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Abstract: Sleep is essential to physical and mental health. However, the traditional approach to sleep
analysis—polysomnography (PSG)—is intrusive and expensive. Therefore, there is great interest
in the development of non-contact, non-invasive, and non-intrusive sleep monitoring systems and
technologies that can reliably and accurately measure cardiorespiratory parameters with minimal
impact on the patient. This has led to the development of other relevant approaches, which are
characterised, for example, by the fact that they allow greater freedom of movement and do not
require direct contact with the body, i.e., they are non-contact. This systematic review discusses the
relevant methods and technologies for non-contact monitoring of cardiorespiratory activity during
sleep. Taking into account the current state of the art in non-intrusive technologies, we can identify
the methods of non-intrusive monitoring of cardiac and respiratory activity, the technologies and
types of sensors used, and the possible physiological parameters available for analysis. To do this, we
conducted a literature review and summarised current research on the use of non-contact technologies
for non-intrusive monitoring of cardiac and respiratory activity. The inclusion and exclusion criteria
for the selection of publications were established prior to the start of the search. Publications were
assessed using one main question and several specific questions. We obtained 3774 unique articles
from four literature databases (Web of Science, IEEE Xplore, PubMed, and Scopus) and checked
them for relevance, resulting in 54 articles that were analysed in a structured way using terminology.
The result was 15 different types of sensors and devices (e.g., radar, temperature sensors, motion
sensors, cameras) that can be installed in hospital wards and departments or in the environment.
The ability to detect heart rate, respiratory rate, and sleep disorders such as apnoea was among
the characteristics examined to investigate the overall effectiveness of the systems and technologies
considered for cardiorespiratory monitoring. In addition, the advantages and disadvantages of the
considered systems and technologies were identified by answering the identified research questions.
The results obtained allow us to determine the current trends and the vector of development of
medical technologies in sleep medicine for future researchers and research.

Keywords: contactless technologies; sensors; cardiac activity; respiratory activity; sleep measurements;
health monitoring systems; sleep monitoring systems

1. Introduction

Healthcare systems around the world are facing significant challenges such as a rapidly
ageing population, increasing numbers of people with chronic and infectious diseases,
rising costs, and inefficient healthcare systems. Healthcare providers are looking for
new non-invasive solutions that can improve the healthcare experience for patients while
maintaining the cost of the services provided [1]. At the same time, continuous monitoring
of a patient’s vital signs is essential for many chronic diseases. This can be performed both at
home and in hospital. However, with the use of existing accepted contact-based monitoring
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systems and technologies, the intrusiveness of such monitoring into a patient’s life often
becomes a barrier to living a normal life. The development and practical application of
a non-contact monitoring system can help to overcome the above problem. This can be
achieved by installing a system in a patient’s bed in a hospital, or even in an ordinary bed
at home, allowing vital signs to be monitored anywhere [2,3]. Meanwhile, possible changes
in a patient’s health could be detected by monitoring heart and respiratory rates, which
would allow these vital signals to be defined as essential. Therefore, the application of
non-contact technologies for monitoring a patient’s cardiorespiratory activity can play a
significant role in improving the quality of life of the population.

In addition to the above, sleep is crucial for a healthy life and wellbeing. Improving
the quality of sleep is essential, and sleep disorders need to be identified and treated
promptly because they can lead to other health problems [4]. For example, poor sleep
quality or sleep disorders lead to daytime fatigue, which impairs the mental and physical
quality of daytime activities and increases the risk of accidents [5]. Monitoring sleep
includes monitoring of vital signs. The latter is particularly important in view of the
increasing risk of cardiovascular disease. Therefore, the need and importance of monitoring
vital signs—including sleep quality, cardiac activity, and respiratory activity—becomes
extremely relevant [6].

The gold standard for diagnosing and monitoring human vital signs—particularly
during sleep—is the polysomnography (PSG) monitoring system, which records the elec-
trical potentials of the brain and heart, eye movements, muscle activity, respiratory effort,
airflow, oxygen saturation, and leg movements during the night [7]. Despite the quality
and reliability of the PSG system, it is not well suited to long-term continuous monitoring,
due to limited mobility, and it can cause irritation, anxiety, and discomfort to patients
during monitoring [8]. For this reason, there has been increased interest in recent years
in the development of commercial and research-oriented non-invasive and contactless
sleep measurement devices, which have shown promising results in the detection and
measurement of vital signs and sleep events [9]. These limitations have led to an increased
demand for non-contact sleep monitoring systems.

As described in the literature, the problem with obtaining accurate readings from a non-
contact monitoring device can be related to, for example, background interference, motion
artefacts, and electromagnetic interference. In addition, for continuous performance monitor-
ing in particular, problems are associated with the complexity of the sleep environment, noise
associated with unpredictable body movements, body orientation, changes in sleep posture,
multiple subject suppression, unwanted harmonics, and intermodulation [10]. Furthermore,
there have been numerous reviews, comparative studies [11–13], and the development of
intelligent systems [14] for unobtrusive [15] and non-contact monitoring of physiological vital
signs for sleep monitoring. However, for example, in the work of Savage et al. [12], the study
is presented at an early stage and, despite impressive results, requires an expansion of sub-
jects. Ren et al. [11], when developing a radar-based system, found that the results remained
acceptable at a small distance between the patient and the radar, which could affect aspects
such as the unobtrusiveness of the system. A system based on a microbend fibre-optic sensor
mat [15] is expensive to maintain, despite its high accuracy in determining physiological
parameters. In addition to the above methods, non-invasive registration of cardiac [16] and
respiratory [17] signals is a hot topic of research, which has been made possible, for example,
by ballistocardiography (BCG) [16]. BCG is currently generating a lot of interest because of
the revolution in information technology, including hardware, software and services. We can
embed BCG sensors in the environment without the need for medical personnel to be present.
Consequently, this has a significant impact on existing e-health systems [1]. In [18], a new
approach to sleep stage classification is presented using a low-cost and non-contact fusion of
multimodal sensors that extract sleep-related vital signs from radar signals and sound-based
context awareness techniques. However, as the authors noted, there was instability in the
continuous operation and recording of data from one of the sensors, resulting in the loss
of important information. Another limitation of this system was low performance in some
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modes of operation. There are also approaches based on piezoelectric sensors [19], acoustic
signal analysis [20], the combination of heart rate and motion variability [21], etc. According
to the authors, this last approach [21] requires an extension of the study and of the algorithm
for the determination. Sleep apnoea—a cardiorespiratory monitoring problem—can also be
detected non-invasively, as presented for example in [8]. However, all of these approaches are
still under development, and their applicability is limited.

This paper reviews the current state of contactless and non-intrusive technologies and
approaches for cardiorespiratory monitoring. This includes a review of existing monitoring
methods and techniques, technologies for their implementation, and the types of sensors
used to implement cardiorespiratory monitoring. In addition, this article also discusses
the medical applications that may exist through the use of the technology. Finally, this
review includes a comparison of the effectiveness of contact and non-contact technologies
for monitoring cardiac and respiratory activity during sleep. The results obtained make
it possible to determine the current trends and the vector of development of medical
technologies in the field of monitoring physiological parameters of vital signals in sleep
medicine for future researchers and investigations.

Section 2 details the methodology used in this study, including the inclusion/exclusion
criteria for publications, keywords used to search for articles, and a description of the search
process. Section 3 details the findings, including the answers to the research questions. We
highlight the discussion of the findings in Section 4 and draw conclusions in Section 5.

1.1. Review Questions
1.1.1. Main Review Question (MRQ)

How can cardiac activity and respiration be contactlessly monitored during sleep?

1.1.2. Specific Review Questions (SRQs)

1. Which technologies can be used for contactless measurement of cardiac activity and
respiration during sleep?

2. Which sensors are used for those technologies?
3. Which physiological parameters can be extracted out of those sensors?
4. What are the medical applications of contactless cardiac and respiratory monitoring

during sleep?
5. What are the differences in the quality of the measurements (contactless vs. contact-

based/attached devices)?

The criteria for inclusion and exclusion of papers and database searches are mainly
explained in the Materials and Methods section. In the Results section, we analyse all of the
publications that meet the criteria, focusing on the number of physiological signals used
and the precision in detecting vital signs and physiological parameters corresponding to
cardiorespiratory activity—heart rate (HR) and respiratory rate (RR). At the same time,
we note that the detection of physiological parameters of other vital signals (e.g., blood
pressure or temperature) is also improved. Finally, the Discussion and Conclusions include
a general interpretation of the results and the main information extracted from the analysis.

2. Materials and Methods

This review was conducted in accordance with “The PRISMA 2020 statement”—an
update of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
analyses) guidelines [22].

2.1. Eligibility Criteria

It is important to note that publications were eligible for the study based on their
specific inclusion/exclusion criteria. Thus, the selection criteria relate not only to the type
of publication and the relevance of the topic, but also to the details of the experiment to
validate the monitoring system or technology (e.g., number of subjects and physiologi-
cal parameters measured). Consequently, the number of publications for analysis was
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reduced to a minimum. Below are the inclusion and exclusion options that we defined for
the publications.

The inclusion criteria were as follows:

• Study type: randomised controlled and clinical trials; results of testing the required
systems and technologies at home, in labs, or in nursing houses; research journal
articles and conference publications;

• Population: subjects who participated in trials measuring cardiac or respiratory move-
ments during sleep;

• The document must have been published in a peer-reviewed format;
• The approach and system should have been implemented and tested at least at the

level of a prototype;
• The system should have been developed for human measures (not for animals);
• The system should have been developed to fulfil at least one of the following aspects:

# Measuring cardiac parameters, heart rate, etc.;
# Measuring respiratory rate from the contactless sensor/technology meeting

the requirements mentioned above;
# The system was developed to monitor sleep quality;
# The system was developed to measure or verify a breathing- or cardiac-related disease;
# The system was developed to measure or verify one of the diseases related

to sleep;

• The method of data transmission or processing does not affect the inclusion/exclusion.
• The exclusion criteria were as follows:
• Book chapters, white papers, editorials, and perspectives;
• Papers not written in English;
• The paper was excluded if only the concept had been presented without any validation;
• The paper was excluded if only using wearable devices;
• Studies not related to measuring vital sign parameters or aforementioned (breathing)

movements during sleep;
• Studies with publication dates older than five years when the systematic review was

performed (2017–2022);
• Studies that are not focused on the use of contactless systems/methods/technologies

for measuring the above parameters;
• Studies that included fewer than five subjects in an experiment;
• Published data not available.

2.2. Search Strategy and Information Sources

The search string that we developed reflects three aspects (see the entire string in
Appendix A):

Activity, the target group, and measures comprise the terms on physiological char-
acteristics/parameters for measurement or area where these parameters are required,
such as “breathing rate”, “respiratory rate”, “heart rate”, “vital sign”, “cardiorespiratory”,
“cardiovascular”, and “sleep”.

Technology, sensor, system to detect and measure comprise the terms on the technolo-
gies applied for monitoring of physiological parameters, such as “sensor”, “accelerometer”,
“piezoelectric sensor”, “force sensing sensor”, “fiber optical”, “camera”, “radar”, “infrared
sensors”, etc.

Method of measurement comprises the terms on the features of physiological param-
eters’ monitoring, such as “contactless”, “unobtrusive”, “smart home”, “wireless sensor
network”, “nursing home”, etc.

The searches were carried out from November 2022 to January 2023. The search query
is shown in Appendices A.1–A.4 for all databases (IEEE Xplore, PubMed, Scopus, and Web
of Science). In addition, this search was restricted to the inclusion/exclusion criteria and to
the title and abstract of the paper for all databases.
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A total of 6476 references (before removing duplicates) were collected from the
databases (2298 from Web of Science, 1648 from Pub-Med, 1864 from Scopus, and 665 from
IEEE Xplore). The records were downloaded in text format and, after removing duplicates,
3774 references were qualified for the data evaluation step. After evaluating the publica-
tions, 205 articles were selected by reading their titles and abstracts. Finally, the full text
was read to ensure that the inclusion/exclusion criteria for the assessed articles were met.
The number of studies included in the systematic review was 54. Statistical methods were
used to analyse 44 publications.

