nodes
that contribute insignificantly to the feature network. These are nodes that have a solitary
input and are not merged with other inputs.

1. Cross-scale connection: Initially, the structure is simplified by removing nodes that
do not contribute significantly to the feature network. This involves having only
one node that does not fuse with any other input edges. Further, to attain a higher
level of feature fusion, each bidirectional path is considered a feature network for
repeated superposition;

2. Weighted Feature Fusion: Conventional methods may result in the loss of effective
information due to the addition of features after unifying scales of varying features.
To address this, we have adopted a Fast Normalized Fusion (FNF) feature based
on the softmax function. Formula (3) shows that the FNF feature effectively retains
more information during the characteristic fusion process while also accelerating the
training speed;
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O = ∑i
wi

ε + ∑j wj
·Ii (3)

where O is the output. I is input. wi is a learning weight. ε is learning rate, which is usually
0.0001 to avoid numerical instabilities.

The BiFPN was developed by integrating bidirectional cross-scale connections and
fast normalized fusion. To illustrate this point, consider layer P3 in Figure 12. The fusion
characteristics are calculated using the following formula:

Ptd
3 = Conv

{
w1 × P3 + w2 × Resize(P4

in)

w1 + w2 + ε

}
(4)

Pout
3 = Conv

{
w3 × P3 + w4 × P3 + w5 × Resize(P2

out)

w3 + w4 + w5 + ε

}
(5)
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The convolution operation is denoted by Conv, while the operations for upsampling
or downsampling are represented by Resize. Figure 12 illustrates the remaining parameters
and operations.

This paper introduces the above-mentioned structure into YOLOv5 to improve its
ability to fuse multi-scale features. The C3CA module, which incorporates the CA attention
mechanism, was created by embedding it into the C3 module. Only the C3 modules of
the original neck network were replaced to achieve accurate and efficient model detection.
This decision was made based on the following reasons:

3. If all C3 modules in the YOLOv5 network are substituted with C3CA modules, it will
introduce a substantial number of training parameters. This would lead to increased
training time and decreased detection speed due to the complex network structure;

4. Our findings suggest that relying solely on the C3CA module results in a suboptimal
detection accuracy for network structures that lack the C3 module.

The improved network structure in YOLOv5 is shown in Figure 13.
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3.5. Improved Loss Function—δ-SIOU

At first, the majority of target detection algorithms use Intersection over Union (IoU)
to gauge the precision of identifying the relevant objects during training. The absence
of distance measurement between the real box and the predicted box when using IoU
as a loss function results in certain issues. Firstly, non-intersecting boxes fail to capture
the magnitude of the span and percentage of overlap, which leads to a loss of zero, no
gradient return, and the inability to train the model. In addition, it is impossible to
differentiate between various alignment approaches for the two objects. Specifically, when
two overlapping objects have similar differences in varying angles, their corresponding
IoU values will be identical.

In view of the above problems, continuous improvements have been applied to target
detection, mainly GIOU [27], DIOU [28], CIOU [24], EIOU [29], and SIOU [30]. Due to given
space constraints, a detailed explanation of each will be omitted. To determine the optimal
loss function, we utilized the image-stabilization dataset for Gunner’s Primary Sight. Using
the YOLOv5 network model, we conducted a training experiment with 200 rounds of
comparison, resulting in the regression loss curve represented in Figure 14.
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As can be seen from Figure 15, the SIOU outperformed other loss functions in terms
of both convergence speed and final loss size on the dataset used in this study. Therefore,
this research adopts the SIOU as the loss function and enhances it.
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The SIOU, as shown in Figure 15, redefines the correlation-loss function to accelerate
the convergence rate by introducing the vector angle between the real and predicted boxes.
The SIOU includes the following four parts: determining the intersection, computing the
union, calculating the vectors’ angle, and using the angle in the loss function.

