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Abstract: Terahertz (THz) is a promising technology for future wireless communication networks,
particularly for 6G and beyond. The ultra-wide THz band, ranging from 0.1 to 10 THz, can potentially
address the limited capacity and scarcity of spectrum in current wireless systems such as 4G-LTE
and 5G. Furthermore, it is expected to support advanced wireless applications requiring high data
transmission and quality services, i.e., terabit-per-second backhaul systems, ultra-high-definition
streaming, virtual/augmented reality, and high-bandwidth wireless communications. In recent
years, artificial intelligence (AI) has been used mainly for resource management, spectrum allocation,
modulation and bandwidth classification, interference mitigation, beamforming, and medium access
control layer protocols to improve THz performance. This survey paper examines the use of AI
in state-of-the-art THz communications, discussing the challenges, potentials, and shortcomings.
Additionally, this survey discusses the available platforms, including commercial, testbeds, and
publicly available simulators for THz communications. Finally, this survey provides future strategies
for improving the existing THz simulators and using AI methods, including deep learning, federated
learning, and reinforcement learning, to improve THz communications.

Keywords: Terahertz (THz); artificial intelligence (AI); 6G; THz MAC protocols; 6G and beyond; THz
simulators

1. Introduction

5G mobile wireless communications have impacted transportation, healthcare, retail,
finance, and manufacturing industries by providing high data rates and lower latency,
leading to automation in industry and other businesses, and significantly increasing data
traffic and intelligent device usage. 5G significantly improved data throughput, latency,
network dependability, energy efficiency, and ultra-massive connectivity. Furthermore, the
widespread use of smartphones, Internet of Things (IoT) devices, and new multimedia
applications have significantly increased mobile data traffic. Therefore, it has revolutionized
high-demand data applications such as video conferencing/streaming, virtual reality (VR),
telemedicine, and online gaming.

Figure 1 illustrates the continuous evolution of cellular wireless networks, where it
can be seen that the evolution is primarily dependent on the increased traffic demands
and network capacity. 1G cellular communication technology, mainly analog-based, was
introduced in the 1980s, offering only basic voice communication with limited coverage and
low capacity. 1G utilized frequency-division multiple access (FDMA) to divide the available
spectrum into multiple channels, each of which could be used by a single user. The 2G,
announced in the 1990s, offered voice calls and basic data services such as text messaging.
In addition, 2G offered time-division multiple access (TDMA) to divide the available
spectrum into time slots, improved voice quality, faster data speeds, and more features than
1G, such as a global system for mobile communications (GSM), general packet radio service
(GPRS), enhanced data rates for GSM evolution (EDGE). 3G technology was launched
in the 2000s, offering high-speed data services such as web browsing. 3G used code-
division multiple access (CDMA), improving performance owing to the use of the same
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spectrum by multiple users. 4G was announced in the early 2010s, offering high-speed
data services, such as video streaming and cloud gaming using orthogonal frequency-
division multiplexing (OFDM). 5G technology was introduced in the 2020s to provide
ultra-high data rates, lower latency, and massive device connectivity compared to 4G. In
addition, 5G introduced millimeter-wave (mmWave), multiple-input and multiple-output
(MIMO), beamforming [1], and network slicing, enabling faster downloads, more reliable
connections, and support for IoT and smart cities. In addition, the standardization timeline
of 5G with key features is illustrated in Table 1 [2–5]. In the next decade, the demands
and needs will continue to grow owing to the diverse application requirements, leading to
manifold new use cases where the requirements cannot be met by 5G networks, such as
holographic teleportation, remote surgery, and unmanned aerial vehicles (UAVs).
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Figure 1. The progression of cellular networks, starting with 1G and advancing to 6G, has been
accompanied by introducing various applications specific to each generation.

Table 1. 5G standardization timeline [3–5].

Release Year Key Features

15 (Phase 1) 2018 Non-standalone 5G new radio (NR), 5G core network, ultra-reliable low-latency communications
(URLLC), evolved mobile broadband (eMBB), massive machine type communications (mMTC),
beamforming, mmWave, long-term evolution (LTE)-NR dual connectivity, network slicing.

16 (Phase 2) 2020 Standalone 5G NR, enhanced URLLC, industrial IoT, NR sidelink with a focus on vehicle-to-
everything (V2X), MIMO, NR-time sensitive networking (TSN) integration, network automation, NR
positioning.

17 (Phase 3) 2022 5G NR evolution, enhanced MIMO, enhanced carrier aggregation, 5G NR in unlicensed spectrum,
NR-based satellite communications, NR for private networks, AI/ML-based network automation
and optimization, multi-access edge computing, NR-based device-to-device communication.

18 (Phase 4) 2024 Will improve physical random access channel coverage, latency, and signaling overhead in mobility
scenarios.

As 5G begins to be widely adopted, research institutions worldwide have started
to focus on developing 6G wireless communications, which is projected to be rolled out
by 2030 [6]. For instance, the University of Oulu launched the 6G Flagship initiative
at the beginning of 2018 to perform research activities and other things that could be
important for the launch of 6G [7]. The 6G flagship initiative aims to investigate various use
cases, including holograms, multi-sensory communications, Terahertz (THz) technology,
and pervasive artificial intelligence (AI). Similarly, the US Federal Commission has also
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begun exploring the THz spectrum, issuing licenses to the University at Buffalo and the
State University of New York to conduct outdoor experiments for developing improved
propagation models at 240 GHz and 1.05 THz with effective radiated power (ERP) of 330 W.

1.1. Methodology

We began this survey with a systematic literature review methodology, as described
in [8]. First, we started by looking for THz in conjunction with machine learning (ML)/deep
learning (DL)/reinforcement learning (RL) in the abstract of each paper found on widely
available databases. Then, we discarded out-of-scope papers and added some papers
manually with backward reference searching and cross-citation techniques.

1.2. Scope of the Survey

Several surveys and tutorials have presented the THz communication technology
and solution designed for 6G wireless communication systems in recent years. Table 2
focuses on and briefly describes the major topics addressed in the existing survey articles
and tutorials currently available on THz communication technology. Mainly, these survey
articles focus on antenna designs, medium access control (MAC) layers techniques, signal
processing, spectrum allocation, collision analysis, resource management, modulation clas-
sification, interference mitigation, beamforming, and propagation attenuation, highlighting
shortcomings and future strategies. In addition, the existing surveys in Table 2 focus on
providing a comprehensive review of the THz communication and are not focusing on
using ML methods for the THz performance improvements or discussing the available
platforms such as commercial, testbeds and publicly available THz simulators. This survey
fills this gap by presenting a constructive and comprehensive review of the use of AI in THz
communications and available platforms. This survey also identifies issues and presents
future recommendations to help researchers quickly identify the problem domain.

Table 2. A summary of existing general surveys and tutorials on THz from 2019 to May 2023.

Ref. Year Primary Focus Main Topics Covered by Surveys and Tutorials

[9] 2019 THz modulators Reviewed THz modulators, evaluated devices, metamaterials, and modulation tech-
niques for THz.

[10] 2019 THz channel features Emphasized the important characteristics of THz channels and recent progress in device
technologies.

[11] 2019 THz communications Overviewed the advancements in THz communications and discussed the key technolo-
gies encountered in THz.