2.3. Selection Process and Data Extraction

The studies identified by the search described in the previous section were imported
into Citavi—a free reference management tool. Duplicates were then automatically identi-
fied and eliminated. The next step was to select the remaining publications, first by title
and then by abstract. The titles and abstracts of non-duplicated publications were selected,
and then all publications that were unrelated to the topic were removed.

The final step was the diagonal and full reading procedure of the publications selected
in the previous stage, in order to extract information relevant to our research based on
the inclusion/exclusion criteria. For this purpose, a predefined form was filled in with
the data from the publication (manually, by a researcher). The fields in the form were
as follows: paper name, list of authors, year of publication, information related to the
stated research questions, measured physiological parameters related to cardiorespiratory
activity, number of subjects participating in the studies, and type of device. In addition,
the performance metrics for device evaluation were taken into account when considering
papers—accuracy (including mean average or percentage error), sensitivity, and specificity.
Those publications that consisted of reviews of multiple technologies, algorithms, or devices
for cardiorespiratory activity monitoring were classified independently and reserved for
answering the specific questions listed in the Introduction section.

2.4. Synthesis Methods

Statistical data visualisations were presented to aid in our understanding of the results.
Statistics were performed using the assessment metrics and information on device charac-
teristics for cardiorespiratory monitoring in the reviewed articles. Where possible, statistics
were presented to explain the relevant information collected during the systematic review.

3. Results
3.1. Study Selection

Figure 1 shows the list of publications that met the inclusion/exclusion criteria and
were selected for statistical analysis. The years of publication ranged from 2017 to 2022.
The highest number of selected articles were published in 2022 (33.33% of all publications),
and the lowest number were published in 2018 (3.70% of all publications). The research
material selected for this systematic review was divided into two main groups: One group
was called “Research and commercial systems and technologies” (see Figure 2), which
included publications related to the use of devices (including prototypes) for cardiac and
respiratory activity monitoring. Publications in this group were used for statistical analysis.
The other group, known as “Other(s)”, included publications that provided information
relevant to answering the research questions outlined in the Introduction, but that could
not be included in the statistical analysis due to defined criteria.
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3.2. Study Characteristics and Individual Publications

Table 1 lists all publications in the group “Research and Commercial systems and
technologies for cardiorespiratory monitoring”. This table provides information about the
monitoring devices, such as the physiological parameters that could be measured and the
numbers of subjects that participated in the experiments to evaluate the performance of
the devices.

Table 1. Publications (Research and Commercial devices for cardiorespiratory monitoring) that met
the inclusion/exclusion criteria. HR—heart rate, RR—respiratory rate.

Publication, Year Monitoring Type Measured Physiological
Parameters Number of Subjects Type of Device

[23], 2017 Body movement analysis RR 52 Research

[24], 2017 Chest movement analysis HR 30 Research

[25], 2018 Chest movement analysis HR 22 Research

[26], 2019 Heart sounds analysis HR, RR 30 Research

[27], 2019 Face image analysis HR, RR, temperature (facial) 25 Research

[28], 2019 Chest movement analysis RR 42 Research

[29], 2019 Body movement analysis RR 30 Research

[30], 2019 Chest movement analysis RR 12 Research

[31], 2020 Heart sounds analysis HR, RR 10 Research

[32], 2020 Face image analysis HR 5 Research

[33], 2020 Face image analysis HR, RR 40 Commercial

[34], 2020 Body image analysis RR 39 Commercial

[35], 2020 Body movement analysis RR 5 Research

[36], 2020 Heartbeat movement analysis HR 41 Commercial

[37], 2020 Heart sounds analysis HR, RR 11 Research

[38], 2020 Chest movement analysis RR 16 Research

[39], 2020 Chest movement analysis HR, RR 30 Research

[40], 2020 Body image analysis RR 17 Research

[41], 2020 Body image analysis RR 14 Commercial

[42], 2020 Body and face images analysis HR, RR, temperature (body) 50 Research

[43], 2021 Chest movement analysis HR 40 Commercial

[44], 2021 Heartbeat movement analysis HR 20 Research

[45], 2021 Body image analysis RR 21 Research

[46], 2021 Heartbeat movement analysis HR, RR 11 Research

[47], 2021 Body movement analysis HR 6 Research

[48], 2021 Face image analysis HR 20 Research

[49], 2021 Heart sounds analysis HR 25 Research

[50], 2021 Body movement analysis HR 22 Research

[51], 2021 Heartbeat movement analysis HR, RR 45 Commercial

[52], 2021 Body movement analysis HR, RR 12 Research

[53], 2022 Body image analysis HR, RR 18 Research

[54], 2022 Body and face images analysis RR 30 Research

[55], 2022 Chest movement analysis RR 32 Commercial

[56], 2022 Skin colour image analysis HR 42 Research

[57], 2022 Body movement analysis HR 20 Research

[58], 2022 Chest movement analysis HR 15 Research

[59], 2022 Heartbeat movement analysis HR, RR 6 Research



Sensors 2023, 23, 5038 8 of 27

Table 1. Cont.

Publication, Year Monitoring Type Measured Physiological
Parameters Number of Subjects Type of Device

[60], 2022 Chest movement analysis RR 30 Research

[61], 2022 Postures and chest movement analysis HR, RR 10 Research

[62], 2022 Body movement and images analysis RR 17 Research

[63], 2022 Heartbeat movement analysis HR 24 Research

[64], 2022 Body movement analysis RR 15 Research

[65], 2022 Face image analysis RR 10 Research

[66], 2022 Face image analysis HR, RR, blood pressure 463 Commercial

Table 2 shows all publications in the group “Research and commercial systems and
technologies for cardiorespiratory monitoring”. This table also includes a summary of
each publication.

Table 2. Publications (Other(s)) that met the inclusion/exclusion criteria.

Publication, Year Objective Type of Publication

[67], 2017
Review of the principal achievements of thermal infrared imaging in computational

psychophysiology, focusing on the capability of the technique for providing ubiquitous and
unwired monitoring of psychophysiological activity and affective states

Review article

[68], 2018 Reviewing publications that show the performances of different devices
for the ambulatory diagnosis of sleep apnoea Review article

[8], 2019
A comprehensive review of the current state of non-contact Doppler radar sleep monitoring

technology, providing an outline of current challenges and making recommendations on future
research directions to practically realise and commercialise the technology for everyday usage

Review article

[1], 2019
Review of the sensors used for obtaining BCG signals. Review of the signal processing

methods as applied to the various sensors to analyse the BCG signal and extract physiological
parameters such as heart rate and breathing rate, as well as determining sleep stages

Review article

[69], 2021 A retrospective literature review and summarised the state-of-the-art research on leveraging
sensor technology for unobtrusive in-home health monitoring Review article

[70], 2022 Performance of validation results on the use of Lifelight software to accurately
cardiorespiratory signal measurement Commercial article

[71], 2022 A complete framework for vital sign processing using a 77 GHz FMCW radar Research article

[72], 2022
Development of two complementary heartbeat signal restoration methods to perfectly

recover heartbeat signal variation based on the analysis of the properties of UWB signals
containing heartbeats and respiration

Research article

[73], 2022 A contactless and multiscale cardiac motion detection method is proposed, with no blind
detection of segments during the entire cardiac cycle Research article

3.3. Synthesis Results and Questions of Interest

The central and specific questions raised in the Introduction are answered and ex-
plained in detail in this section.

3.3.1. MRQ: How Can the Cardiac Activity and Respiration Be Contactlessly Monitored
during Sleep?

Based on the data presented in Table 1, five basic techniques can be identified for con-
tactless and unobtrusive monitoring of cardiorespiratory activity. Non-contact monitoring
can be performed by analysis of the following:

• Video images;
• Movements evoked by cardiac contractions (i.e., heartbeat movements);
• Subject movements (e.g., body, shoulders);
• Temperature maps and thermal images;
• Sounds of cardiac activity (e.g., heart sounds).



Sensors 2023, 23, 5038 9 of 27

Some of the methods listed also have several directions without changing the overall
approach to measurement (see Figure 3).
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In the group of publications known as “Other(s)”, five studies deal with this question.
Cardone et al. [67] stated that with thermal infrared imaging of the subject and image
processing technologies, it is possible to extract heart rate, respiratory rate, and undoubtedly
temperature (which is also a vital signal). Mendonça et al. [68] highlighted the use of
respiratory analysis—alone or in combination with other sensors—as the method that gave
the best results in detecting sleep apnoea and respiratory rate. In addition, Mendonça
suggested that a combination of oximetry and sound analysis may be the best choice for
respiratory analysis. Tran et al. [8] stated that with the increasing prevalence of OSA and
its comorbidities—particularly cardiovascular comorbidities—there is a significant market
potential for the realisation of non-contact continuous sleep monitoring technology. In
addition, Tran provided several recommendations for improving research into the use of
radar technology to monitor cardiorespiratory activity. At the same time, Sadek et al. [1]
provided an overview of sensors using BCG technology (such as polyvinylidene fluoride
film-based sensors, electromechanical films, strain gauges, hydraulic sensors, microbend
fibre-optic sensors, fibre Bragg grating sensors, etc.) as a basis for contactless monitoring of
HR and RR. Wang et al. [69] conducted a retrospective literature review and summarised
the state of the art in using sensor technology for unobtrusive in-home health monitoring,
including cardiac and respiratory activity. They divided sensors into 25 types that can be
installed in rooms, electrical appliances, equipment, etc. These included motion sensors,
contact sensors, pressure sensors, and current sensors.

Equally interesting is the statistical analysis of the data obtained. According to the
information in Figure 4, the analysis of movements (in particular of the body, the shoulders,
or the position of the subject) was observed in 38.46% of the studies. As this method is
carried out using radar systems or radar technology, the statistical data confirm the trend in
recent years towards the widespread use of this method for recording cardiorespiratory ac-
tivity [23,25,28,30,35,38,39,43,47,50,52,55,57,60–62,64,70–73]. At the same time, the method
of monitoring based on the analysis of heart sounds (9.62% of the total) also includes the
use of radar in the hardware part of the system [26,31,37,49,58]. However, similar use of
devices does not imply similar methods of obtaining the required information in these
works, i.e., physiological parameters of cardiorespiratory activity.
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As for the compliance with the trends of recent years, we cannot but mention the popularity
of the method of analysing parameters of human vital signs using imaging technologies—e.g.,
smartphone cameras, depth cameras, infrared and RGB cameras [27,32–35,40–42,45,48,53–56,61,62,65].
Statistical data from our study support this position. Thus, 30.77% of the publications
included in this review mentioned cameras as the central node of the measurement system.
On the other hand, non-contact monitoring of cardiorespiratory activity based on the
analysis of movements caused by cardiac contractions was mentioned in 13.46% of the
publications. It is important to note that this method involves the use of measurement
techniques such as BCG and seismocardiography (SCG), which are long-established trends
in the recording of human vital signs [29,36,44,46,51,59,63]. The last (but not least) group of
methods consisted of papers that used the analysis of temperature and temperature maps
(images) of the subject as a non-contact monitoring method—7.69% [27,48,56,65].

Finally, it is important to note that some publications used several of these analysis
methods simultaneously—in particular, the analysis of video images and the subject’s
movements using cameras and radar, respectively [61,62]. For this reason, these papers
were counted twice in the statistical analysis. At the same time, it is possible to detect the
use of different technologies of the same method—for example, the use of two different
types of cameras (e.g., infrared and RGB)—for the same analysis method [27,35,48,56,66].
However, the publication data were counted once for statistical analysis.

3.3.2. SRQ-1: Which Technologies Can Be Used for the Contactless Measurement of
Cardiac Activity and Respiration during Sleep?

In this subsection, we would like to focus the reader’s attention directly on an overview
of technologies that can be used for contactless monitoring of cardiorespiratory activity
during sleep. Of course, a description of the technology implies a description of the
sensors used within a particular technology. However, the sensors are described in the
following subsection.