5. The angle loss Λ:

Λ = 1− 2 ∗ sin2(arcsin(
ch1
σ

)− π

4
)) (6)

where the ch1 is the height difference between the center point of the real box A and
the predicted box B. The σ is the distance between the center point of the real box A
and the prediction box B.

6. The distance loss ∆: {
∆ = 2− e−γx − e−γy

x = ( xB−xA
cw2

)
2
, y = ( yB−yA

ch2
)

2
, γ = 2−Λ

(7)

where cw2, ch2 respectively means the width and height of the minimum external
rectangle of the real box A and the predicted box B. (xA, yA), (xB, yB) respectively
means the center coordinates of the real box A and the predicted box B.

7. The shape loss Ω: {
Ω = (1− ew)θ + (1− eh)

θ

w = |wA−wB |
max(wA ,wB)

, h = |hA−hB |
max(hA ,hB)

(8)

where (wA, hA), (wB, hB) are the width and height of the real box A and the predicted
box B. The θ usually within [2,6].

8. The final loss:

LSIoU = 1− IoU +
∆ + Ω

2
(9)

However, the SIoU calculates the distance and shape loss with the same weight,
leading to equal influence on various constraints during training. When the distance loss is
smaller, the shape loss becomes more significant. To address this issue, a dynamic weight
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δ is introduced in this study to modify the impact of different constraints on individual
boxes. Specifically, the weight δ is determined by the inverse square root of the area of the
predicted box. The specifics are as follows:

LSIoU = 1− IoU + δ ∗ ∆ + (1− δ) ∗Ω (10)

According to the above analysis, the study found a negative correlation between
IoU and distance loss but a positive correlation between IoU and shape loss. Given that
IoU values range between 0 and 1 [11], this paper employs a dynamic regulating factor,
represented as δ = e(−nIoU) (where n is a constant), to modify the impact of different
constraints. Thus, the previous datasets were trained under similar conditions to this
study, and the outcomes are displayed in Figure 16. The enhanced SIoU shows superior
convergence performance and fewer loss errors.
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4. Experiment Analysis
4.1. Experimental Configuration and Parameter Settings

In this paper, the Pytorch 1.10 framework is adopted, and Python3.6 is used for
experimental verification under the Windows 11 operating system. Other configurations
are shown in Table 3.

Table 3. Experiment configuration table.

Name Model

CPU AMD Ryzen 7 5800H, 3.20 GHz
GPU NVIDIA GeForce RTX 3070 (8G)

The pictures used in the model training process are in 2740 × 1824 size JPG format.
The learning rate is set to 0.001. The batch size is set to 16. The IoU threshold is set to 0.8.
The number of iterations is set to 200 Epochs.
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4.2. Evaluation Indication

To evaluate the accuracy and effectiveness of the model, the performance is measured
using the mean average precision (mAP) [31]. The calculation of the model’s mAP involves
computing the recall (R) [32], precision (P) [33], and the average accuracy for a particular
class (AP). The calculation formula for precision and recall is shown below.{

P = TP
TP+FP

R = TP
TP+FN

(11)

where the TP represents the count of positive samples that are correctly identified, whereas
the FP is the count of negative samples that are wrongly identified as positive; conversely,
the FN represents the count of positive samples that are wrongly identified as negative.
This terminology is commonly used in classification models in statistical analyses.

The AP represents the area under the Precision-Recall curve with Precision (P) as the
vertical axis and Recall (R) as the horizontal axis [31]. The mAP, on the other hand, refers to
the average Precision values for a given category. The formulas used for their calculation
are as follows:

AP =
∫ 1

0
P(R)dR (12)

mAP =
1
n

n

∑
i=1

APi (13)