[12] 2019 THz channel models Extensively presented the progress on THz device development and propagation model.
[13] 2019 THz-band operation Surveyed the challenges, opportunities, potential applications, and future directions for THz.
[14] 2020 THz applications Presented an outlook on THz and localization applications.
[15] 2020 THz channel features Examined the characteristics of the THz channel and highlighted challenges.
[16] 2020 THz MAC protocols Surveyed MAC protocols designed for THz.
[17] 2020 THz antennas analysis Conducted a thorough examination of THz antennas, including their research background

and fundamental principles.
[18] 2021 THz and mmWave Comprehensively compared the mmWave and THz bands, and highlighted potential

applications in 6G.
[19] 2021 THz capacity analysis Presented characteristics and capacity analysis of THz channels.
[20] 2021 THz channel modeling Focused on channel models and recent research efforts on factors affecting THz commu-

nication and discussed future research on THz channel modeling.
[21] 2021 THz technology potential Examined various aspects of THz technology, discussed the potential, and researched

THz technology towards commercialization.
[22] 2021 THz communications im-

provement
Examined intelligent reflecting surfaces (IRS) for improving THz communications and
addressed active and passive beamforming challenges.

[23] 2021 THz communication Presented an in-depth overview of how IRS and THz communications can work together
to create a flexible and adaptable wireless communication environment.

[24] 2021 THz signal processing Provided an in-depth overview of THz channels and summarized recent research efforts
on modeling these channels, and highlighted challenges.
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Table 2. Cont.

Ref. Year Primary Focus Main Topics Covered by Surveys and Tutorials

[25] 2021 THz for nanonetworks Outlined areas where THz nanonetworks could be utilized, highlighting the specific
requirements these applications would have for the supporting nanonetworks, which can
be used as a guide for designing the necessary communication and networking protocols.

[26] 2021 DL techniques Explored and discussed DL techniques for future 6G PHY communications systems.
[27] 2022 THz communication ad-

vancements
Summarized the advancements in THz communication over the past decade and identi-
fied the major obstacles that must be addressed for designing THz wireless systems in
the future, including those for 6G networks, as well as short-distance connections and
wireless connections for fixed locations.

[28] 2022 THz communication Discussed THz communication aspects, examined theoretical approaches to analyze and
design THz transmissions for increased connectivity and security, and explored spectrum
management strategies.

[29] 2022 THz Propagation Presented a comprehensive overview of the propagation channel characteristics and
modeling for current THz applications.

[30] 2022 THz communication sys-
tems

Investigated the unaddressed issues and emerging research fields that require further
exploration in the context of THz-band communication systems.

[31] 2022 THz-Empowered UAVs
in 6G

Highlighted opportunities, challenges, and design strategies that influence the benefits of
integrating THz-based features and UAV networks.

[32] 2022 THz channel characteristic Provided in-depth review of THz channel characteristics, highlighted open issues, and
future directions on THz.

[33] 2022 THz physical, link, and
network layers

Covered THz spectrum management, antennas, and beamforming, as well as integrating
other technologies that enable 6G in THz communication.

[34] 2022 THz antenna design Provided an overview of how ML, FL, and AI are being used in antenna design.
[35] 2022 RL-based security and

privacy
Reviewed reinforcement learning (RL)-based physical (PHY)-layer security techniques in THz.

[36] 2022 ML methods for THz Investigated signal processing and ML methods for THz sensing.
[37] 2022 ML techniques Presented the use of distributed ML for 6G networks including THz.
[38] 2023 ML for THz beamforming Covered ML techniques applied to mmWave and THz for beam management.
[39] 2023 AI in THz for healthcare Reviewed AI methods used to advance THz technology for cancer detection applications.

1.3. Contributions of the Survey

The contribution of this survey paper regarding existing surveys and tutorials is
outlined as follows:

1. A systematic method to detail the different THz performance aspects that are im-
proved using ML techniques. We will delve into key THz challenges and how they
are addressed through ML applications.

2. This survey gives readers a general understanding of the state of the art and current
trends in utilizing ML to address specific THz issues and challenges.

3. This survey provides an in-depth overview and analysis of the THz platforms, including
commercial platforms, testbeds, and publicly available network simulators. Additionally,
this survey presents future research prospects for advancing THz simulators and the
application of ML to improve or evaluate THz performance and provides readers with
an understanding of what still needs to be accomplished in THz using ML.

1.4. Structure of the Survey

Figure 2 illustrates the hierarchical structure of the survey, where Section 2 presents a
detailed background on mmWave and THz along with THz applications and a comparative
study of mmWave and THz. Section 3 presents the need for AI in THz, challenges, the state
of the art using DL and RL with their potentials, and shortcomings. Section 4 provides an
overview and analysis of THz platforms, including commercial, Testbeds, and publicly
available network simulators. Section 5 suggests future strategies in improving THz
communication using simulation and AI methods. Finally, the last Section 6 provides
concluding remarks on this survey paper.
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Figure 2. Structure of the survey, illustrating the hierarchical organization of the survey with the
overall survey design.

2. Background on mmWave and Terahertz

This section briefly discusses the mmWave and THz technologies and presents a
comparative study of both technologies.

2.1. mmWave Overview

mmWave is a promising 5G mobile cellular network technology. Using mmWave
MIMO small cells can significantly push the limits of legacy networks [40]. In the context of
5G and beyond, mmWave is expected to play a critical role in meeting the ever-increasing
demand for data-intensive applications such as video streaming, real-time gaming, and
virtual reality experiences [41]. The short wavelengths of mmWave signals also enable the
deployment of small-cell wireless networks that provide high-speed connectivity in densely
populated urban areas. The mmWave band consists of frequencies between 30 and 300 GHz,
experiencing significant attenuation due to oxygen absorption [42,43]. However, 35, 94,
140, and 220 GHz frequencies have less attenuation and can be used for long-distance
communication [42,44].

2.2. Terahertz Overview

The THz band, a trillion cycles per second, is the frequency range between 0.1 to
10 THz [12,45–47]. The advancement of wireless communication systems in the 6G and
beyond is anticipated to rely heavily on THz technology [48]. With its ability to provide
high-speed data transfer rates and low latency, THz technology is well-suited for various
applications, including virtual and augmented reality [49], high-definition video streaming,
and autonomous vehicles [33]. Higher data rates of up to Tbps make THz appropriate for
imaging and communication networks. The THz band has been exploited for imaging for
nearly two decades. Its non-ionizing properties make it safe for medical imaging and secu-
rity checks. Furthermore, we discuss the standardization efforts on THz communications.

2.2.1. Standardization Efforts on THz Communications

IEEE 802.15.3d is a standard for THz, which defines a MAC layer and physical layer
(PHY) for switched point-to-point links. The MAC layer supports aggregation and block
acknowledgment to improve efficiency at high data rates. The PHY layer operates in the
sub-THz frequency range between 252 GHz and 325 GHz [50–52]. The IEEE 802.15.3d
defines two PHY modes that can be used to transmit data at speeds of up to 100 gigabits
per second (Gb/s) in the range between 2.16 GHz and 69.12 GHz.

The IEEE 802.15.3d had been developed for nine years, from 2008 to 2017 [50]. The IEEE
802.15.3 Task Group 3d, formed in May 2014, developed a standard for THz switched point-
to-point connections and a standard for proximity links at 60 GHz. The THz switched point-
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to-point standard was approved and published in 2017. Furthermore, the development of
the IEEE 802.15.3d standard is a significant effort, providing a foundation for developing
new THz-based products and services, such as high-speed data links, medical imaging
systems, and security and surveillance systems. The standard is also expected to accelerate
the development of THz technology and its adoption by industry.