As shown in Figures 3 and 4, there are several methods for contactless and unobtrusive
monitoring of cardiorespiratory activity during sleep. In addition, it has already been
noted that some of the methods mentioned involve the use of similar technologies for
monitoring. In particular, we are talking about the use of radiolocation or interferometry
technologies implemented by radar applications. These can be used to extract HR and
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RR by analysing the chest, shoulder girdle, and body movements or sound waves from
heart activity. The same physiological parameters of vital signs and temperature can be
analysed from video or temperature images obtained using colour and infrared cameras.
This technology is called remote or photoplethysmography (rPPG or iPPG). At the same
time, heatmaps and image analysis also refer to technologies such as thermography. In
addition, the increasing popularity of BCG or motion analysis of cardiac contractions has
already been noted [7,29,36,44,46,51,59,63]. This method involves the use of a wide range
of sensors, which will be discussed in the following section. Finally, an equally interesting
application is the infrared thermal pattern analysis technology (IR technology) [24]. Table 3
provides information on the above technologies used in the publications included in this
review. It is important to note that publications using more than one technology have been
counted twice [27,42,62,64,65].

Table 3. Technologies for monitoring cardiac and respiratory activity. RGB—red, green, and blue
colour; IR—infrared.

Technology Amount of Papers

Interferometry 21

BCG (incl. SCG) 7

rPPG (incl. iPPG) 16

Thermography 4

IR technologies 1

Below is a brief description of each of the above technologies for a fuller and more
accurate understanding of their operation.

• Interferometry

Interferometry is a technique that uses the interference of superimposed waves to
extract information [74]. Interferometry is widely used in science and industry to measure
small displacements, refractive index changes, and surface irregularities. Interferometry
uses the principle of superposition to combine waves in such a way that the result of their
combination has a meaningful property that is diagnostic of the original state of the waves.

In the context of contactless measurement of physiological parameters of vital signals
using the interferometric method, the best-known device is radar. In most of the work
carried out with radar, a voltage-controlled oscillator is used to generate an RF signal
that is sent through a transmitting antenna. In turn, the electromagnetic wave (signal)
transmitted by the system is reflected from the subject’s chest and then picked up by the
receiving antenna [26,52]. It is important to note that depending on the type and design of
the radar, the antennas may be combined. In the next stage, the received signal is filtered,
amplified, and digitised to extract the necessary information about the signal. This method
is characterised by a fairly high accuracy in the measurement of heart rate and respiratory
rate, although the accuracy depends on the distance and position of the radar relative to the
patient. This aspect may affect the unobtrusiveness of the system to the patient. However, it
is worth noting that none of the selected articles highlighted the appearance of discomfort
in the subjects. In addition to that, in some of the works mentioned in this review, studies
were carried out to investigate the dependence of the results on the distance between the
patient and the radar [30,37,41,43,52,57,58,64].

• Ballistocardiography (BCG)

Ballistocardiography (BCG) is a non-invasive method of producing a graphical repre-
sentation of the repetitive movements of the human body caused by the heartbeat. These
repetitive movements are caused by the rapid acceleration of blood as it is ejected and travels
through the major vessels of the body during periods of relaxation and contraction—known
as diastole and systole, respectively [75]. During atrial systole, as blood is ejected into the
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great vessels, the centre of mass of the body shifts towards the head of the body. This shift
in the centre of mass of the body produces the BCG waveform as the distribution of blood
changes during the cardiac cycle [76].

BCG is currently generating a lot of interest due to the information technology revolu-
tion, including hardware technology, software, and services. We can embed BCG sensors
in the environment without the need for medical personnel [1]. In terms of the variety
of sensors used for this method, the most popular sensors are accelerometers [13], gyro-
scopes [77], and inertial measurement units. The variety of sensors for this technique is
presented in detail in the following subsection. It is also impossible not to mention the
variety of BCG signal processing algorithms, an overview of which can be found in the
work of Sadek et al. [1].

• Remote photoplethysmography (rPPG)

Photoplethysmography (PPG) is a method of measuring the parameters of vital physi-
ological signals [78]. PPG measures changes in tissue’s light absorption due to the pulsatile
nature of the cardiovascular system and changes in blood volume [79]. Due to the potential
disadvantages of contact PPG, non-contact methods of recording the PPG signal have been
demonstrated [80]. In fact, rPPG is the non-contact equivalent of the reflective mode of
PPG, using ambient light as the source and the camera as the receiver. The light reflected
from the skin is then evaluated by capturing the subtle changes in skin colour with the
camera as the blood volume changes. Several image and signal processing steps produce a
pulsed signal, also called the rPPG signal.

Several biomedical parameters can potentially be measured with rPPG or PPG signals,
including heart rate, pulse rate variability, respiratory rate, vascular occlusion, peripheral
vasomotor activity, and blood pressure by transit time [81].

Typically, an rPPG signal evaluated by any of the possible analysis methods is noisy, due
to the estimation method, lighting variations, internal digital camera noise, and motion [78].
Similar to BCG, there are many processing methods for the rPPG signal [82–84].

• Thermography and Infrared (IR) technologies

In a sense, thermography (including infrared) can be classified as an rPPG method
in conjunction with the use of cameras to measure both techniques. At the same time,
infrared thermography (IRT), also known as thermal imaging, is a remote, non-contact, and
passive monitoring approach that detects the radiation naturally emitted by an object (e.g.,
human skin) [85]. However, the main advantage of thermal imaging over other imaging
techniques is that it does not require a radiation source [86,87]. It is also important to note
that this method can be used in low-light conditions [88]. Facial IRT can provide insight
into an individual’s autonomic activity by assessing temperature changes over time and
spatial patterns [89].

In one way or another, this method is based on analysing the patterns of the obtained
image of a person’s face or body in the thermal (infrared) range of radiation. Recently,
machine learning (ML)-based approaches have been used to analyse IRT data to improve
the technology’s ability to assess pathologies and to enhance emotion recognition in human–
machine interaction [90,91].

3.3.3. SRQ-2: Which Sensors Are Used for Those Technologies?

Based on the data presented earlier (Figure 4 and Table 3) on the methods and tech-
nologies used, it is also possible to answer the question of which sensors are used for these
technologies. The sensors used in the papers included in this review can be divided into
four groups: temperature sensors, motion sensors, radars, and cameras. A more detailed
breakdown of the sensors is shown in Figure 5.
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As can be seen, the pyroelectric infrared sensor was applicable among temperature
sensors to determine physiological parameters that can be used to monitor the subject’s chest
movements and analyse the resting heart rate (RHR). In addition, changes in the infrared
thermal spectrum can be detected to assess this parameter [24]. For thermography and remote
plethysmography technologies, cameras are used as the hardware. The cameras can be di-
vided into RGB [27,32,33,42,45,48,53,54,56,61,62,65], infrared (IR) [27,40,48,56,65], and depth
cameras [34,35,41], based on the data obtained. We also distinguish smartphone cameras as
a separate group, as among the selected publications we can find several papers where the
study was carried out using this particular technology [53,54,66]. At the same time, BCG
and SCG technologies often use motion sensors such as accelerometers [51], seismographic
sensors [36], tensometric sensors [44], piezoelectric sensors [59], vibroacoustic sensors [63],
sensors on polyvinylidinochloride films [29], and fibre-optic sensors [46]. Finally, using
interferometry technology, devices such as radars are applicable for monitoring cardiores-
piratory activity. Among them, we can distinguish Doppler [23,26,31,50], ultrasonic [30],
ultra-wideband [25,28,35,62,64,72], and continuous radars [26,31,37–39,43,49,52,55,57,58,60,61].
Table 4 shows the frequency range used by these radars and the number of publications
included in this review where the relevant radar type was mentioned. Continuous-wave
(CW) radar is the most popular for monitoring cardiac and respiratory activity.

Table 4. Radars for monitoring cardiorespiratory activity. UWB—ultra-wideband, CW—continuous wave.

Radar Type Frequency Range, GHz Number of Papers

Ultrasound 4·10–5 1

Doppler 2.4 . . . 10.525
24 3

UWB radar 2.9 . . . 10.1 6

CW radar
24
60
77

15

3.3.4. SRQ-3: Which Physiological Parameters Can Be Extracted from Those Sensors?

According to the data presented in Table 1, and using the types of sensors mentioned
above, it is possible to extract physiological signal parameters such as the following:

• Heart rate (HR);
• Respiration rate (RR);
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• Temperature;
• Blood pressure.

It is worth noting that these are all basic parameters of human vital signals. In ad-
dition, it is possible to extract complementary parameters such as heart rate variability
(HRV) [47–49,59,63] and breathing rate variability (BRV) [59], as well as awakening epoch [29]
and sleep apnoea [23,30,39,62,65]. However, we focused on the main physiological pa-
rameters in the statistical analyses. Figures 6 and 7 present information on the number
of parameters recorded for the systems and the frequency of recording of parameters in
the publications included in the review, respectively. As can be seen in Figure 6, contact-
less monitoring of one of the physiological parameters was predominantly performed in
66.67% of the papers. The registration of two parameters at the same time was found in
a much smaller number of papers—27.08%. Only three papers presented systems that
recorded three physiological parameters at the same time—6.25%. Negishi et al. [27] pre-
sented a system for measuring a patient’s heart rate, respiratory rate, and facial temperature
by evaluating IR and RGB heatmaps. By measuring the blood volume pulse (BVP) using
an RGB camera, Negishi et al. [42] were able to measure the physiological parameters of
the heart and respiratory signals and body temperature. In addition, Talukdar et al. [66]
used a smartphone camera and a dedicated app to estimate HR, BF, and blood pressure.
Thus, according to the data in Figure 7, it is impossible to clearly define which parameter
is registered more often, as HR and RR are marked in an equal quantity of publications.
However, when two or three physiological values are recorded at the same time, HR and
RR are recorded as a pair.
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3.3.5. SRQ-4: What Are the Medical Applications of Contactless Cardiac and Respiratory
Monitoring during Sleep?

The devices and systems for contactless and unobtrusive monitoring of cardiores-
piratory activity considered in this review can be categorised according to their medical
applications and their focus on issues and problems, as follows:

• Cardiac activity;
• Respiratory activity;
• Sleep medicine.

At the same time, it is essential to note that each of the above groups of medical
applications includes more specialised issues. More detailed information is provided in
Figure 8. According to this figure, devices related to cardiac issues and ubiquitous and
routine activity monitoring address more specific issues. These include the detection of
heart failure [50] and arrhythmias [25,47], monitoring of heart rate variability (as noted
earlier), and prevention of haemorrhages [50].
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The medical applications of respiratory activity also address issues in addition to
monitoring. These include the prediction and prevention of influenza [27,42] and moni-
toring of respiration in coronavirus infection (COVID-19) [60]. In addition, the medical
applications of the devices included in the review include the detection of Cheyne–Stokes
respiration [23,31] and biota [65].

The medical applications related to sleep medicine include the detection of sleep
apnoea [30,39,62,65] and sleep monitoring [29,30].

A detailed breakdown of the medical applications for cardiorespiratory monitoring tech-
nologies is shown in Figure 8. The statistical data (see Figure 9) correspond to the information
on the different medical applications of contactless monitoring of cardiorespiratory activity.
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3.3.6. SRQ-5: What Are the Differences in the Quality of the Measurements (Contactless vs.
Contact-Based/Attached Devices)?

Probably one of the most interesting and challenging specific issues for our review is
the question of the differences in measurement quality between contact and non-contact
monitoring. In other words, it is necessary to clearly define the capabilities of each of
the systems included in this study, their accuracy, and their characteristics compared to
recognised standard monitoring methods, which were taken as the reference systems and
devices. In our work, we focused on evaluation metrics—i.e., the characteristics of non-
contact monitoring systems. However, we noted the most common systems (i.e., standards)
used in the publications included in this review, against which the comparisons were made.
For example, systems such as electrocardiographs [25,72,73], patient monitors [26,49,73],
pulse oximeters [33,56], Holter monitors [63], polysomnography (PSG) systems [23,29,31],
PPG sensors [24,59], BioPAC systems [50,61] and the Hexoskin commercial system [71]
were frequently used for cardiac reference signal extraction. Moreover, respiratory belts [54,55],
spirometers [34], Plux systems [45], impedance pneumographs [28,40], capnography
systems [41], and even manual counting [52] have been used to obtain respiratory sig-
nals. In addition, Zephyr BioModule [53] has been used for the parallel registration of
cardiac and respiratory signals. Digital thermometers and sphygmomanometers have been
used to register temperature and blood pressure [42,70].