4.3. Analysis of Experimental Results

Regarding the improvements SIoU adopted in this paper, the coefficients were selected
for training using the above-mentioned dataset, and the specific loss curves under different
coefficients are shown in Figure 17. From the comparison of the loss curve graph, it can be
seen that when the coefficient is greater than 5, the initial value of the loss curve is lower,
and the final loss is also smaller, indicating that the convergence of regression loss is better
when the coefficient is greater than 5 compared to other coefficients. When the coefficient is
6 and 7, the overlap degree of the loss curves is high, and the difference in the final loss is
also small. To further determine the coefficient in the selection, the average accuracy was
calculated when the coefficient was 6 and 7, as shown in Table 4. When the coefficient was
6, the accuracy was 94.8%, while when the coefficient was 7, it decreased by 0.2 percentage
points, indicating that there was no significant difference in the final loss error of the target
box when the coefficient was greater than 6, but it was lower than when the coefficient was
6. Therefore, when training the improved YOLOv5 aiming line detection model in this
paper, the adjustment factor δ used is δ-SIOU adopted δ = e(−6IoU).

According to the experimental results, this paper is selected δ = e(−6∗IoU) as a dynamic
adjustment factor for δ-SIOU. To verify the performance of the model proposed in this
study in detecting the aiming line of Gunner’s Primary Sight, we conducted training using
the dataset established in this paper. Using the dataset created in this paper, we conducted
training for the detection of the aiming line of the gunner’s primary sight. The training
results are shown in Figure 18. From Figure 18a, the loss convergence rate is found to
be greater, and the final loss is lesser in the training process when compared to YOLOv5.
Furthermore, the precision, recall, and mAP of the model proposed in this study are higher
than those of YOLOv5. This proves that the model proposed in this study is more accurate
than YOLOv5. The analysis of the training results reveals that the method proposed in this
study is more efficient and accurate than YOLOv5 in detecting the aiming line of Gunner’s
Primary Sight.
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4.3.1. Ablation Experiment

The paper aimed to determine the influence of each improved module in the improved
YOLOv5 on the performance of aiming line detection. Moreover, to provide stronger
evidence of the proposed method’s advantages, an ablation experiment was conducted.
In this experiment, 15 groups of experiments were randomly combined by pairing each
improvement module and performed on the same aiming line dataset. The results of the
ablation experiments are summarized in Table 5.

Table 5. Ablation experiment.

δ − SIoU BiFPN C3CA SPPCSPC mAP/%
√

94.8√
93.5√
94.3√
94.4√ √
94.7√ √
94.6√ √
94.8√ √
95.1√ √
94.6√ √
94.3√ √ √
95.7√ √ √
94.9√ √ √
94.8√ √ √
95.3√ √ √ √
96.7

According to the ablation experiment, the single use of the δ-SIOU can improve the
detection performance to some extent, while the other single module has no significant
improvement in the detection performance of the improved basic model. Moreover, using
the BIFPN structure alone affects the detection performance of the model. However, the
combination of the C3CA module and BiFPN structure can significantly improve the detec-
tion performance of the aiming line. Through analysis, the introduction of BiFPN structure,
while improving the model’s characteristics fusion capabilities, makes the structure of the
model more complicated and reduces the learning ability of the model. After the C3CA
module is embedded, the C3CA module can enhance the feature information extraction
ability of the model for the target. Therefore, the combination of the BiFPN structure and
C3CA module significantly improves the model detection performance. Compared with
other improved modules, δ-SIOU can improve the detection performance when used sin-
gularly or in combination, indicating that the model detection performance improvement
proposed in this paper offers obvious advantages. For aiming line detection, the improved
YOLOv5 model significantly improved the detection performance. It shows that the model
designed in this paper gives full play to the advantages of each improved module and
improves the overall detection ability of the model.

The results of the ablation experiment show that the δ-SIOU module can improve
detection performance to a certain extent when used alone; however, there is no significant
improvement with other individual modules in the improved basic model. The BIFPN
structure alone affects the model’s detection performance. In contrast, the combination of
the C3CA module and the BiFPN structure greatly enhances the detection performance of
the aiming line. Analysis indicates that the introduction of the BiFPN structure improves
the model’s fusion capabilities but increases its model complexity, thereby decreasing
the model’s learning ability. Once embedded, the C3CA module improves the model’s
ability to extract feature information about the target. When used individually or with
other modules, δ-SIOU can improve detection performance, highlighting the benefits of the
proposed detection performance improvement. The improved YOLOv5 model significantly
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enhances detection performance for the aiming line. The designed model maximizes the
benefits of the improved modules, ultimately boosting overall detection abilities.