2.2.2. Applications of THz

The applications of THz can be categorized into macroscale and nanoscale. These
applications require high speeds, ranging from Gbps to Tbps, for outdoor and indoor [53].
Additionally, some applications require lower but still high speeds, such as Gbps, small-cell
networks, wireless local area networks (WLAN) [54], and communication between vehicles
and devices [55]. THz applications at the macroscale and nanoscale are highlighted in
Figure 3 [56].

Applications of THz
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OutdoorIndoor

THz local area 

network

Terabit WPAN

Imaging/

scanning

Sensing

Wireless 

comm.

OutdoorIndoorIn/On-body
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Figure 3. Terahertz band applications at the macroscale and nanoscale [12,56,57].

2.2.3. Macroscale THz Applications

Macroscale applications range from 1–10 m [58] with dimensions greater than
100 nanometer (nm) [58]. Macroscale applications require Tbps links, including ultra-
high-definition video and holographic conferencing, gaming, and VR. In conventional
cellular networks, THz is suited for indoor applications or high-speed wireless backhaul
small cells [57]. Similarly, in conventional WLAN applications, Terabit Wireless Local Area
Networks (T-WLAN) can seamlessly connect high-speed wired networks, such as optical
fiber links. In the same way, Terabit Wireless Personal Area Networks (T-WPAN) enable
ultra-high-speed communication between nearby devices. For instance, kiosk downloading
is one type of T-WPAN application where large video content is transferred to nearby
devices [18,59]. Furthermore, high path loss and absorption (e.g., in indoor and outdoor
scenarios) limit the distance of macroscale applications [60,61].

2.2.4. Nanoscale THz Applications

Nanoscale applications are short-range, usually less than 1 m. Specifically, nanoscale
refers to dimensions of 1 to 100 nm as defined in the “IEEE Standard Data Model for
Nanoscale Communication Systems” and “IEEE Recommended Practice for Nanoscale
and Molecular Communication Framework” [58,62]. The transmission distance of THz
waves can vary depending on the application [18]. For example, THz waves can be used to
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transmit data over a few micrometers in medical imaging. However, it can also be used to
transmit data over a few meters in the context of wireless communication [18].

A nanosensor network is formed by distributing several nanosensors around the body
(e.g., for surgical procedures) for data collection, where every sensor is equipped with a
carbon nanotube (CNT)-based nanoantenna, acting as a transceiver and communicates
using the THz frequency band [58,63]. Nanotechnology allows the creation of such tiny,
specialized nanocomponents that can perform specific tasks such as data storage, com-
putation, and sensing [63–65]. These nanodevices can communicate with each other in a
centralized or distributed manner, making them useful for biomedical, industrial, military,
and health monitoring applications. As an example of nanoscale, sodium, glucose, and
other ions in a body can be monitored [58]. THz communication can transmit the measured
data from the human body to a device outside the body. These data can then be processed
by an external device, such as a mobile phone or smart band, and sent to a medical device
or doctor [18]. Other studies in [60,61] investigated the propagation in human tissues,
focusing on fat absorption under the THz band. They revealed that fat absorbs THz waves
strongly, limiting the range of communication between nanodevices in human tissues.
However, the results also show that a distance of a few millimeters might be sufficient to
ensure a reliable communication link.

2.3. Comparison between THz and mmWave

Table 3 briefly compares mmWave communication and THz band. The THz and
mmWave bands are adjacent to each other, but they have distinct properties. For example,
the THz band offers greater bandwidth than the mmWave band, allowing higher data rates
and reduced interference [66–69].

Table 3. Comparison between mmWave and THz wireless communication technologies [16].

Features mmWave Terahertz

Transceivers Device Available [70] Time-domain spectroscopy (TDS) and photonic-based
frequency-domain spectroscopy (FDS) [71–74]

Modulation High order modulation, supports 1024-QAM for
downlink and 256-QAM for sub-7 GHz uplink
[75–77]

low order modulation [57], supports Time Spread On-
Off Keying (TS-OOK), Rate Division (RD-TS-OOK), Di-
rect Sequence (DS-OOK) [78]

Antenna Omni, directional, MIMO supported with high
gain [79]

Omni and directional with phased array [75,80]

Bandwidth 0.03–0.3 THz [38] 0.1–10 THz [38]
Wavelength [mm] [55] 3–10 0.03–3
Array size [55] 10 × 10 100 × 100
Channel models [81] Available [82–87] Available [88–93]
Standards 5G NR [94], IEEE 802.11ad [95], and IEEE

802.11ay [96]
IEEE 802.15.3d [50]

Mobility Yes [97] Yes [98,99]
Beam Management Yes [100] Yes [38]
Outdoor Deployment Yes [79,84] Yes [90]
Free-space loss Low High
Coverage High [101] Low
Range Up to 200 m or less [102,103] Up to 10 m [18,57]
Device size A few millimeters 1 to 100 nanometer [58,62]
Wavelength 1 mm–30 µm [104,105] 3 cm–1 mm
Data rate Up to 10 Gbps [59,79] Up to 100 Gbps [50]
Power consumption Medium Medium
Network topology Centralized and clustered Centralized, clustered, and distributed
Line-of-sight Both Both
Non-line-of-sight Both Both
Source of noise Thermal and molecular noise Thermal
Simulators 5G cellular network [106], 5G NR networks [107] TeraMIMO [108], NYUSIM [109], CloudRT [110], Nano-

Sim [111], THz propagation [112], TeraSim [113],
TeraSim-6G [114], and TeraSim-MAC [115]
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The THz band has transmission windows that vary with distance, reaching up to THz
bandwidth, while the mmWave band has a 10 GHz bandwidth and cannot achieve Tbps
link speeds. For THz to attain data rates of up to 100 Gbps, the link capacity must be several
times greater than the necessary user data rate to ensure prompt data delivery [59,116].
As frequencies increase in the THz band, Tbps links can achieve moderate and practical
spectral efficiencies of a few bits per second per hertz. The THz band permits higher
link directionality than mmWave at the same transmitter aperture due to less free-space
diffraction and shorter wavelengths than mmWave. Smaller antennas with strong directivity
in THz communications can also decrease transmitted power and interference. Additionally,
the risk of eavesdropping is lower in THz bands than in mmWave bands because of THz
high directionality beams [42,93,117,118].

3. Terahertz Meets AI

This section highlights state-of-the-art THz communications, including the need for
AI in THz technology, challenges, state-of-the-art deep learning and reinforcement learning
solutions, their potential, and shortcomings.

3.1. Need for AI in THz

AI comprises various techniques, such as ML, DL, and RL, that can be used to analyze
and interpret large complex datasets. In recent years, the use of AI in THz has been gaining
momentum as it is becoming increasingly important. Furthermore, the demand for faster
and more efficient communication and sensing technologies continues to grow. Therefore,
AI with reduced complexity is recommended in model and algorithm deficit cases [119].
The lack of a proper model is called the "model deficit," which can be caused by a lack of
knowledge about the specific domain.

On the other hand, the “algorithm deficit” refers to a situation where a mathematical
model is appropriately known. However, the optimization of such mathematical models is
considered challenging. Moreover, AI methods seamlessly integrate contextual data into the
decision-making process. Thus, AI can optimize the performance of THz communication
systems by adaptively adjusting the system parameters to account for changing channel
conditions, THz sensing, advanced signal processing techniques, and so on [120].

3.2. Challenges

THz band has the potential to provide high data rates and low latency. However, it
faces several challenges, including limiting the distance due to high path loss, propaga-
tion attenuation, and absorption in indoor and outdoor environments [60,61], the narrow
bandwidth of the THz band [121], channel estimation and beam training in multi-hop
THz communications for intelligent MAC design [98,122], resource allocation in D2D
scenarios [123,124], and modulation schemes classifications. Researchers have used DL
and RL methods to address these challenges, as discussed in Sections 3.3 and 3.4, respec-
tively. Additionally, the potentials and shortcomings of these methods are highlighted in
Tables 4 and 5.