To answer this question, we had to divide non-invasive monitoring systems and
technologies according to the physiological parameter being monitored. In our case, the
division was made into systems evaluating heart rate and systems evaluating respiratory
rate. This was explained by the existence of works where the systems evaluated both
parameters and the metrics used to evaluate the physiological parameters were different.
However, after this separation, it was found that no universal and unified metric could be
identified to compare the systems. The following metrics were identified in the publications
included in our review:

• Accuracy, sensitivity, specificity (Acc, Sen, Spe);
• Mean absolute error (MAE);
• Mean absolute percentage error (MAPE);
• Pearson’s correlation coefficient (r-Pearson).

As it is impossible to compare the listed metrics with one another, and comparing
systems within each metric does not allow us to clearly identify the system with the best
parameters, we decided not to separate them further. Table 5 provides information on
the estimated metrics of the systems considered for respiratory rate estimation. Table 6
provides similar information for the heart rate estimation systems. In some cases, results
are presented for multiple metrics simultaneously, allowing for a better assessment of the
capabilities of non-contact monitoring systems and technologies.
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Table 5. Comparison of the estimated technologies’ characteristics (for respiratory activity measure-
ment). Acc—accuracy, Sen—sensitivity, Spe—specificity, MAE—mean absolute error, MAPE—mean
absolute percentage error, Sub—number of subjects.

Publication, Year
Evaluation Metrics

Additional Points Sub Publication Type
Acc Sen Spe MAE, bpm MAPE, % r-Pearson

[23], 2017 86 71 88 0.38 - - 52 Research

[26], 2019 93 93 - - - 0.914 30 Research

[29], 2019

76

- - - - -

<1 bpm

30 Research97 <2 bpm

99 <3 bpm

[28], 2019 - - - - -

0.893 Depends on
movement level

(from lack to
maximum)

42 Research0.833

0.749

[30], 2019 - - - - -

0.977 0.5 m distance

12 Research
0.956 1 m distance

0.844 2 m distance

0.648 3 m distance

[27], 2019 - - - - - 0.920 25 Research

[42], 2020 - 85 90 - - 0.87 50 Research

[35], 2020 - - -
1.52

- -
For single subject

5 Research
1.32 For multiple subjects

[38], 2020 - - - 1.5 - 0.870 16 Research

[33], 2020 - - - 2.8 - 0.980 40 Commercial

[34], 2020 - - - -
10.7

-
With T-shirt

39 Commercial
14 Undressed

[31], 2020 - - - - 9.1 0.910 10 Research

[40], 2020 - - - - - 0.948 17 Research

[41], 2020 - - - - - 0.910 14 Commercial

[51], 2021 94 - - - 6.25 - 45 Commercial

[52], 2021 - - - 0.49 - - 12 Research

[46], 2021 - - - 2.16 - - 11 Research

[45], 2021 - - - - 6 0.850 21 Research

[60], 2022
80

- - - - -
6 bpm accuracy

30 Research
97 10 bpm accuracy

[61], 2022 98 - - - - - 10 Research

[62], 2022 90 - -
0.61

- -
For 1 subject

17 Research
0.68 For 2 subjects

[64], 2022
95

- -
0.18

- -
Not in real time

15 Research
98 0.23 Real time

[55], 2022 98 - - - - - 32 Commercial

[65], 2022 95 - - - - - 10 Research

[54], 2022 - - - 1.95 -
0.886 For head

30 Research
0.934 For chest

[53], 2022 - - - 1 - - 18 Research

[66], 2022 - - - 2.9 - - 463 Commercial

[59], 2022 - - - - - 0.992 6 Research
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Table 6. Comparison of the estimated technologies’ characteristics (for cardiac activity measurement).
Acc—accuracy, Sen—sensitivity, Spe—specificity, MAE—mean average error, MAPE—mean average
percentage error, Sub—number of subjects.

Publication, Year
Evaluation metrics

Additional Points Sub Publication Type
Acc Sen Spe MAE, bpm MAPE, % r-Pearson

[24], 2017 95 - - - - - 30 Research

[25], 2018 - - - - - 0.856 30 Research

[27], 2019 - - - - - 0.820 25 Research

[36], 2020 97 - - - - - 41 Commercial

[42], 2020 - 85 90 - - 0.870 50 Research

[33], 2020 - - - 2.1 - 0.920 40 Commercial

[32], 2020 - - - 7.4 12.46 - 5 Research

[31], 2020 - - - - 3.6 0.860 10 Research

[37], 2020 - - - - - 0.937 11 Research

[39], 2020 - - - - - 0.961 30 Research

[48], 2021
95

- - 0.02 - -
For IR-Camera algorithm

20 Research
99 For RGB-Camera algorithm

[49], 2021
97 98

- - - - 25 Research
89 94

[50], 2021 75 - - - - - 22 Research

[51], 2021 97 - - - 3.6 - 45 Commercial

[47], 2021 93 - - -
1.06 0.983

6 Research
1.15 0.987

[43], 2021 95 - - - - 0.892 40 Research

[44], 2021
91

- - - - - 20 Research
94

[52], 2021 - - - 2.39 - - 12 Research

[46], 2021 - - - 1.17 - - 11 Research

[61], 2022 86 - - - - - 10 Research

[63], 2022 97 - - - - - 24 Research

[53], 2022 - - - 6.7 - - 18 Research

[66], 2022 - - - 2.9 - - 463 Commercial

[57], 2022 - - - 1.28 1.74 - 20 Research

[58], 2022 - - - 4.28 5.56 - 15 Research

[56], 2022 - - -
3

- - 42 Research
8.6

[59], 2022 - - - - - 0.998 6 Research

3.3.7. Enhancements, Advantages, and Limitations

In this subsection, we would like to address the potential limitations of each of the
non-invasive cardiorespiratory monitoring technologies discussed in this review. It is worth
noting that this aspect was partially covered in the technology description in Section 3.3.2,
but not all technologies were given sufficient attention.

When discussing the use of interferometry (i.e., the use of radar in HR and RR esti-
mation), we have already mentioned the relatively high accuracy of the results. However,
the accuracy and quality of the results obtained using this method are highly dependent
on the distance between the device and the patient, as well as on the presence of possible
obstacles in the path of the electromagnetic wave. It should also be noted that the radar is
not easy to maintain and, in the event of a failure, it is difficult to replace the unit/module
at home for the user.

As noted in Section 3.3.3, ballistocardiography has a fairly wide range of sensors
for recording cardiorespiratory activity. Therefore, the limitations of this technique also
vary. For example, the use of fibre-optic or polyvinylidene chloride film sensors allows
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HR and RR to be assessed with high accuracy (minimal mean data error). However, the
cost of this technology, combined with the expense and inability of the user to replace
the fibre or other modules in the system themselves, limits its use in the home. Systems
based on piezoelectric sensors are no less accurate. However, one of the main limitations of
piezoelectric sensors is that they are sensitive to vibration or acceleration, which is common
when the system is placed under a bed mattress. In other words, further thought needs to be
given to the possible positioning of the system and sensors to minimise the disadvantages
of the system. As mentioned earlier, accelerometers (as well as seismographic sensors)
have become the most popular sensors for BCG analysis of cardiorespiratory activity. The
ability to measure in all directions of the patient’s chest expansion has allowed scientists to
obtain the most comprehensive picture and parameter readings of physiological signals.
At the same time, we would like to point out that the number of studies using this type
of sensor is low. This is due to the fact that, when selecting the articles, we often found
that the accelerometer was in contact with the patient (on the chest), which automatically
excluded such works from consideration. In turn, the accuracy of the data obtained with
this type of sensor is affected not only by the location of the system [92], but also by the
signal processing algorithm. At the same time, such systems or devices are characterised
by their ease of maintenance and replacement of modules in the event of failure at home,
which is an undeniable advantage over other technological solutions.

When considering the limitations of remote photoplethysmography, it is worth high-
lighting the potential for camera failure and the potential intrusiveness of the light source
to the patient. In other words, when using this technology, the system should be installed in
a way that causes the least discomfort to the patient. At the same time, rPPG is also highly
accurate, thanks to the use of machine learning and neural network techniques in image
analysis and the estimation of cardiorespiratory parameters. On the other hand, in the case
of infrared thermography—which, as mentioned above, can be used in cases where there is
no acceptable light source for the camera—there are two possible limitations to the use of
the technology: The first is the installation of the system to ensure unobtrusiveness to the
patient. The second is the potential problems with infrared data acquisition if the area of
interest to the system (e.g., the patient’s face or chest) is not fully covered by the camera
lens or is under a blanket. However, the accuracy of the data obtained is high, again due to
the use of machine learning or neural network techniques in image analysis. Summarising
the limitations, advantages, and disadvantages of the technologies considered, it can be
said that each of the methods has a fairly high accuracy in estimating cardiorespiratory
activity parameters. At the same time, the possible limitations of these methods are mainly
in the technical component.

In terms of potential limitations, it should be noted that it may be difficult to implement
the non-contact cardiorespiratory monitoring technologies listed in this review in a realistic
clinical or home setting. Of the papers listed, only a small number of systems have been
tested directly in hospital wards or at home. At the same time, the authors claim that
the developed systems can be used at home or in hospital. However, when it comes
to systems that need to be placed under a bed or mattress, all of the nuances of sensor
and system installation need to be considered, depending on the bed model and possible
room layout (e.g., compact room dimensions or the distance of the bed from the power
supply). In addition, although obvious, detailed training is required before the system is
installed for the patient at home, and regular opportunities must be provided for advice on
operation or action in the event of questions or malfunction of the system. In the clinical
setting, the installation of non-contact cardiorespiratory monitoring systems should include
introductory training for nursing staff in the initial maintenance of the systems. This, in
turn, may be a problem in allocating workload to nursing staff in the early stages. In any
case, wherever the system is to be used, end-user training and the production of a user
manual with detailed explanations of how to operate the system and ensure accurate and
reliable measurement of cardiorespiratory parameters are required.
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As for the possible future directions of technological development, we can mention
the emergence and development of complementary technological solutions, as well as the
improvement of processing algorithms in order to expand the system’s capabilities. Thus,
we can give an example of the successful validation of the system based on linear resistive
pressure sensors for the evaluation of cardiorespiratory activity of [93]. We believe that this
example, along with possible alternative technological solutions, is an attractive direction
for researchers.

4. Discussion

In order to provide a sample of the relevant literature, this paper conducted a limited
search of four databases—namely, Web of Science, IEEE Xplore, PubMed, and Scopus—to
identify works in the field of contactless and unobtrusive cardiorespiratory monitoring
during sleep. This search strategy may not be able to provide exhaustive and comprehen-
sive coverage of the literature; however, we believe that the sampled literature adequately
reflects the current state of research in the field of unobtrusive health monitoring. This
study had a high enough sensitivity of this retrieval strategy—1.4% of the initially returned
papers were included for in-depth textual analysis (53/3774 = 1.40%). Based on the termi-
nology, the included literature was reviewed in a structured way. Returning to the initial
questions proposed at the beginning (Section 1), we continue to answer them.