4.3.2. Comparative Experiment

To evaluate the effectiveness of the aiming line detection model for the Gunner’s
Primary Sight control system, we assessed classical models such as YOLOv3, YOLOv4,
original YOLOv5, and YOLOv6 target detection models of the YOLO series. Additionally,
we conducted a comparative experiment using the two-stage detection algorithm Faster
R-CNN, as well as the one-stage detection algorithms SDD [34] and RetinaNet [35]. We
conducted a comprehensive evaluation and analysis based on training time, reasoning
time, and mean average precision (mAP). Table 5 shows a comparison between the training
and inference time for different detection models on aiming line detection. The comparison
results of mAP for different detection models on aiming line detection are illustrated
in Figure 19.
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Table 6 presents the training and inference speeds of various object detection models.
The results indicate that while Faster R-CNN has a swift training speed, its inference speed
is comparatively slower than the other models due to its network structure. YOLOv3
through YOLOv6 exhibit varying improvements in both training and inference speeds.
However, the improvement from YOLOv6 to YOLOv5 is not significant. This study
introduces an upgraded YOLOv5 model, which not only simplifies the original model
but also ensures faster training and inference speeds, thereby making it better suited for
industrial applications requiring real-time performance.

Table 6. Training time and reasoning time of different detection models.

Model Train Time (ms) Inference Time (ms)

YOLOv3 167 24.7
YOLOv4 147 23.5
YOLOv5 203 22.6
YOLOv6 183 22.7

SSD 138 30.4
Faster R-CNN 152 31.2

Retinanet 186 24.1
Our 159 23.9

The present study proposes an improved YOLOv5 model that outperforms other
models in terms of mAP, as shown in Figure 19. Specifically, compared to the original
YOLOv5 model, the proposed model achieves a 2.1 percentage point increase, reaching an
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mAP of 96.7%. Additionally, the improved YOLOv5 model shows higher accuracy than
Faster R-CNN, a two-stage detection algorithm. These findings suggest that the proposed
model has superior detection performance, especially for aiming line detection in the
gunner’s primary sight control system.

4.3.3. The Detection Results of Aiming Line

This paper aims to verify the effectiveness and accuracy of the improved YOLOv5
gunner’s sight line detection method. The aiming line images in Gunner’s Primary Sight set
were chosen for detection under varying conditions. Figure 20 shows the image detection
results. The results revealed a precise and accurate detection of the aiming line, verifying
Gunner’s Primary Sight detection model based on the YOLOv5 algorithm studied in
this paper.
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Figure 20. YOLOv5 gun leader’s sight line detection results.

This paper aimed to further verify the effectiveness and accuracy of the proposed
improved YOLOv5 model in measuring Gunner’s Primary Sight’s aiming line deviation.
The study utilized the proposed method to calculate the image-stabilization deviation. The
target image was detected using the improved YOLOv5 model, and then the position of the
target’s border in the image was identified. The image stabilization deviation was calculated
by determining the difference in position between the target borders in two frames. In order
to simulate realistic tank driving conditions under a steady image state, the paper employed
a mirror control test platform for experimental verification. Figures 21 and 22 illustrate the
variation curve of the image stabilization deviation.
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As can be observed from the position change curve, the position change curve demon-
strates a maximum error of approximately 5 pixels when using the method proposed in this
paper, indicating high detection accuracy that enhances the precision of Gunner’s Primary
Sight image stabilization.