3.3. Deep Learning: State of the Art

The emergence of DL in the THz is a cutting-edge and rapidly expanding field that
holds tremendous promise for revolutionizing THz research and transforming its applica-
tions. Table 4 illustrates DL methods applied to improve the THz technology with their
potential and shortcomings. The highlighted approaches in Table 4 are designed to improve
beam prediction [125], overcome noise reduction [126], improve spectrum allocation [127],
classify THz modulation [128], to analyze collision and overcome it by designing an intelli-
gent MAC [98], identify the type of modulation used in THz communication system [129],
improve resource allocation [124], and classify THz bandwidth [121].

The beam misalignment problem caused due to the mobility of UAVs [130], was in-
vestigated and resolved by the authors in [131] by proposing RNN based on echo state
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networks to reduce the outage probability of THz-band wireless links in UAV networks.
Their proposed LeTera method uses a UAV mobility pattern to predict the optimal beam
width. The LeTera was evaluated in various weather conditions under UAV flight experi-
ments. The results of the LeTera method showed 99% accuracy, showing LeTera predicts
the optimal beam width accurately. Furthermore, it was suggested that LeTera could be
used to reduce outages and improve link capacity.

The paper [127] proposed an unsupervised learning-based approach for THz spectrum
allocation in a multiuser THz network. Their proposed method divided the THz spectrum
into sub-bands with unequal bandwidths to determine the optimal sub-bandwidth and
transmit power. They trained a DNN model and approximated the near-optimal solutions.
The numerical results illustrated that their proposed DNN method achieved a higher data
rate than existing approaches.

The authors [128] proposed a convolutional neural network (CNN) approach, which
uses the constellation diagram of the received signal as the input and applies a two-stage
CNN architecture for modulation recognition. The first stage applies a convolution layer
to extract the features, and the second stage uses fully connected layers for classification.
The proposed approach was compared with other existing methods, and simulation results
showed that it outperforms traditional techniques, especially for low signal-to-noise ratio
(SNR) values.

Table 4. DL examples applied to THz technology.

Ref. Year DL Method Potentials Shortcomings

[131] 2020 RNN Efficient beam alignment in
UAVs

The LeTera scheme may not be effective in environments with obsta-
cles since obstacles can block the beam and cause outages.

[125] 2021 GRU Enhances beam prediction It is dependent on a large training dataset for predicting the beam-
forming weights. It may limit the range and reliability of beam
prediction even with advanced machine learning models due to the
high attenuation of THz signals.

[126] 2021 DNN Reduces noise DNN model can result in poor performance when the model is ap-
plied to new THz signals with different types or levels of noise.

[127] 2022 DNN Efficiently allocates spec-
trum

The performance of the DNN-based approach for spectrum allocation
can be affected by the complexity of the wireless environment.

[128] 2022 CNN Effectively classifies modu-
lation

CNN is dependent on a large training dataset for accurately clas-
sifying different modulation schemes, which can be challenging to
obtain in THz communication systems due to the limited availability
of hardware.

[98] 2022 LSTM,
GRU, and
Bi-LSTM

Reduces collision of packets The dataset collection is not described in detail, which limits the regener-
ation of the collision analysis through LSTM, Bi-LSTM, and GRU.

[129] 2022 CNN and
LSTM

Recognizes signal modula-
tion effectively

The approach may require large labeled data for training to achieve
high accuracy, which could be a challenge to obtain in some in-
door/outdoor scenarios.

[124] 2023 LSTM Efficient resource manage-
ment

Relies on simulation results rather than actual experimental data,
which may limit the generalization of the findings to real-world
scenarios.

[121] 2023 CNN Classifies modulation and
bandwidth

The experiments were conducted at a single frequency (120 GHz)
and may not generalize to other frequencies in the THz band.

[65] 2023 CNN & GA Efficient beam management
at THz frequencies

Genetic algorithm is a heuristic algorithm, which may not guarantee
the best solution.
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Table 5. RL examples applied to THz technology.

Ref. Year DL method Potentials Shortcomings

[132] 2020 DRL Reduces propagation atten-
uation

DRL requires large amounts of training data to learn the underly-
ing propagation environment, which can be time-consuming and
resource-intensive.

[133] 2020 RL Mitigates interference The proposed approach assumes that interference is sporadic and
short-lived, which may not be the case in all scenarios and could
limit the performance of the algorithm.

[134] 2021 MAB Efficient resource allocation
in D2D scenario under
multi-hop communication

RL methods can be computationally expensive and may require
significant resources to implement.

[135] 2022 FDRL Improved throughput using
beamforming

Only SINR feedback as CSI may not perform real-world scenarios,
which could limit its practical implementation.

[136] 2022 DRL-based
FL

Efficient resource allocation
to D2D-enabled wireless net-
works

In a D2D environment, user mobility can vary widely. It may not
conform to the assumed models, leading to sub-optimal resource
allocation and reduced network efficiency.

[99] 2022 GAN Improved routing in a dy-
namic network using intel-
ligent MAC protocol

It does not account for interference caused by the movement of
nodes in other communication links. This can result in unexpected
disruptions in communication links and impact the overall network
performance.

[137] 2022 DQN Minimizes network latency
efficiently

It does not account for collaborative computation offloading among
multiple UAVs and potential errors in channel estimation.

[138] 2023 RL Enhances throughput of the
network

The work does not consider the impact of noise and interference on
the performance of the routing scheme.

[38] 2023 DRL Improved energy efficiency DRL is a computationally intensive technique, which may not be
suitable for large-scale UDNs.

The paper [129] proposed a DL method to recognize signal modulation schemes at
the THz frequency band. First, the paper highlighted the challenges of base-band signal
processing in the THz frequency band due to the erratic fluctuations caused by severe
weather and urban multipath scattering. Next, the paper explored DL techniques to
address this challenge, specifically CNN and long short-term memory (LSTM) networks, to
recognize signal modulation schemes. Finally, their study established indoor and outdoor
environments to test the proposed DL method in severe weather conditions and varying
SNR situations. The results of the study demonstrated the efficacy of DL-based techniques
for modulation recognition in the THz frequency band.

In [98], the authors enhanced the existing MAC protocol called Adaptive Directional
Antenna Protocol for Terahertz (ADAPT) [115], using multi-layer recurrent neural network
(RNN). The ADAPT protocol shown in [115] comprises a 3-way handshake scheme using
a turning AP. After turning into a new sector, the AP transmits a “call to action (CTA)”
control packet to nodes. The nodes answer with a “request to send (RTS)” packet to the
AP if the node has data to send. The AP waits for Twait time. To this end, there are three
possible cases: (1) zero RTS received, (2) 1 RTS received, and (3) greater than 1 RTS received.
In case (1), the sector has no nodes; as a result, the AP skips the current sector and turns into
a new sector. Meanwhile, in case (2), the AP has received exactly one RTS from the node.
After Twait time, the AP sends “clear to send (CTS),” completing the 3-way handshake.
After the 3-way handshake, data transmission occurs between the node and AP. Finally,
in case (3), the AP has received more than 1 RTSs. In such a situation, the AP divides the
transmission slot for nodes. However, only one data packet can be transmitted by the
node to AP in each sector. The [98] analyzed the collision behavior of ADAPT protocol
considering macroscale use case. In their simulation, the BS was placed in the middle
of a cell comprising 18 m of radius, where the devices were distributed randomly (i.e.,
ranging from 15 to 960). Their study shows the collision rate of control frames for the two
topologies (centered and uniform) and two population values considering 30 sectors and
960 mobile nodes. As the population density increases, the collision rate also increases.
The [98] evaluated the efficiency of sector collision classification using different RNN types
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(LSTM, Bi-LSTM, and GRU). The test accuracy of sector collisions of Bi-LSTM was higher
(i.e., 90.03%) compared to LSTM (85.04%) and GRU (i.e., 87.66%).