When we analysed the publications included in this review to answer the main
research question (how can cardiac activity and respiration be contactless monitored during
sleep?), we found that the monitoring of cardiorespiratory activity by motion analysis
is mainly performed by receiving and transmitting radar signals in the direction of the
region of interest. Such an area could be the patient’s chest or shoulder girdle. In addition,
the patient’s sleeping position can also serve as a region of interest. It should be noted,
however, that the method of monitoring by analysing heart sounds involves the same
techniques, but the region of interest is the sound waves recorded from the region of
interest. Image analysis can also be used to monitor cardiorespiratory activity. This is
mainly possible by recording the patient’s face and upper body. Blood circulation in the
body, changes in thoracic and/or abdominal depth, changes in landmarks, and changes in
skin colour during respiration are the main trends of physiological parameter estimation in
image analysis. At the same time, cardiorespiratory monitoring is also performed using
temperature analysis, which is possible by looking at heatmaps and patient images. When
implementing monitoring using heartbeat-induced motion recording, it is important to
note the wide variety of measurement approaches. The most popular approach is to capture
the oscillations resulting from the ventricular contraction of the heart and the subsequent
ejection of accelerated blood into the aorta. Equally attractive are approaches based on
measuring the electrical signal derived from the recoil forces in the body due to blood flow,
or measuring the subject’s body pressure.

Based on the literature review, we can identify five main technologies for contactless
cardiorespiratory monitoring during sleep—interferometry, thermography, remote pho-
toplethysmography, ballistocardiography, and infrared technology. These technologies
are related to the question of their application to the non-contact measurement of cardiac
activity and respiration during sleep (SRQ-1).

We grouped the sensors and systems for contactless monitoring into four types: tem-
perature sensors, radar systems, motion sensors, and camera-based systems. The peculiari-
ties of the sensors and systems in each group are presented while answering the question
on the use of sensors for the abovementioned technologies (SRQ-2).

The main physiological parameters extracted during this research in cardiorespiratory
monitoring are HR and RR (SRQ-3). As an additional result, it is possible to calculate
HRV and BRV, which are also important in clinical practice. It is also possible to assess
temperature and blood pressure, known as human vital signs (with HR and RR), using the
systems and technologies under consideration. Finally, it is important to note that sensor
applications allow us to determine wake times and estimate sleep efficiency.
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Looking at the statistical data on the various medical applications of contactless
monitoring of cardiorespiratory activity (SRQ-4), it can be seen that cardiac and respiratory
issues are covered to about the same extent, with a slight preponderance in favour of
respiration. This can be explained by the fact that the respiratory signal usually requires
fewer instruments and fewer operations for signal processing. In addition, these operations
are often simpler in their description, structure, and implementation.

Sleep medicine issues have been addressed to a much lesser extent. It is important
to note that the issues covered for this medical application also relate to respiratory and
cardiac issues but have been placed in a separate group. The reason for this is that in order
to obtain and analyse the information, it is necessary to carry out a long-term experiment
in which the patient has to stay awake for some time. At the same time, the issue of
sleep monitoring requires the tracking of physiological parameters of both respiratory and
cardiac signals [39]. However, Park et al. [29] only performed data analysis (including the
subject’s awakening) on the respiratory signal in their paper.

Based on the data on the performance of respiratory activity monitoring systems, several
studies stand out for each of the previously outlined metrics (SRQ-5). For metrics such
as accuracy, sensitivity, and specificity, a relatively high accuracy (94%) combined with an
acceptable mean absolute percentage error (6.25%) stands out in the work of Ullal et al. [51].
This study seems to be the preferred one, despite the higher accuracy values in the work
of Han et al. [64] (98% and a mean absolute error of 0.23 bpm), Do et al. [55] (98%), and
Shokouhmand et al. (98%) [61]. The reason for this is that, despite their high scores and study
perspectives (an additional factor in the analysis), the abovementioned studies had fewer
subjects participating in the system validation. Several papers can be distinguished when
analysing systems in terms of mean absolute error values. For example, Khushaba et al. [23]
obtained an error value of 0.38 bpm by sending and receiving a reflected wave from a
sensor and recording body motion with radar; Wang et al. [52] obtained a value of 0.49 bpm
by measuring the phase delay of the reflected radio signal; He et al. [62] obtained an error
of 0.61 bpm using radiolocation and remote plethysmography techniques. At the same
time, when comparing works on the mean absolute percentage error value, the work of
Mateu-Mateus et al. [45] stands out, who achieved an error value of 6% by calculating the
changes in the position of the detected image pattern over time. We should also note the
works of Villaroel et al. [33], Rossol et al. [40], and Gwak et al. [54], who obtained relatively
high values for the Pearson correlation coefficient: 0.980, 0.948, and 0.934, respectively.
However, the highest value of this parameter (0.992) was obtained by Xu et al. [59], but it is
important to note that their study involved six subjects.

The performance of cardiac monitoring systems (i.e., HR recording) was assessed in the
27 papers included in this review. Several papers stand out for the high accuracy values achieved
by the monitoring systems. The work of Ullal et al. [51], as in the case of respiratory monitoring,
had an accuracy of 97% and a percentage error of 3.6% in determining HR. Similar accuracy
was shown by the works of Park et al. [36], Parciani et al. [63], and Shi et al. [49], using different
techniques—SCG, BCG, and interferometry, respectively. Yu et al. [48] achieved 99% accuracy
in HR estimation by measuring temperature maps and images of subjects’ faces using infrared
and conventional cameras. Kapu et al. [24] and Xu et al. [43] achieved 95% accuracy for the
estimation of a physiological parameter. Comparing the systems in terms of MAE, quite reliable
results were shown by Talukdar et al. [66]—2.9 bpm with over 400 subjects. At the same time,
Chen et al. [46] and Ling et al. [57] estimated HR with errors of 1.17 and 1.28 bpm, respectively.
However, their studies involved much smaller numbers of subjects, so it is not possible to
compare all three papers.

5. Conclusions

There is a large body of literature on non-invasive cardiorespiratory monitoring. How-
ever, there is a lack of information on methods and techniques that have been validated and
can be unobtrusively introduced into clinical practice. In this article, we conducted a sys-
tematic review of publications related to these technologies. We have analysed and briefly
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described non-contact cardiorespiratory monitoring techniques and technologies, along
with their potential medical applications. The most popular methods are interferometry
(using radar), remote photoplethysmography (using RGB cameras), infrared thermography,
and ballistocardiography, which allows a wide range of uses. We also compared their
performance with several existing, recognised contact systems that are commonly used
as standard techniques in medicine. In addition, we have speculated on possible future
directions for the development of signal processing technologies and algorithms to assess
the physiological parameters of vital signs. Furthermore, we suggested possible limitations
and difficulties in implementing the technology in real clinical and home settings. The
obtained data on the methods and technologies of non-contact and unobtrusive monitoring
of cardiorespiratory activity during sleep suggest current trends and directions of the devel-
opment of medical non-contact, non-invasive, and unobtrusive systems and technologies
related to the monitoring of physiological parameters of vital signals in sleep medicine.
In addition, this review might be helpful in actualising the current state of the art in the
relevant research topic.
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Appendix A

Appendix A.1. IEEE Xplore

(“All Metadata”: sleep OR “All Metadata”: “breathing rate” OR “All Metadata”:
“breathing pattern” OR “All Metadata”: respiratory OR “All Metadata”: cardiorespiratory
OR “All Metadata”: pulmonary OR “All Metadata”: “respiratory rate” OR “All Meta-
data”: cardiac OR “All Metadata”: cardiovascular OR “All Metadata”: “heart rate” OR
“All Metadata”: “pulse rate” OR “All Metadata”: “vital sign”) AND (“All Metadata”:
sensor OR “All Metadata”: system OR “All Metadata”: “strain gauge” OR “All Metadata”:
ballistocardiography OR “All Metadata”: movement OR “All Metadata”: accelerometer
OR “All Metadata”: “piezoelectric sensor” OR “All Metadata”: “force sensing resistor” OR
“All Metadata”: “wireless sensor network” OR “All Metadata”: optical OR “All Metadata”:
“fiber optical” OR “All Metadata”: “bragg grating” OR “All Metadata”: camera OR “All
Metadata”: lidar OR “All Metadata”: thermal OR “All Metadata”: “photo plethysmog-
raphy” OR “All Metadata”: “imaging photo plethysmography”) AND (“All Metadata”:
“smart home” OR “All Metadata”: “ambient assisted living” OR “All Metadata”: “in-home
monitoring” OR “All Metadata”: “non-contact” OR “All Metadata”: contactless OR “All
Metadata”: “contactless measurement” OR “All Metadata”: “non-invasive” OR “All Meta-
data”: unobtrusive OR “All Metadata”: lab OR “All Metadata”: “controlled environment”
OR “All Metadata”: “nursing house”)
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Appendix A.2. PubMed

(Sleep[Title/Abstract] OR breathing rate[Title/Abstract] OR breathing pattern[Title/Abstract]
OR respiratory[Title/Abstract] OR cardiorespiratory[Title/Abstract] OR pulmonary[Title/Abstract]
OR respiratory rate[Title/Abstract] OR cardiac[Title/Abstract] OR cardiovascular[Title/Abstract]
OR heart rate[Title/Abstract] OR pulse rate[Title/Abstract] OR vital sign[Title/Abstract])
AND (sensor[Title/Abstract] OR system[Title/Abstract] OR strain gauge[Title/Abstract]
OR ballistocardiography[Title/Abstract] OR movement[Title/Abstract] OR accelerome-
ter[Title/Abstract] OR piezoelectric sensor[Title/Abstract] OR force sensing resistor[Title/Abstract]
OR wireless sensor network[Title/Abstract] OR optical[Title/Abstract] OR fiber opti-
cal[Title/Abstract] OR bragg grating[Title/Abstract] OR camera[Title/Abstract] OR li-
dar[Title/Abstract] OR thermal[Title/Abstract] OR photo plethysmography[Title/Abstract]
OR imaging photo plethysmography[Title/Abstract]) AND (smart home[Title/Abstract]
OR ambient assisted living[Title/Abstract] OR in-home monitoring[Title/Abstract] OR non-
contact[Title/Abstract] OR contactless[Title/Abstract] OR contactless measurement[Title/Abstract]
OR non-invasive[Title/Abstract] OR unobtrusive[Title/Abstract] OR lab[Title/Abstract]
OR controlled environment[Title/Abstract] OR nursing house[Title/Abstract])

Appendix A.3. Scopus

TITLE-ABS (sleep OR “breathing rate” OR “breathing pattern” OR respiratory OR car-
diorespiratory OR pulmonary OR “respiratory rate” OR cardiac OR cardiovascular OR “heart
rate” OR “pulse rate” OR “vital sign”) AND TITLE-ABS (sensor OR system OR “strain gauge”
OR ballistocardiography OR movement OR accelerometer OR “piezoelectric sensor” OR
“force sensing resistor” OR “wireless sensor network” OR optical OR “fiber optical” OR
“bragg grating” OR camera OR lidar OR thermal OR “photo plethysmography” OR “imaging
photo plethysmography”) AND TITLE-ABS (“smart home” OR “ambient assisted living” OR
“in-home monitoring” OR “non-contact” OR contactless OR “contactless measurement” OR
“non-invasive” OR unobtrusive OR lab OR “controlled environment” OR “nursing house”)
AND (LIMIT-TO (PUBSTAGE, “final”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR
LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR,
2017)) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO (SUBJAREA, “MEDI”)
OR LIMIT-TO (SUBJAREA, “ENGI”) OR LIMIT-TO (SUBJAREA, “COMP”) OR LIMIT-TO
(SUBJAREA, “PHYS”) OR LIMIT-TO (SUBJAREA, “MATE”) OR LIMIT-TO (SUBJAREA,
“MULT”) OR LIMIT-TO (SUBJAREA, “HEAL”) OR LIMIT-TO (SUBJAREA, “MATH”) OR
LIMIT-TO (SUBJAREA, “NURS”) OR LIMIT-TO (SUBJAREA, “ENER”) OR LIMIT-TO (SUB-
JAREA, “Undefined”)) AND (EXCLUDE (SUBJAREA, “BIOC”) OR EXCLUDE (SUBJAREA,
“CHEM”) OR EXCLUDE (SUBJAREA, “CENG”) OR EXCLUDE (SUBJAREA, “NEUR”) OR
EXCLUDE (SUBJAREA, “ENVI”) OR EXCLUDE (SUBJAREA, “PHAR”) OR EXCLUDE (SUB-
JAREA, “AGRI”) OR EXCLUDE (SUBJAREA, “SOCI”) OR EXCLUDE (SUBJAREA, “IMMU”)
OR EXCLUDE (SUBJAREA, “PSYC”) OR EXCLUDE (SUBJAREA, “BUSI”) OR EXCLUDE
(SUBJAREA, “DECI”) OR EXCLUDE (SUBJAREA, “ARTS”) OR EXCLUDE (SUBJAREA,
“EART”) OR EXCLUDE (SUBJAREA, “ECON”) OR EXCLUDE (SUBJAREA, “DENT”) OR
EXCLUDE (SUBJAREA, “VETE”))