5. Conclusions

In this paper, an image-stabilization error detection method for Gunner’s Primary Sight
is presented in combination with improved. Improvements were implemented to enhance
the YOLOv5 architecture. Firstly, the SPPF module was substituted by the SPPCSPC
module, then the C3 module was augmented by embedding the CA attention resulting
in the C3CA module, and the Neck network was optimized using the BIFPN structure.
Further, a superior loss function, referred to as δ-SIOU, was introduced. Experimental
results validate that the proposed algorithm not only delivers faster performance but also
achieves higher detection accuracy in comparison to competing models. Furthermore,
based on the calculated stabilization deviation, the measurement error of the algorithm is
confirmed to be within five pixels, thus demonstrating its efficacy in detecting stabilizer
deviation through targeting. It can provide a certain reference for the measurement of
the aiming line of Gunner’s Primary Sight in the future, and it can also provide a certain
reference for similar target detection.

In the future, we will further optimize the model structure to improve detection
speed and reduce measurement errors in stabilization deviation. In addition, we will
research model lightweight technology that allows detection models to be more easily
deployed on mobile devices, such as portable detectors so that it can be fully used in the
engineering field.

Author Contributions: Conceptualization, B.X. and Z.G.; methodology, Y.L.; software, B.X.; valida-
tion, Y.L. and X.S.; formal analysis, B.X. and Z.G.; investigation, B.X.; resources, Y.L. and X.S.; data
curation, B.X. and Z.G.; writing—original draft preparation, X.S.; writing—review and editing, B.X.,
Z.G. and Y.L.; supervision, X.S.; project administration, Y.L.; funding acquisition, Y.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the LiaoNing Revitalization Talents Program XLYC1903015.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 5039 20 of 21

References
1. Zhou, G.; Li, J. Method of Image Measuring on the Deviation of Lower Reflection Image-Stabilization. J. Armored Force 2007, 21, 5.
2. Chen, Y.; Duan, H.; Wang, W.; Wang, W.Y.; Fu, P.; Li, Q. Optimal contral of upper anti-stabilization aiming system based on

acceleration feedbak. J. Appl. Opt. 2021, 42, 9.
3. Roberts, L.G. Machine Perceptin of Three-Dimensional Solids; Massachusetts Institute of Technology: Cambridge, MA, USA, 1965.
4. Lienhart, R.; Maydt, J. An extended set of Haar-like features for rapid object detection. In Proceedings of the International

Conference on Image Processing, Rochester, NY, USA, 22–25 September 2002.
5. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Computer Society

Conference on Computer Vision & Pattern Recognition, San Diego, CA, USA, 20–26 June 2005.
6. Shao, Y.; Zhang, D.; Chu, H.; Zhang, X.; Rao, Y. A Review of YOLO Object Detection Based on Deep Learning. J. Electron. Inf.

Technol. 2022, 44, 12.
7. Zhou, T.; Zhu, Q.; Hang, M.; Cai, G.; Xu, X. Defect Detection of Chip Based om Improved YOLOv3. Laser Optoelectron. Prog. 2021,

58, 8.
8. Kulkarni, O. Crop disease detection using deep learning. In Proceedings of the 2018 Fourth International Conference on

Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018.
9. Di, H.A.; Ke, X.A.; Peng, Z.B. Defect detection of hot rolled steels with a new object detection framework called classification

priority network. Comput. Ind. Eng. 2019, 128, 290–297.
10. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object

Detection on Drone-captured Scenarios. arXiv 2021, arXiv:2108.11539.
11. Zhang, C.; Hu, X.; Niu, H. Vehicle object detection based on improved YOLOv5 method. J. Sichuan Univ. (Nat. Sci. Ed.)

2022, 59, 73–81.
12. Zhang, Y.F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and Efficient IOU Loss for Accurate Bounding Box Regression.

arXiv 2021, arXiv:2101.08158. [CrossRef]
13. Singh, P.; Bose, S.S. A quantum-clustering optimization method for COVID-19 CT scan image segmentation. Expert Syst. Appl.