A new resource management scheme for THz communication is proposed in [124].
The scheme jointly optimizes the reflection coefficient of reconfigurable intelligent surfaces
(RISs), the transmit power of the base station (BS), and the wideband THz resource block
allocation. RISs are a type of metasurface that can be used to reflect and redirect electro-
magnetic waves. This can be used to improve the performance of THz communication
systems by reducing path loss and increasing the bandwidth. The method in [124] adopts
an LSTM relying on optimization and ensemble learning methods. Simulation results
showed significant spectral efficiency gains for eMBB while ensuring the reliability and
latency requirements of the URLLC service. The proposed scheme is a promising approach
for improving the performance of THz communication systems. It can support various
services, including eMBB, URLLC, and virtual reality/augmented reality (VR/AR). How-
ever, the real-time performance of the ensemble learning model is slightly worse than the
optimization approach.

The authors in [121] leveraged a DL method based on CNN, aiming to classify modu-
lation and bandwidth at the THz band. The dataset was collected at 120 GHz for various
MCS and SNR. The CNN model was trained on the dataset and achieved accuracies of up
to 78% and 90%. They also proposed a boosting technique to improve inference quality
while accounting for memory and latency constraints and evaluated the latency of the
proposed DL method by deploying it using FPGA. Their study provided critical insights
into the potential of DL at the PHY layer for adaptive THz communications.

A new method for designing metasurfaces at THz frequencies was proposed in [65].
Their method combines CNN and genetic algorithms (GA). First, they trained a CNN to
predict the amplitude and phase response of a metasurface based on the provided pattern,
allowing it to speed up the forward prediction process. Then, once the CNN is trained, the
authors create an inverse design model based on GA for the metasurface patterns that meet
the desired amplitude and phase requirements. At the time of testing, it was shown that a
metasurface pattern split the input beam into two beams with uniform power distribution.
The GA-based metasurface design model found this pattern in only 10 min, faster than the
traditional trial-and-error method.

3.4. Reinforcement Learning: State of the Art

RL has the potential to revolutionize THz technology by enabling more efficient and ef-
fective use of THz radiation in a wide range of applications. Table 5 illustrates RL methods
applied to improve the THz technology with their potential and shortcomings. The high-
lighted approaches in Table 5 are designed to improve the propagation attenuation [132],
interference mitigation [133], multi-hop communication [134], THz beamforming [135],
resource allocation to D2D-enabled wireless networks [136], MAC protocol for LoS mobile
networks [99], latency minimization [137] etc.

To address high propagation attenuation and molecular absorption, a hybrid beam-
forming scheme was proposed in a multi-hop environment [132]. They combined a digital
beamforming matrix at the BS with analog beamforming matrices at the RIS. Their pro-
posed method leverages DRL to optimize beamforming and combat signal loss. Simulation
results showed that this approach increases the coverage range of THz communications by
50% compared to existing benchmarks.

The authors proposed an RL framework to mitigate intermittent interference in THz
networks [133]. Their proposed RL framework uses an adaptive multi-thresholding strat-
egy to mitigate interference from directional links in the time domain. Moreover, the
approach does not depend on pre-existing knowledge of interference statistics, making it
an appropriate solution for mitigating interference in ever-changing scenarios. Simulation
outcomes validated the BER performance of the proposed technique when compared to
conventional time-domain interference mitigation strategies.
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To tackle the challenges associated with multi-hop THz communications, the au-
thors [134] proposed a new approach to beam training based on RL. First, the authors of
the paper divide the multi-hop THz link into several individual single-hop links. They then
train an RL agent to dynamically and collaboratively select the number of beam training
levels across all individual single-hop links. Their proposed RL solution, based on the
multi-armed bandit (MAB) framework, demonstrated rapid convergence in simulations
with random channels and noise. Furthermore, they showed that their approach achieves
a significant performance gain over traditional hierarchical beam training with a fixed
number of training levels. This new approach to beam training is a promising step towards
realizing multi-hop THz communications. It is a more efficient and effective way to train
beams and improve the performance of multi-hop THz links.

The paper [135] introduced federated learning (FL) approach to training the beam.
First, the authors divided the cellular network into several base stations. They then trained
a deep deterministic policy gradient (DDPG) agent at each BS to learn a THz beamforming
policy with limited channel state information (CSI). Moreover, they update their DDPG
models using hidden information to reduce inter-cell interference. The hidden information,
which is interference from the estimated CSI, is extracted and exchanged by the federated
edge learning (FEL) server. Simulation results indicated that their approach achieves a
significant performance gain over conventional non-learning-based and existing non-FDRL
benchmark optimization techniques. Additionally, simulation results indicated that the
cellular network could achieve higher throughput when more THz CSI and hidden neurons
of DDPG are incorporated.

The paper [136] proposed a resource allocation (e.g., mode selection, power control,
and channel allocation) approach using DRL and FL. They then trained a DRL agent at
each cell to learn how to allocate resources to maximize the overall capacity and minimize
power consumption while guaranteeing the quality of service (QoS) requirement of both
cellular and D2D users. The DRL agents are updated using FL, which allows them to learn
from each other without sharing their data. Their simulation results indicated that the
proposed approach is robust to channel variations.

In [99], the authors proposed a MAC algorithm for mobile THz airborne networks
(TANs). Their proposed protocol comprises three distinct characteristics: spatiotemporal
TAN state learning, precise two-tiered MAC operational control, and comprehensive TAN-
specific MAC behavior management. The primary aim was to create a predictive network
state estimation model using deep learning and generative adversarial networks (GANs),
enabling the coordination of all one-hop neighbors for scheduled, antenna-aligned line-
of-sight communication. In addition, the authors suggested implementing nested deep
reinforcement learning (DRL) featuring outer and inner policy loops for determining high-
level and low-level actions. Simulation results revealed the seamless, high-speed THz
communication at the MAC layer, supported by robust RF links under mobility scenarios.

A DRL algorithm for joint optimization of UAV placement, resource allocation, and
computation offloading is investigated [137]. The proposed deep Q-learning (DQN) and
DDPG search for near-optimal solutions were studied in a highly dynamic environment.
Simulation results in different scenarios demonstrated the effectiveness of the proposed
algorithms in solving the formulated non-convex problem of minimizing latency. The
proposed solution is a promising approach, increasing the system capacity and meeting the
real-time demands of latency-sensitive applications.

An RL analytical model was proposed for a multi-hop scenario in [138], inspired by
the human cardiovascular system based on the use of Markov decision processes (MDPs).
Their proposed MDP model is a four-dimensional (4D), simultaneously characterizes the
nanodevice motion in the bloodstream and its energy level. The model was evaluated
using MATLAB and Simpy simulators considering a hand vein scenario. It was found
that multi-hop scenarios can significantly improve the throughput of the nanonetwork
without sharply penalizing other aspects, such as energy consumption. Furthermore, their
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study suggests that RL-based dynamic multi-hop routing schemes can be a valuable tool
for flow-guided nanonetworks in the human cardiovascular system.