Appendix A.4. Web of Science

((sleep OR “breathing rate” OR “breathing pattern” OR cardiorespiratory OR pul-
monary OR “respiratory rate” OR cardiac OR cardiovascular OR “heart rate” OR “pulse
rate” OR “vital sign”) AND (sensor OR system OR “strain gauge” OR ballistocardiography
OR movement OR accelerometer OR “piezoelectric sensor” OR “force sensing resistor” OR
“wireless sensor network” OR optical OR “fiber optical” OR “bragg grating” OR camera
OR lidar OR thermal OR “photo plethysmography” OR “imaging photo plethysmogra-
phy”) AND (“smart home” OR “ambient assisted living” OR “in-home monitoring” OR
“non-contact” OR contactless OR “contactless measurement” OR “non-invasive” OR un-
obtrusive OR lab OR “controlled environment” OR “nursing house”) (Title)) OR ((sleep
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OR “breathing rate” OR “breathing pattern” OR cardiorespiratory OR pulmonary OR
“respiratory rate” OR cardiac OR cardiovascular OR “heart rate” OR “pulse rate” OR “vital
sign”) AND (sensor OR system OR “strain gauge” OR ballistocardiography OR movement
OR accelerometer OR “piezoelectric sensor” OR “force sensing resistor” OR “wireless
sensor network” OR optical OR “fiber optical” OR “bragg grating” OR camera OR lidar
OR thermal OR “photo plethysmography” OR “imaging photo plethysmography”) AND
(“smart home” OR “ambient assisted living” OR “in-home monitoring” OR “non-contact”
OR contactless OR “contactless measurement” OR “non-invasive” OR unobtrusive OR lab
OR “controlled environment” OR “nursing house”) (Abstract))

References
1. Sadek, I.; Biswas, J.; Abdulrazak, B. Ballistocardiogram signal processing: A review. Health Inf. Sci. Syst. 2019, 7, 10. [CrossRef]

[PubMed]
2. De Fazio, R.; Stabile, M.; De Vittorio, M.; Velázquez, R.; Visconti, P. An Overview of Wearable Piezoresistive and Inertial Sensors

for Respiration Rate Monitoring. Electronics 2021, 10, 2178. [CrossRef]
3. Gaiduk, M.; Perea, J.J.; Seepold, R.; Madrid, N.M.; Penzel, T.; Glos, M.; Ortega, J.A. Estimation of Sleep Stages Analyzing

Respiratory and Movement Signals. IEEE J. Biomed. Health Inform. 2021, 26, 505–514. [CrossRef] [PubMed]
4. Gadie, A.; Shafto, M.; Leng, Y.; Kievit, R.A. How are age-related differences in sleep quality associated with health outcomes? An

epidemiological investigation in a UK cohort of 2406 adults. BMJ Open 2017, 7, e014920. [CrossRef] [PubMed]
5. Inan, O.T.; Migeotte, P.-F.; Park, K.-S.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.; Funtova, I.; Prisk, G.K.; et al.

Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J. Biomed. Health Inform. 2014, 19, 1414–1427.
[CrossRef]

6. Stamatakis, E.; de Rezende, L.F.M.; Rey-López, J.P. Sedentary Behaviour and Cardiovascular Disease. In Sedentary Behaviour
Epidemiology; Leitzmann, M.F., Jochem, C., Schmid, D., Eds.; Springer International Publishing: Cham, Switzerland, 2018;
pp. 215–243. [CrossRef]

7. Rundo, J.V.; Downey, R. Polysomnography. In Handbook of Clinical Neurology: Clinical Neurophysiology: Basis and Technical Aspects;
Levin, K.H., Chauvel, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 381–392. [CrossRef]

8. Tran, V.P.; Al-Jumaily, A.A.; Islam, S.M.S. Doppler Radar-Based Non-Contact Health Monitoring for Obstructive Sleep Apnea
Diagnosis: A Comprehensive Review. Big Data Cogn. Comput. 2019, 3, 3. [CrossRef]

9. Green, S.F.; Frame, T.; Banerjee, L.V.; Gimson, A.; Blackman, J.; Morrison, H.; Lloyd, K.; Rudd, S.; Fotherby, W.G.F.; Bartsch, U.; et al.
A systematic review of the validity of non-invasive sleep-measuring devices in mid-to-late life adults: Future utility for
Alzheimer’s disease research. Sleep Med. Rev. 2022, 65, 101665. [CrossRef]

10. Kagawa, M.; Ueki, K.; Tojima, H.; Matsui, T. Noncontact screening system with two microwave radars for the diagnosis of
sleep apnea-hypopnea syndrome. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 2052–2055. [CrossRef]

11. Ren, L.; Kong, L.; Foroughian, F.; Wang, H.; Theilmann, P.; Fathy, A.E. Comparison Study of Noncontact Vital Signs Detection
Using a Doppler Stepped-Frequency Continuous-Wave Radar and Camera-Based Imaging Photoplethysmography. IEEE Trans.
Microw. Theory Tech. 2017, 65, 3519–3529. [CrossRef]

12. Savage, H.O.; Khushaba, R.N.; Zaffaroni, A.; Colefax, M.; Farrugia, S.; Schindhelm, K.; Teschler, H.; Weinreich, G.; Grueger, H.;
Neddermann, M.; et al. Development and validation of a novel non-contact monitor of nocturnal respiration for identifying
sleep-disordered breathing in patients with heart failure. ESC Heart Fail. 2016, 3, 212–219. [CrossRef]

13. Hall, T.; Lie, D.Y.C.; Nguyen, T.Q.; Mayeda, J.C.; Lie, P.E.; Lopez, J.; Banister, R.E. Non-Contact Sensor for Long-Term Continuous
Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design. Sensors 2017, 17, 2632. [CrossRef]

14. Lin, C.-T.; Prasad, M.; Chung, C.-H.; Puthal, D.; El-Sayed, H.; Sankar, S.; Wang, Y.-K.; Singh, J.; Sangaiah, A.K. IoT-Based Wireless
Polysomnography Intelligent System for Sleep Monitoring. IEEE Access 2017, 6, 405–414. [CrossRef]

15. Sadek, I.; Seet, E.; Biswas, J.; Abdulrazak, B.; Mokhtari, M. Nonintrusive Vital Signs Monitoring for Sleep Apnea Patients: A Preliminary
Study. IEEE Access 2017, 6, 2506–2514. [CrossRef]

16. Kim, C.-S.; Ober, S.L.; McMurtry, M.S.; Finegan, B.A.; Inan, O.T.; Mukkamala, R.; Hahn, J.-O. Ballistocardiogram: Mechanism and
Potential for Unobtrusive Cardiovascular Health Monitoring. Sci. Rep. 2016, 6, 31297. [CrossRef]

17. Zhang, X.; Kassem, M.A.M.; Zhou, Y.; Shabsigh, M.; Wang, Q.; Xu, X. A Brief Review of Non-invasive Monitoring of Respiratory
Condition for Extubated Patients with or at Risk for Obstructive Sleep Apnea after Surgery. Front. Med. 2017, 4, 26. [CrossRef]

18. Chung, K.; Song, K.; Shin, K.; Sohn, J.; Cho, S.H.; Chang, J.-H. Noncontact Sleep Study by Multi-Modal Sensor Fusion. Sensors
2017, 17, 1685. [CrossRef]

19. Tal, A.; Shinar, Z.; Shaki, D.; Codish, S.; Goldbart, A. Validation of Contact-Free Sleep Monitoring Device with Comparison to
Polysomnography. J. Clin. Sleep Med. 2017, 13, 517–522. [CrossRef]

20. Phan, H.; Mikkelsen, K. Automatic sleep staging of EEG signals: Recent development, challenges, and future directions. Physiol. Meas.
2022, 43, 04TR01. [CrossRef]

https://doi.org/10.1007/s13755-019-0071-7
https://www.ncbi.nlm.nih.gov/pubmed/31114676
https://doi.org/10.3390/electronics10172178
https://doi.org/10.1109/JBHI.2021.3099295
https://www.ncbi.nlm.nih.gov/pubmed/34310330
https://doi.org/10.1136/bmjopen-2016-014920
https://www.ncbi.nlm.nih.gov/pubmed/28760786
https://doi.org/10.1109/JBHI.2014.2361732
https://doi.org/10.1007/978-3-319-61552-3_9
https://doi.org/10.1016/b978-0-444-64032-1.00025-4
https://doi.org/10.3390/bdcc3010003
https://doi.org/10.1016/j.smrv.2022.101665
https://doi.org/10.1109/embc.2013.6609935
https://doi.org/10.1109/TMTT.2017.2658567
https://doi.org/10.1002/ehf2.12086
https://doi.org/10.3390/s17112632
https://doi.org/10.1109/ACCESS.2017.2765702
https://doi.org/10.1109/ACCESS.2017.2783939
https://doi.org/10.1038/srep31297
https://doi.org/10.3389/fmed.2017.00026
https://doi.org/10.3390/s17071685
https://doi.org/10.5664/jcsm.6514
https://doi.org/10.1088/1361-6579/ac6049


Sensors 2023, 23, 5038 25 of 27

21. Yuda, E.; Yoshida, Y.; Sasanabe, R.; Tanaka, H.; Shiomi, T.; Hayano, J. Sleep Stage Classification by a Combination of Actigraphic
and Heart Rate Signals. J. Low Power Electron. Appl. 2017, 7, 28. [CrossRef]

22. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021,
88, 105906. [CrossRef]

23. Khushaba, R.N.; Armitstead, J.; Schindhelm, K. Monitoring of nocturnal central sleep apnea in Heart failure patients using
noncontact respiratory differences. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 1534–1538. [CrossRef]

24. Kapu, H.; Saraswat, K.; Ozturk, Y.; Cetin, A.E. Resting heart rate estimation using PIR sensors. Infrared Phys. Technol. 2017,
85, 56–61. [CrossRef]

25. Lee, Y.; Park, J.-Y.; Choi, Y.-W.; Park, H.-K.; Cho, S.-H.; Cho, S.H.; Lim, Y.-H. A Novel Non-contact Heart Rate Monitor Using
Impulse-Radio Ultra-Wideband (IR-UWB) Radar Technology. Sci. Rep. 2018, 8, 13053. [CrossRef] [PubMed]

26. Michler, F.; Shi, K.; Schellenberger, S.; Steigleder, T.; Malessa, A.; Hameyer, L.; Neumann, N.; Lurz, F.; Ostgathe, C.; Weigel, R.; et al.
A Clinically Evaluated Interferometric Continuous-Wave Radar System for the Contactless Measurement of Human Vital
Parameters. Sensors 2019, 19, 2492. [CrossRef] [PubMed]

27. Negishi, T.; Sun, G.; Sato, S.; Liu, H.; Matsui, T.; Abe, S.; Nishimura, H.; Kirimoto, T. Infection Screening System Using
Thermography and CCD Camera with Good Stability and Swiftness for Non-contact Vital-Signs Measurement by Feature
Matching and MUSIC Algorithm. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 3183–3186. [CrossRef]

28. Kim, J.D.; Lee, W.H.; Lee, Y.; Lee, H.J.; Cha, T.; Kim, S.H.; Song, K.-M.; Lim, Y.-H.; Cho, S.H.; Cho, S.H.; et al. Non-contact
respiration monitoring using impulse radio ultrawideband radar in neonates. R. Soc. Open Sci. 2019, 6, 190149. [CrossRef]
[PubMed]