2021, 185, 115637. [CrossRef]
14. Zhao, R.; Wang, Z.; Guo, W.; Zhang, C. Multi-scene image enhancement based on multi-channel illumination estimation. Expert

Syst. Appl. 2023, 226, 120271. [CrossRef]
15. Wu, W.; Liu, H.; Li, L.; Long, Y.; Wang, X.; Wang, Z.; Li, J.; Chang, Y. Application of local fully Convolutional Neural Network

combined with YOLO v5 algorithm in small target detection of remote sensing image. PLoS ONE 2021, 16, e0259283. [CrossRef]
16. Qiu, T.; Wang, L.; Wang, B.; Bai, Y. Research on Objiect Detection YOLOv5. Comput. Eng. Appl. 2022, 58, 11.
17. Hiyadi, H.; Ababsa, F.; Montagne, C.; Bouyakhf, E.H.; Regragui, F. A depth-based approach for 3D dynamic gesture recog-

nition. In Proceedings of the International Conference on Informatics in Control, Automation and Robotics, Colmar, France,
21–23 July 2015.

18. Xu, W. Application of Deep Learning in Fruit and Vegetable Recognition. Softw. Eng. Appl. 2021, 10, 329–336.
19. Ghosh, T.; Abedin, M.; Reza, S.; Yousuf, M.A. Bangla Handwritten Character Recognition using MobileNet v1 Architecture. Bull.

Electr. Eng. Inform. 2020, 9, 2547–2554. [CrossRef]
20. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
21. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
22. Hu, R.; Chen, B.; Tang, T. Vehicle Detection in Aerial Images Based on YOLOv3. In Proceedings of the International Conference

on Artificial Intelligence in China, Tianjin, China, 26–28 June 2020.
23. Li, H.; Li, C.; Li, G.; Chen, L. A real-time table grape detection method based on improved YOLOv4-tiny network in complex

background. Biosyst. Eng. 2021, 212, 347–359. [CrossRef]
24. Wang, C.Y.; Bochkovskiy, A.; Liao, H. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.

arXiv 2022, arXiv:2207.02696.
25. Gao, G. Survey on Attention Mechanisms in Deep Learning Recommendation Models. Comput. Eng. Appl. 2022. Avail-

able online: https://kgo.ckcest.cn/kgo/detail/1002/dw_journal_article_20210417/3c1500003e030016f1c008da74554a67.html
(accessed on 17 May 2023).

26. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

27. Rezatofighi, H.; Tsoi, N.; Gwak, J.Y.; Sadeghian, A.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss
for Bounding Box Regression. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 15–20 June 2019.

28. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression.
arXiv 2019, arXiv:1911.08287. [CrossRef]

29. Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021.

30. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019,
42, 2011–2023. [CrossRef]

https://doi.org/10.1016/j.neucom.2022.07.042
https://doi.org/10.1016/j.eswa.2021.115637
https://doi.org/10.1016/j.eswa.2023.120271
https://doi.org/10.1371/journal.pone.0259283
https://doi.org/10.11591/eei.v9i6.2234
https://doi.org/10.1016/j.biosystemseng.2021.11.011
https://kgo.ckcest.cn/kgo/detail/1002/dw_journal_article_20210417/3c1500003e030016f1c008da74554a67.html
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1109/TPAMI.2019.2913372


Sensors 2023, 23, 5039 21 of 21

31. Boumaraf, S.; Liu, X.; Zheng, Z.; Ma, X.; Ferkous, C. A new transfer learning based approach to magnification dependent
and independent classification of breast cancer in histopathological images. Biomed. Signal Process. Control. 2021, 63, 102192.
[CrossRef]

32. Bochkovskiy, A.; Wang, C.Y.; Liao, H. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934.
33. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. arXiv 2019, arXiv:1911.09070.
34. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-style ConvNets Great Again. arXiv 2021,

arXiv:2101.03697.
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