The authors in [38] proposed a decentralized DRL-based technique to maximize energy
efficiency in ultra-dense networks. Their proposed DRL method comprises two networks:
actor and critic. Actor-network is responsible for determining the node association using
the local data. In contrast, a critic network determines the energy-efficient user association
and informs the decision of the actor-network. In their proposed DRL method, the DRL
agent in each base station can determine the user association decision. Their results showed
that their method achieved significant energy efficiency gains (i.e., more than 50%) over
conventional techniques. Furthermore, it was suggested that the method could be utilized
for user scheduling and resource allocation.

4. Terahertz Platforms

To quickly progress in communication and networking solutions, it is essential to
develop experimental testbeds and simulation tools in parallel [139–144]. The THz tech-
nology is rapidly evolving, and various commercial, testbed, and simulator platforms
are available to researchers and developers. The remainder of this section discusses the
available platform in detail.

4.1. THz Commercial Platforms

Typically, these platforms offer the most features and performance. Therefore, they
are a good option for researchers and developers who need a turnkey solution that can be
used to develop and deploy THz applications quickly and easily.

There are two types of commercial THz devices: time-domain spectroscopy (TDS)
and photonic-based frequency-domain spectroscopy (FDS), a widely used method for THz
measurements [71–74,145]. TDS devices use a THz pulse to excite a material and measure
the time it takes for the material to respond. The time-domain response is then converted
to a frequency-domain spectrum. TDS devices are non-destructive and can measure a wide
range of materials. However, they can be time-consuming and require high-power THz
sources. On the other hand, FDS is a continuous-wave and frequency-tunable method,
producing narrow-band signals. These devices use a THz field to excite a material and
measure the frequency-domain response of the material. FDS devices are fast and can
measure a wide range of materials. However, they are sensitive to environmental factors
and require high-quality optical components.

Various platforms are available from different vendors, offering different features and
capabilities. As an example of THz platforms, such as ZEMAX THz Design Studio [146],
TERAVIEW THz-3000 [147], Menlo Systems THz-QCL source [148], and Advantest THz-
3000 [149] are available. A comparison table of these commercial platforms is illustrated
in Table 6.

Table 6. Comparison of commercial platforms for THz communications considering various features.

Device Manufacturer Frequency Range Wavelength Range Applications

ZEMAX THz Design Studio ZEMAX 0.1–10 THz 300 µm–3 mm design and simulation of THz
components and systems

TERAVIEW THz-3000 TeraView 0.1–3 THz 3 mm–100 µm spectroscopy, imaging, sensing
Menlo Systems THz-QCL Menlo Systems 0.1–10 THz 300 µm–3 mm spectroscopy, imaging, sensing,

communications
Advantest THz-3000 Advantest 1–10 THz 300 µm–3 mm material inspection and analysis

4.2. THz Testbeds

A testbed is a platform for testing and validating new technologies and techniques
in a controlled and reproducible environment. Testbeds are essential for research and
development in THz communication, allowing researchers to test and optimize the designs
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before deploying them in real-world scenarios. Recently, the TeraNova testbed was uti-
lized in [143], offering a wide range of features, including point-to-point links, multi-hop
networks, and free-space optical communications, making it ideal for the development
and evaluation of new THz communication technologies. The TeraNova testbed is a joint
project between the University of New South Wales in Australia and the University of
California, Berkeley in the United States. The TeraNova platform is an integrated testbed for
ultrabroadband wireless communications at THz frequencies [143]. The TeraNova testbed
platform primarily comprises a transmitter and a receiver, operating at frequencies up to
1.05 THz. The transmitter is based on a Schottky-diode [150] frequency multiplying and
mixing chain, and the receiver is based on a sub-harmonic frequency mixer. The transmitter
and the receiver are integrated with digital signal processing back-ends that allow various
modulation and coding schemes to be implemented.

4.3. THz Simulators

A simulator is an essential tool for analyzing and evaluating the performance of
wireless communication systems. With the ever-increasing demand for high-speed and
reliable communication networks, simulation tools have become even more critical in
designing and optimizing these systems. In the context of THz communication, where
experimental setups are often costly and challenging, simulations are even more valuable.
Furthermore, simulation tools can help to validate and improve solutions by providing a
safe and controlled environment. Here, we present several publicly available THz network
simulators, TeraMIMO [108], NYUSIM [109,151,152], CloudRT [32,110], Nano-Sim [111],
THz propagation [112], TeraSim [113], TeraSim-6G [114], and TeraSim-MAC [115].

4.3.1. TeraMIMO

The TeraMIMO [108] channel simulator was designed in MATLAB for wideband ultra-
massive MIMO THz communications. The simulator employs a Monte Carlo-based method
to generate random channel realizations with realistic fading and shadowing effects by
modeling the THz channel in both the time and frequency domains. It includes directional
antenna patterns, beamforming, and spatial correlation features. TeraMIMO supports two
modes of operations: (1) graphical user interface (GUI) and (2) MATLAB scripting. In the
GUI mode, the user can input the simulation parameters (e.g., general, UM-MIMO, and
THz-specific parameters) and then run the simulation. After the simulation is executed,
the results are stored in the workspace. Overall, the TeraMIMO channel simulator is a
powerful tool for researchers and engineers developing THz communication systems. It
allows system performance evaluation in realistic channel conditions, and its modular
design allows for the simulation of various scenarios. The ability to handle UM-MIMO
systems and wideband signals makes it particularly useful for evaluating the potential of
THz communications for future high-speed wireless networks.

4.3.2. NYUSIM

The New York University (NYU) developed a simulator called NYUSIM based on
their measurement for mmWave and THz channels [109,151]. The simulator was built on
real-world measurements at multiple mmWave frequencies, from 28 to 73 GHz. NYUSIM
4.0 [152] has been expanded to the frequency range of 0.5–150 GHz and supports simula-
tions for urban micro, urban macro, rural macro, and indoor hotspot scenarios [153].

4.3.3. CloudRT

CloudRT is a cloud-based platform designed for ray tracing that can be used to
simulate the performance of wireless communication systems, such as 5G and THz, in a
variety of applications, such as vehicle-to-infrastructure (V2I) [32,110]. CloudRT supports
various frequencies, from 450 MHz to 325 GHz. It has been used to simulate the propagation
of THz waves in various environments, including urban, rural, indoor/outdoor, and
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railway [154–158]. The CloudRT is a powerful tool that can be used to design and optimize
THz communication systems performance.

4.3.4. Nano-Sim

Nano-Sim is an ns-3 extension developed by the authors of [111] to model electromag-
netic nanoscale communication networks in the THz range with a propagation loss model
adapted from [159]. However, the THz-band communication scenario is only implemented
at the nanoscale. Moreover, it utilizes a streamlined channel model with the nano-node
transmission range as its only parameter. Furthermore, it fails to account for the need for
nanodevices for energy harvesting.

4.3.5. THz Propagation

For frequencies up to 2 THz, the authors of [112] created a THz directional propagation
loss model for ns-3. This model is used for the cases where both the transmitter and receiver
use collimated lenses (e.g., light rays are parallel to each other), resulting in the signal in
a minimum divergence. However, in the terahertz domain, atmospheric molecules cause
signal attenuation. This module accurately predicts THz propagation loss for a single
frequency. However, it is not a complete network simulator module since neither the PHY
nor MAC layer is implemented.