29. Park, S.; Choi, H.-H.; Yang, H.C.; Yoon, J.-S.; Shin, H. Force-Sensing-Based Unobtrusive System for Awakening and Respiration
Rate Analysis During Sleep. IEEE Sens. J. 2018, 19, 1917–1924. [CrossRef]

30. Al-Naji, A.; Al-Askery, A.J.; Gharghan, S.K.; Chahl, J. A System for Monitoring Breathing Activity Using an Ultrasonic Radar
Detection with Low Power Consumption. J. Sens. Actuator Netw. 2019, 8, 32. [CrossRef]

31. Turppa, E.; Kortelainen, J.M.; Antropov, O.; Kiuru, T. Vital Sign Monitoring Using FMCW Radar in Various Sleeping Scenarios.
Sensors 2020, 20, 6505. [CrossRef]

32. Chen, Q.; Jiang, X.; Liu, X.; Lu, C.; Wang, L.; Chen, W. Non-Contact Heart Rate Monitoring in Neonatal Intensive Care Unit using
RGB Camera. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5822–5825. [CrossRef]

33. Villarroel, M.; Jorge, J.; Meredith, D.; Sutherland, S.; Pugh, C.; Tarassenko, L. Non-contact vital-sign monitoring of patients
undergoing haemodialysis treatment. Sci. Rep. 2020, 10, 18529. [CrossRef]

34. Imano, W.; Kameyama, K.; Hollingdal, M.; Refsgaard, J.; Larsen, K.; Topp, C.; Kronborg, S.H.; Gade, J.D.; Dinesen, B. Non-Contact
Respiratory Measurement Using a Depth Camera for Elderly People. Sensors 2020, 20, 6901. [CrossRef]

35. He, S.; Mehta, V.; Bolic, M. A Joint Localization Assisted Respiratory Rate Estimation using IR-UWB Radars. In Proceedings of the
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada,
20–24 July 2020; pp. 489–493. [CrossRef]

36. Park, J.; Cho, H.; Balan, R.K.; Ko, J. HeartQuake: Accurate Low-Cost Non-Invasive ECG Monitoring Using Bed-Mounted
Geophones. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–28. [CrossRef]

37. Shi, K.; Schellenberger, S.; Will, C.; Steigleder, T.; Michler, F.; Fuchs, J.; Weigel, R.; Ostgathe, C.; Koelpin, A. A dataset of
radar-recorded heart sounds and vital signs including synchronised reference sensor signals. Sci. Data 2020, 7, 50. [CrossRef]

38. Lee, J.; Yoo, S.K. Radar-Based Detection of Respiration Rate with Adaptive Harmonic Quefrency Selection. Sensors 2020, 20, 1607.
[CrossRef]

39. Schellenberger, S.; Shi, K.; Steigleder, T.; Malessa, A.; Michler, F.; Hameyer, L.; Neumann, N.; Lurz, F.; Weigel, R.; Ostgathe, C.; et al.
A dataset of clinically recorded radar vital signs with synchronised reference sensor signals. Sci. Data 2020, 7, 291. [CrossRef]

40. Rossol, S.L.; Yang, J.K.; Toney-Noland, C.; Bergin, J.; Basavaraju, C.; Kumar, P.; Lee, H.C. Non-Contact Video-Based Neonatal
Respiratory Monitoring. Children 2020, 7, 171. [CrossRef]

41. Addison, P.S.; Smit, P.; Jacquel, D.; Borg, U.R. Continuous respiratory rate monitoring during an acute hypoxic challenge using a
depth sensing camera. J. Clin. Monit. Comput. 2019, 34, 1025–1033. [CrossRef]

42. Negishi, T.; Abe, S.; Matsui, T.; Liu, H.; Kurosawa, M.; Kirimoto, T.; Sun, G. Contactless Vital Signs Measurement System Using
RGB-Thermal Image Sensors and Its Clinical Screening Test on Patients with Seasonal Influenza. Sensors 2020, 20, 2171. [CrossRef]

43. Xu, C.; Li, H.; Li, Z.; Zhang, H.; Rathore, A.S.; Chen, X.; Wang, K.; Huang, M.-C.; Xu, W. CardiacWave: A mmWave-based Scheme
of Non-Contact and High-Definition Heart Activity Computing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021,
5, 135. [CrossRef]

44. Malik, A.R.; Boger, J. Zero-Effort Ambient Heart Rate Monitoring Using Ballistocardiography Detected Through a Seat Cushion:
Prototype Development and Preliminary Study. JMIR Rehabilitation Assist. Technol. 2021, 8, e25996. [CrossRef]

45. Mateu-Mateus, M.; Guede-Fernández, F.; Rodriguez-Ibáñez, N.; García-González, M.; Ramos-Castro, J.; Fernández-Chimeno, M.
A non-contact camera-based method for respiratory rhythm extraction. Biomed. Signal Process. Control 2021, 66, 102443. [CrossRef]

https://doi.org/10.3390/jlpea7040028
https://doi.org/10.1016/j.ijsu.2021.105906
https://doi.org/10.1109/embc.2017.8037128
https://doi.org/10.1016/j.infrared.2017.05.010
https://doi.org/10.1038/s41598-018-31411-8
https://www.ncbi.nlm.nih.gov/pubmed/30158545
https://doi.org/10.3390/s19112492
https://www.ncbi.nlm.nih.gov/pubmed/31159218
https://doi.org/10.1109/embc.2019.8857027
https://doi.org/10.1098/rsos.190149
https://www.ncbi.nlm.nih.gov/pubmed/31312485
https://doi.org/10.1109/JSEN.2018.2883716
https://doi.org/10.3390/jsan8020032
https://doi.org/10.3390/s20226505
https://doi.org/10.1109/embc44109.2020.9175651
https://doi.org/10.1038/s41598-020-75152-z
https://doi.org/10.3390/s20236901
https://doi.org/10.1109/embc44109.2020.9175754
https://doi.org/10.1145/3411843
https://doi.org/10.1038/s41597-020-0390-1
https://doi.org/10.3390/s20061607
https://doi.org/10.1038/s41597-020-00629-5
https://doi.org/10.3390/children7100171
https://doi.org/10.1007/s10877-019-00417-6
https://doi.org/10.3390/s20082171
https://doi.org/10.1145/3478127
https://doi.org/10.2196/25996
https://doi.org/10.1016/j.bspc.2021.102443


Sensors 2023, 23, 5038 26 of 27

46. Chen, W.; Zhang, Y.; Yang, H.; Qiu, Y.; Li, H.; Chen, Z.; Yu, C. Non-Invasive Measurement of Vital Signs Based on Seven-Core
Fiber Interferometer. IEEE Sens. J. 2021, 21, 10703–10710. [CrossRef]

47. Xia, W.; Li, Y.; Dong, S. Radar-Based High-Accuracy Cardiac Activity Sensing. IEEE Trans. Instrum. Meas. 2021, 70, 1–13.
[CrossRef]

48. Yu, X.; Laurentius, T.; Bollheimer, C.; Leonhardt, S.; Antink, C.H. Noncontact Monitoring of Heart Rate and Heart Rate Variability
in Geriatric Patients Using Photoplethysmography Imaging. IEEE J. Biomed. Health Inform. 2020, 25, 1781–1792. [CrossRef]
[PubMed]

49. Shi, K.; Steigleder, T.; Schellenberger, S.; Michler, F.; Malessa, A.; Lurz, F.; Rohleder, N.; Ostgathe, C.; Weigel, R.; Koelpin, A.
Contactless analysis of heart rate variability during cold pressor test using radar interferometry and bidirectional LSTM networks.
Sci. Rep. 2021, 11, 3025. [CrossRef] [PubMed]

50. Xia, Z.; Shandhi, M.H.; Li, Y.; Inan, O.T.; Zhang, Y. The Delineation of Fiducial Points for Non-Contact Radar Seismocardiogram
Signals Without Concurrent ECG. IEEE J. Biomed. Health Inform. 2020, 25, 1031–1040. [CrossRef] [PubMed]

51. Ullal, A.; Su, B.Y.; Enayati, M.; Skubic, M.; Despins, L.; Popescu, M.; Keller, J. Non-invasive monitoring of vital signs for older
adults using recliner chairs. Health Technol. 2020, 11, 169–184. [CrossRef]

52. Wang, W.; Jia, Z.; Xu, C.; Luo, G.; Zhang, D.; An, N.; Zhang, Y. Feasibility study of practical vital sign detection using millimeter-
wave radios. CCF Trans. Pervasive Comput. Interact. 2021, 3, 436–452. [CrossRef]

53. Molinaro, N.; Schena, E.; Silvestri, S.; Massaroni, C. Multi-ROI Spectral Approach for the Continuous Remote Cardio-Respiratory
Monitoring from Mobile Device Built-In Cameras. Sensors 2022, 22, 2539. [CrossRef]

54. Gwak, M.; Vatanparvar, K.; Kuang, J.; Gao, A. Motion-Based Respiratory Rate Estimation with Motion Artifact Removal Using
Video of Face and Upper Body. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 1961–1967. [CrossRef]

55. Do, W.; Russell, R.; Wheeler, C.; Lockwood, M.; De Vos, M.; Pavord, I.; Bafadhel, M. Performance of Contactless Respiratory
Rate Monitoring by Albus HomeTM, an Automated System for Nocturnal Monitoring at Home: A Validation Study. Sensors 2022,
22, 7142. [CrossRef]

56. Svoboda, L.; Sperrhake, J.; Nisser, M.; Zhang, C.; Notni, G.; Proquitté, H. Contactless heart rate measurement in newborn infants
using a multimodal 3D camera system. Front. Pediatr. 2022, 10, 897961. [CrossRef]

57. Ling, Z.; Zhou, W.; Ren, Y.; Wang, J.; Guo, L. Non-Contact Heart Rate Monitoring Based on Millimeter Wave Radar. IEEE Access
2022, 10, 74033–74044. [CrossRef]

58. Zheng, P.; Zheng, C.; Li, X.; Chen, H.; Wang, A.; Luo, Y. Second Harmonic Weighted Reconstruction for Non-Contact Monitoring
Heart Rate. IEEE Sens. J. 2022, 22, 5815–5823. [CrossRef]

59. Xu, W.; Yu, C.; Dong, B.; Wang, Y.; Zhao, W. Thin Piezoelectric Sheet Assisted PGC Demodulation of Fiber-Optic Integrated MZI
and its Application in Under Mattress Vital Signs Monitoring. IEEE Sens. J. 2021, 22, 2151–2159. [CrossRef]

60. Beltrão, G.; Stutz, R.; Hornberger, F.; Martins, W.A.; Tatarinov, D.; Alaee-Kerahroodi, M.; Lindner, U.; Stock, L.; Kaiser, E.;
Goedicke-Fritz, S.; et al. Contactless radar-based breathing monitoring of premature infants in the neonatal intensive care unit.
Sci. Rep. 2022, 12, 5150. [CrossRef]

61. Shokouhmand, A.; Eckstrom, S.; Gholami, B.; Tavassolian, N. Camera-Augmented Non-Contact Vital Sign Monitoring in Real
Time. IEEE Sens. J. 2022, 22, 11965–11978. [CrossRef]

62. He, S.; Han, Z.; Iglesias, C.; Mehta, V.; Bolic, M. A Real-Time Respiration Monitoring and Classification System Using a Depth
Camera and Radars. Front. Physiol. 2022, 13, 799621. [CrossRef]

63. Parchani, G.; Kumar, G.; Rao, R.; Udupa, K.; Saran, V. Efficacy of Non-contact BallistocardiographySystem to Determine Heart
Rate Variability. Ann. Neurosci. 2022, 29, 16–20. [CrossRef]

64. Han, W.; Dai, S.; Yuce, M.R. Real-Time Contactless Respiration Monitoring from a Radar Sensor Using Image Processing Method.
IEEE Sens. J. 2022, 22, 19020–19029. [CrossRef]