4.3.6. TeraSim

The Ultrabroadband Nanonetworking Laboratory (UN-Lab) developed ns-3 module for
THz band, namely “TeraSim”. The simulator was designed for nanoscale and macroscale
applications [113,115]. This ns-3 module can simulate THz-band communication networks,
which operate in the frequency range of 0.1 to 10 THz [115,160]. TeraSim takes into account
the unique characteristics of THz devices and the THz channel, including a standard chan-
nel module that uses a frequency-selective channel model, parallel modules for nanoscale
and macroscale situations, a THz directional antenna model, and an energy harvesting
model [161–163]. In addition, TeraSim implements PHY and MAC layers modules, tailored
with well-known MAC protocols ALOHA and CSMA at the link layer.

4.3.7. TeraSim-6G

TeraSim-6G was introduced in [114], which extends upon the previously developed
TeraSim simulator [113]. The TeraSim-6G comprises two parts: MATLAB and ns-3. The
TeraSim-6G implements the channel models from [82,161] in MATLAB. The MATLAB part
is then integrated with the ns-3 module for a realistic simulation environment. The ns-3
part contains the mmWave and THz scripts for various scenarios, such as short and long
distances, with coverage of 1 to 5 m and 10 to 20 m, respectively. TeraSim-6G considers a
THz link operating at 1.0345 THz with 74 GHz of bandwidth and a mmWave link operating
at 28 GHz with the maximum bandwidth allowed in 3GPP NR (e.g., 400 MHz) using a
constant bit rate source with UDP at the transport layer.

4.3.8. TeraSim-MAC

TeraSim-MAC [115] is the extended version of TeraSim ns-3 module [113], which
describes the implementation of a new MAC protocol for the macroscale scenario. In
addition, TeraSim-MAC models the peculiarities of the THz frequency-selective channel.
In this module, the authors used IEEE 802.15.3d standard for high data rate wireless
networks [50]. TeraSim-MAC uses a single carrier signal with a bandwidth of 69.12 GHz,
operating in the frequency range of 252.72 to 321.84 GHz.

Comparative Analysis of the THz Simulators

A detailed comparison of the available THz ns-3 modules and other simulators is
illustrated in Table 7. Among them, TeraSim is the widely adopted ns-3 simulator module
in the literature due to open-source and the availability of basic THz features, including
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physical layer protocol (e.g., IEEE 802.15.3d) and a wide range of frequency spectrum.
Apart from it, these two works [114,115] extended the TeraSim by adding exciting new THz
features along the acknowledgment (ACK) support and MAC protocols.

Table 7. Comparison of available THz simulator modules and standalone simulators.

Features Nano-Sim THz Prop-
agation

TeraSim TeraSim-6G TeraSim-
MAC

TeraMIMO NYUSIM CloudRT

Simulation
platform

ns-3 ns-3 ns-3 ns-3 ns-3 MATLAB standalone standalone

Application
scenario

nano nano nano & macro nano nano & macro macro macro macro

Physical
layer protocol

IEEE
802.15.3d

Propagation loss
model
Energy harvest-
ing model
Mobility
Adaptive MCS

5. Future Strategies

The future strategies are broadly categorized into simulator enhancements and using
ML techniques to evaluate and potentially improve THz performance.

5.1. Simulator Enhancements

Current THz simulators offer a promising set of features, but they can be further
enhanced to provide more realistic evaluations of the performance of THz systems. This
can be achieved by adding mobility, downlink traffic, multiple antennas, and building
environments. Therefore, it will allow the researchers to understand better how THz
systems will perform in real-world scenarios, which will help to design more efficient and
effective MAC protocols for THz system.

5.1.1. Mobility

Mobility is one of the essential aspects of communication, where nodes can move
from one location to another. In the 6G communications system, some applications require
mobility in indoor and outdoor scenarios, for instance, tracking applications [55]. Thus, it
would be beneficial to introduce node mobility in TeraSim-MAC ns-3 module to evaluate
the behavior and performance of the THz system. The mobility models available in ns-3
include Constant Position, Constant Velocity, Constant Acceleration, Gaussian Markov,
Hierarchical, Random Direction 2D, Random Walk 2D, Random Waypoint, Steady State
Random Waypoint, and Waypoint [164]. The most common and widely adopted mobility
model in the literature is the Random Walk 2D mobility model for asset tracking [165,166].

5.1.2. Downlink Traffic

Downlink traffic refers to data transmission from a central source (access point or
network server) to multiple receivers (mobile devices or other networked devices). THz
communication poses challenges regarding signal propagation, as THz frequencies are
affected by atmospheric absorption and scattering. Therefore, efficiently managing down-
link traffic in a THz communication system will require advanced techniques such as
beamforming [167], modulation, and error correction.

5.1.3. Multiple Antennas in AP

Using multiple antennas in AP can significantly improve the performance of wireless
communication systems. MIMO can be used to increase the capacity, coverage, and
reliability of THz-based wireless networks. However, several issues must be addressed
when implementing multiple antennas in THz APs. One of the main issues is the high cost
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of THz equipment, which can make it challenging to deploy large antennas. Additionally,
the limited range of THz waves makes it difficult to achieve a wide area with a single AP.

AI-enabled solutions can be used to overcome these issues and optimize the perfor-
mance of multiple antennas in THz APs. For example, AI-based beamforming techniques
can direct the signal toward the intended user and reduce interference. Additionally,
AI-based algorithms can be used to optimize the deployment of multiple antennas, con-
sidering factors such as the location of users, obstacles, and other environmental factors.
AI-based techniques can also be used to dynamically adjust the transmission power and
modulation scheme of the APs to adapt to changing channel conditions and improve the
overall performance of the wireless network.

5.1.4. Buildings

Building features can be introduced for a more realistic scenario for THz performance
evaluation, such as scalability analysis in high-density urban areas, similar to [168]. NS-3
incorporates square-shaped buildings with dimensions and distances based on the Manhat-
tan layout model, which includes correlated shadowing. Nodes within a specific building
are classified as indoor, and their transmissions will encounter significant building penetra-
tion losses. The building parameters used for the urban environment in ns-3 are detailed
in [169]. These parameters can be adopted in TeraSim-MAC to test the THz performance in
a realistic environment.

5.2. ML-Based Enhancements

ML methods, such as DL, RL, and FL can be used to enhance the performance of THz
in terms of interference, energy consumption, latency, and collision [170,171]. ML-based
solutions will lead to the development of new THz systems that are more efficient, effective,
and reliable.

5.2.1. Deep Learning

THz research primarily concentrates on devices, channels, and the PHY layer. Only a
few MAC protocols for the THz band have been surveyed in [16]. A recent study in [98]
proposed a DL-enhanced MAC protocol for THz communications. The proposed protocol
in [98] utilizes the TeraSim-MAC simulator module to improve the collision of data packets.
The results of their study show that the proposed protocol can significantly reduce the
number of collisions in THz networks, therefore improving the overall performance of the
network. Furthermore, incorporating DL techniques would be valuable when designing
MAC protocols for THz communications using the ns-3 module TeraSim-MAC [113]. DL
can be used to learn the most active sectors, dynamically adjust beamwidth, and select
the most efficient modulation and coding scheme (MCS). This will lead to significant
performance improvements in THz networks in terms of energy consumption.

A centralized DL approach is one example of using DL in the THz network. Generally,
a centralized DL approach involves offline training and online observation processing
for efficient radio resource allocation (e.g., MCS) to nodes [172,173]. The offline mode is
mainly responsible for data collection (e.g., CSI features), cleaning, and training the DL
model. After the DL model training, the pre-trained (i.e., inference) model is deployed on a
network server or device, as illustrated in Figure 4. The inference model assigns resources
based on the raw data generated during the network.