65. Kunczik, J.; Hubbermann, K.; Mösch, L.; Follmann, A.; Czaplik, M.; Pereira, C.B. Breathing Pattern Monitoring by Using Remote
Sensors. Sensors 2022, 22, 8854. [CrossRef]

66. Talukdar, D.; De Deus, L.F.; Sehgal, N. Evaluation of a Camera-Based Monitoring Solution Against Regulated Medical Devices to
Measure Heart Rate, Respiratory Rate, Oxygen Saturation, and Blood Pressure. Cureus 2022, 14, e31649. [CrossRef]

67. Cardone, D.; Merla, A. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology
in the Neurosciences. Sensors 2017, 17, 1042. [CrossRef]

68. Mendonça, F.; Mostafa, S.S.; Ravelo-García, A.G.; Morgado-Dias, F.; Penzel, T. Devices for home detection of obstructive sleep
apnea: A review. Sleep Med. Rev. 2018, 41, 149–160. [CrossRef]

69. Wang, J.; Spicher, N.; Warnecke, J.M.; Haghi, M.; Schwartze, J.; Deserno, T.M. Unobtrusive Health Monitoring in Private Spaces:
The Smart Home. Sensors 2021, 21, 864. [CrossRef]

70. Heiden, E.; Jones, T.; Maczka, A.B.; Kapoor, M.; Chauhan, M.; Wiffen, L.; Barham, H.; Holland, J.; Saxena, M.; Wegerif, S.; et al.
Measurement of Vital Signs Using Lifelight Remote Photoplethysmography: Results of the VISION-D and VISION-V Observa-
tional Studies. JMIR Form. Res. 2022, 6, e36340. [CrossRef]

71. Beltrão, G.; Martins, W.A.A.; Bhavani Shankar, M.R.; Alaee-Kerahroodi, M.; Schroeder, U.; Tatarinov, D. Adaptive Nonlinear
Least Squares Framework for Contactless Vital Sign Monitoring. IEEE Trans. Microw. Theory Tech. 2022, 71, 1696–1710. [CrossRef]

https://doi.org/10.1109/JSEN.2021.3061443
https://doi.org/10.1109/TIM.2021.3050827
https://doi.org/10.1109/JBHI.2020.3018394
https://www.ncbi.nlm.nih.gov/pubmed/32816681
https://doi.org/10.1038/s41598-021-81101-1
https://www.ncbi.nlm.nih.gov/pubmed/33542260
https://doi.org/10.1109/JBHI.2020.3009997
https://www.ncbi.nlm.nih.gov/pubmed/32750965
https://doi.org/10.1007/s12553-020-00503-9
https://doi.org/10.1007/s42486-021-00080-4
https://doi.org/10.3390/s22072539
https://doi.org/10.1109/embc48229.2022.9871231
https://doi.org/10.3390/s22197142
https://doi.org/10.3389/fped.2022.897961
https://doi.org/10.1109/ACCESS.2022.3190355
https://doi.org/10.1109/JSEN.2022.3148003
https://doi.org/10.1109/JSEN.2021.3128601
https://doi.org/10.1038/s41598-022-08836-3
https://doi.org/10.1109/JSEN.2022.3172559
https://doi.org/10.3389/fphys.2022.799621
https://doi.org/10.1177/09727531211063426
https://doi.org/10.1109/JSEN.2022.3199476
https://doi.org/10.3390/s22228854
https://doi.org/10.7759/cureus.31649
https://doi.org/10.3390/s17051042
https://doi.org/10.1016/j.smrv.2018.02.004
https://doi.org/10.3390/s21030864
https://doi.org/10.2196/36340
https://doi.org/10.1109/TMTT.2022.3222384


Sensors 2023, 23, 5038 27 of 27

72. Wang, Z.; Jin, B.; Li, S.; Zhang, F.; Zhang, W. ECG-grained Cardiac Monitoring Using UWB Signals. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 2022, 6, 186. [CrossRef]

73. Qiao, J.-H.; Qi, F.-G.; Liang, F.-L.; Ma, J.; Lv, H.; Yu, X.; Xue, H.-J.; An, Q.; Yan, K.-D.; Shi, D.; et al. Contactless multiscale
measurement of cardiac motion using biomedical radar sensor. Front. Cardiovasc. Med. 2022, 9, 1057195. [CrossRef]

74. Bunch, B.H.; Hellemans, A. The History of Science and Technology: A Browser’s Guide to the Great Discoveries, Inventions, and the People
who Made Them, from the Dawn of Time to Today; Houghton Mifflin: Boston, MA, USA, 2004; ISBN 9780618221233.

75. Pinheiro, E.; Postolache, O.; Girão, P. Theory and Developments in an Unobtrusive Cardiovascular System Representation:
Ballistocardiography. Open Biomed. Eng. J. 2010, 4, 201–216. [CrossRef] [PubMed]

76. Vogt, E.; MacQuarrie, D.; Neary, J.P. Using ballistocardiography to measure cardiac performance: A brief review of its history and
future significance. Clin. Physiol. Funct. Imaging 2012, 32, 415–420. [CrossRef]

77. Tadi, M.J.; Lehtonen, E.; Saraste, A.; Tuominen, J.; Koskinen, J.; Teräs, M.; Airaksinen, J.; Pänkäälä, M.; Koivisto, T. Gyrocardiogra-
phy: A New Non-invasive Monitoring Method for the Assessment of Cardiac Mechanics and the Estimation of Hemodynamic
Variables. Sci. Rep. 2017, 7, 6823. [CrossRef]

78. Botina-Monsalve, D.; Benezeth, Y.; Miteran, J. Performance analysis of remote photoplethysmography deep filtering using long
short-term memory neural network. Biomed. Eng. Online 2022, 21, 69. [CrossRef]

79. Kamshilin, A.A.; Nippolainen, E.; Sidorov, I.S.; Vasilev, P.V.; Erofeev, N.P.; Podolian, N.P.; Romashko, R.V. A new look at the
essence of the imaging photoplethysmography. Sci. Rep. 2015, 5, srep10494. [CrossRef]

80. Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16,
21434–21445. [CrossRef]

81. Trumpp, A.; Lohr, J.; Wedekind, D.; Schmidt, M.; Burghardt, M.; Heller, A.R.; Malberg, H.; Zaunseder, S. Camera-based
photoplethysmography in an intraoperative setting. Biomed. Eng. Online 2018, 17, 33. [CrossRef]

82. Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic Principles of Remote PPG. IEEE Trans. Biomed. Eng. 2017, 64,
1479–1491. [CrossRef]

83. Hassan, M.; Malik, A.; Fofi, D.; Saad, N.; Karasfi, B.; Ali, Y.; Meriaudeau, F. Heart rate estimation using facial video: A review.
Biomed. Signal Process. Control 2017, 38, 346–360. [CrossRef]

84. Cheng, C.-H.; Wong, K.-L.; Chin, J.-W.; Chan, T.-T.; So, R.H.Y. Deep Learning Methods for Remote Heart Rate Measurement: A Review
and Future Research Agenda. Sensors 2021, 21, 6296. [CrossRef]

85. Pereira, C.B.; Czaplik, M.; Blazek, V.; Leonhardt, S.; Teichmann, D. Monitoring of Cardiorespiratory Signals Using Thermal
Imaging: A Pilot Study on Healthy Human Subjects. Sensors 2018, 18, 1541. [CrossRef]

86. Pereira, C.B.; Czaplik, M.; Blanik, N.; Rossaint, R.; Blazek, V.; Leonhardt, S. Contact-free monitoring of circulation and perfusion
dynamics based on the analysis of thermal imagery. Biomed. Opt. Express 2014, 5, 1075–1089. [CrossRef]

87. Lahiri, B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol.
2012, 55, 221–235. [CrossRef]

88. Perpetuini, D.; Di Credico, A.; Filippini, C.; Izzicupo, P.; Cardone, D.; Chiacchiaretta, P.; Ghinassi, B.; Di Baldassarre, A.; Merla, A.
Is It Possible to Estimate Average Heart Rate from Facial Thermal Imaging? Eng. Proc. 2021, 8, 10. [CrossRef]

89. Ioannou, S.; Gallese, V.; Merla, A. Thermal infrared imaging in psychophysiology: Potentialities and limits. Psychophysiology 2014,
51, 951–963. [CrossRef]

90. Magalhaes, C.; Mendes, J.; Vardasca, R. Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers
in Biomedical Applications of Infrared Thermography. Appl. Sci. 2021, 11, 842. [CrossRef]

91. Di Credico, A.; Perpetuini, D.; Izzicupo, P.; Gaggi, G.; Cardone, D.; Filippini, C.; Merla, A.; Ghinassi, B.; Di Baldassarre, A.
Estimation of Heart Rate Variability Parameters by Machine Learning Approaches Applied to Facial Infrared Thermal Imaging.
Front. Cardiovasc. Med. 2022, 9, 893374. [CrossRef] [PubMed]

92. Boiko, A.; Scherz, W.D.; Gaiduk, M.; Gentili, A.; Conti, M.; Orcioni, S.; Seepold, R.; Madrid, N.M. Sleep Respiration Rate Detection
Using an Accelerometer Sensor with Special Holder Setup. In Proceedings of the 2022 E-Health and Bioengineering Conference
(EHB), Iasi, Romania, 17–18 November 2022; pp. 1–4. [CrossRef]

93. Haghi, M.; Asadov, A.; Boiko, A.; Ortega, J.A.; Madrid, N.M.; Seepold, R. Validating Force Sensitive Resistor Strip Sensors for
Cardiorespiratory Measurement during Sleep: A Preliminary Study. Sensors 2023, 23, 3973. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3569503
https://doi.org/10.3389/fcvm.2022.1057195
https://doi.org/10.2174/1874120701004010201
https://www.ncbi.nlm.nih.gov/pubmed/21673836
https://doi.org/10.1111/j.1475-097X.2012.01150.x
https://doi.org/10.1038/s41598-017-07248-y
https://doi.org/10.1186/s12938-022-01037-z
https://doi.org/10.1038/srep10494
https://doi.org/10.1364/OE.16.021434
https://doi.org/10.1186/s12938-018-0467-7
https://doi.org/10.1109/TBME.2016.2609282
https://doi.org/10.1016/j.bspc.2017.07.004
https://doi.org/10.3390/s21186296
https://doi.org/10.3390/s18051541
https://doi.org/10.1364/BOE.5.001075
https://doi.org/10.1016/j.infrared.2012.03.007
https://doi.org/10.3390/engproc2021008010
https://doi.org/10.1111/psyp.12243
https://doi.org/10.3390/app11020842
https://doi.org/10.3389/fcvm.2022.893374
https://www.ncbi.nlm.nih.gov/pubmed/35656402
https://doi.org/10.1109/ehb55594.2022.9991578
https://doi.org/10.3390/s23083973
https://www.ncbi.nlm.nih.gov/pubmed/37112315

	Introduction 
	Review Questions 
	Main Review Question (MRQ) 
	Specific Review Questions (SRQs) 


	Materials and Methods 
	Eligibility Criteria 
	Search Strategy and Information Sources 
	Selection Process and Data Extraction 
	Synthesis Methods 

	Results 
	Study Selection 
	Study Characteristics and Individual Publications 
	Synthesis Results and Questions of Interest 
	MRQ: How Can the Cardiac Activity and Respiration Be Contactlessly Monitored during Sleep? 
	SRQ-1: Which Technologies Can Be Used for the Contactless Measurement of Cardiac Activity and Respiration during Sleep? 
	SRQ-2: Which Sensors Are Used for Those Technologies? 
	SRQ-3: Which Physiological Parameters Can Be Extracted from Those Sensors? 
	SRQ-4: What Are the Medical Applications of Contactless Cardiac and Respiratory Monitoring during Sleep? 
	SRQ-5: What Are the Differences in the Quality of the Measurements (Contactless vs. Contact-Based/Attached Devices)? 
	Enhancements, Advantages, and Limitations 


	Discussion 
	Conclusions 
	Appendix A
	IEEE Xplore 
	PubMed 
	Scopus 
	Web of Science 

	References