For instance, to use the inference model in ns-3, an open ecosystem called Open Neural
Network Exchange (ONNX) [174] can be used as it is an open-source format for DL and
traditional ML models. First, the ONNX-supported model can be generated using PyTorch.
Then the pre-trained model (i.e., inference model) can be imported in ns-3 with the help of
ONNX API for resource management by providing raw data during simulation.
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Figure 4. Example of centralized deep learning: in centralized deep learning, the ML model is trained
on a centralized server using a one-time generated offline dataset. The trained model (i.e., pre-trained
or inference model) is then deployed on the (1) devices or (2) the edge server for efficient resource
allocation (e.g., transmit power and MCS).

5.2.2. Federated Learning

FL is one the distributed machine learning methods that have been studied in various
aspects of wireless communications [175–178]. Therefore, FL is considered one of the
promising ML techniques for 6G communications [37,179–182], which can be utilized for
THz in different ways, such as beamforming [38]. FL can be used to train a beamforming
model optimized for the specific environment. This can improve signal strength and
reduce interference between users. As an example, the authors in [183] have utilized FL for
beamforming under ultra-dense mmWave networks. Therefore, the systematic design and
performance analysis of beam management in FL-based ultra-dense THz networks is still
open problems. Generally, FL trains an ML algorithm on decentralized devices without
sharing the local data with a central server, as shown in Figure 5. The goal of FL is to
improve the performance of ML models while protecting the privacy of user data.
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Figure 5. Example of federated learning: the global model is trained on a central server, and the local
models are trained on the devices. The edge server and the devices share their models periodically to
improve the global model.
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For example, FL can be used in ns-3 using the ns-3-FL simulator [184,185]. The ns-
3-FL simulator provides several features, including the FL algorithm, sharing global and
local FL models between the devices and the central server, training the local models, and
aggregating the local models to form a global model. Such features can be integrated with
the TeraSim-MAC simulator to implement FL beamforming and modulation techniques.

5.2.3. Reinforcement Learning

RL can enhance THz performance by learning from the interactions between the
system and its surroundings. Applying RL for THz in ns-3 can provide a powerful tool for
researchers and engineers to evaluate and optimize the performance of THz communication
systems in a simulated environment.

One way to apply RL for THz in ns-3 is to optimize the parameters of a THz commu-
nication system, such as transmit power, modulation [186], and beamforming, based on the
current channel conditions. For example, the RL algorithm can learn from past interactions
with the simulated environment and adjust the system parameters to maximize a particular
performance metric, such as data rate or capacity.

For instance, two widely adopted tools are available for RL in ns-3, such as ns3-
gym [187,188] and ns3-AI [189,190].

1. ns3-gym: ns3-gym is a framework based on OpenAI Gym [191], allowing researchers
from academia and developers from industry to use the ns-3 in conjunction with RL
algorithms. Figure 6 illustrates the ns3-gym architecture comprising two primary
components: the ns-3 and the OpenAI Gym framework. The former component is
utilized for implementing environments, whereas the latter component is leveraged
to unify the interface of these environments. Together, these components facilitate
the development and deployment of robust and scalable RL algorithms for various
networking applications. The authors in [188] utilized ns3-gym for radio channel
selection in IEEE 802.11 network.

2. ns3-AI: The ns3-AI architecture is illustrated in Figure 7 [190], enabling data interaction
between ns-3 and other Python-based AI frameworks (e.g., TensorFlow and PyTorch).
The authors in [190] utilized the ns3-AI for (a) channel quality indicator (CQI) predic-
tion in NR using LSTM and (b) TCP congestion control.
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Figure 6. The architecture of ns3-gym utilized in ns-3 for RL [188].

5.2.4. THz for Indoor Localization

Current indoor localization systems rely on conventional wireless technologies such
as Wi-Fi [192], Bluetooth Low Energy (BLE) [193], Ultra-Wideband (UWB) [194], Inertial
Measurement Units (IMUs) [195], and Geomagnetic Field Based [196], which are often
limited by low accuracy, high multipath propagation, and non-line-of-sight conditions.
However, THz communication, which operates at a higher frequency (frequency range
of 0.1 to 10 THz [12]) than conventional wireless technologies, has shown the potential to
provide high accuracy with a mean distance error of 0.27 m [197] and 0.25 m [198].
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The performance of these methods [197,198] can be further enhanced by implementing
a multi-modal system, such as Wi-Fi, to generate a radio fingerprinting map with the THz
technology. This will involve collecting RSSI data from the THz and Wi-Fi modules and
processing it to create a more accurate radio fingerprinting map. Training the DNN model
with the newly generated dataset from the multi-modal system and testing in the online
phase for localization will involve using the trained DNN model to estimate the location
of a mobile device based on the radio fingerprinting map generated from the THz and
Wi-Fi modules.

AI framework ns-3 simulator
C++Python

Shared 

memory
networks

Model

DL/RL interface

Figure 7. The architecture of ns3-AI utilized in ns-3 for reinforcement and DL [190].

6. Conclusions

THz is a promising technology for high-speed future wireless communication. How-
ever, many challenges need to be addressed before THz can be widely deployed, such as
the high attenuation of THz signals in the atmosphere, beamforming, and medium access
control layer protocols. One promising approach to overcoming these challenges is using
AI, which can be used to develop new THz communication protocols that are more robust
and efficient. Furthermore, the field of AI in THz is rapidly growing, with recent research
and development focusing on various areas such as spectrum allocation, modulation and
bandwidth classification, collision analysis, resource management, interference mitigation,
intelligent beamforming, and intelligent medium access control layer protocols. There-
fore, we expect more research and development, leading to new AI-based THz systems
and applications.

In conclusion, this survey provides a detailed analysis of the state-of-the-art THz
communications using AI. It discusses the available platforms, including commercial,
testbeds, and publicly available network simulators. Finally, recommendations for THz are
highlighted, which serve as a roadmap for improving the simulators and realizing the use
of AI in THz.
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BER Bit Error Rate
BLE Bluetooth Low Energy
BS Base Station
CDMA Code-Division Multiple Access
CNN Convolutional Neural Network
CQI Channel Quality Indicator
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CTA Call to Action
DDPG Deep Deterministic Policy Gradient
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DNN Deep Neural Network
DQN Deep Q-Learning
DRL Deep Reinforcement Learning
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eMBB Evolved Mobile Broadband
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FDRL Federated Deep Reinforcement Learning
FDS Frequency-Domain Spectroscopy
GAN Generative Adversarial Network
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GRU Gated Recurrent Unit
GSM Global System for Mobile Communications
IMUs Inertial Measurement Units
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IoT Internet of Things
IRS Intelligent Reflecting Surfaces
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LSTM Long Short-Term Memory
LTE Long-Term Evolution
MAC Medium Access Control
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MIMO Multiple-Input and Multiple-Output
mMTC Massive Machine Type Communications
mmWave Millimeter-Wave
NR New Radio
NYUSIM New York University Simulator
OFDM Orthogonal Frequency-Division Multiplexing
ONNX Open Neural Network Exchange
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QoS Quality of Service
RL Reinforcement Learning
RMa Rural Macro
RTS Request to Send
TAN THz Airborne Network
TCP Transmission Control Protocol
TDMA Time-Division Multiple Access
TDS Time-Domain Spectroscopy
TSN Time Sensitive Networking
UAV Unmanned Aerial Vehicle
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UMa Urban Macro
UMi Urban Micro
UN-Lab Ultrabroadband Nanonetworking Laboratory
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UWB Ultra-Wideband
V2I Vehicle-to-Infrastructure
V2X Vehicle-to-Everything
VR Virtual Reality
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