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Abstract: In recent years, researchers have proposed smart traffic light control systems to improve
traffic flow at intersections, but there is less focus on reducing vehicle and pedestrian delays simulta-
neously. This research proposes a cyber-physical system for smart traffic light control utilizing traffic
detection cameras, machine learning algorithms, and a ladder logic program. The proposed method
employs a dynamic traffic interval technique that categorizes traffic into low, medium, high, and very
high volumes. It adjusts traffic light intervals based on real-time traffic data, including pedestrian
and vehicle information. Machine learning algorithms, including convolutional neural network
(CNN), artificial neural network (ANN), and support vector machine (SVM), are demonstrated to
predict traffic conditions and traffic light timings. To validate the proposed method, the Simulation
of Urban Mobility (SUMO) platform was used to simulate the real-world intersection working. The
simulation result indicates the dynamic traffic interval technique is more efficient and showcases a
12% to 27% reduction in the waiting time of vehicles and a 9% to 23% reduction in the waiting time
of pedestrians at an intersection when compared to the fixed time and semi-dynamic traffic light
control methods.

Keywords: cyber-physical system; machine learning; smart traffic lights

1. Introduction

The Manual on Uniform Traffic Control Devices (MUTCD) [1] states that traffic lights are
an important tool for improving road safety, reducing traffic congestion, and optimizing
the use of roadways. Traffic lights are used to manage and control the flow of vehicular and
pedestrian traffic at intersections. By alternating the signal between green, yellow, and red,
traffic lights create a system of order and direction that reduces the likelihood of collisions
and accidents. They also allow pedestrians to safely cross the road by stopping traffic and
giving them the right of way.

While traffic lights are an effective means of enhancing the safety of people at inter-
sections, they have the unintended consequence of increased travel times for drivers and
pedestrians who must halt at red lights. Lv et al. [2] noticed that the likelihood of people
halting and waiting at an intersection increases as the number of road crossings grows. The
traffic lights are designed to manage conflicting traffic flows, meaning they often prioritize
one direction of traffic over others, according to the Signal Timing Manual (STM) [3]. This
strategy can delay vehicles or pedestrians waiting to cross the intersection. For example, if
more cars are on one road than another, the traffic light may give a longer green light to the
road with more traffic, causing delays for the other route. The Highway Capacity Manual
(HCM) [4] states that the travel times for vehicles and pedestrians increase if there is a lack
of coordination between different intersections. In some cases, the timing of traffic lights
may not be synchronized, resulting in vehicle stop-and-go traffic and longer wait times for
pedestrians.

The shortcomings of the simple traffic light control system led researchers to inves-
tigate smart traffic light control systems. The term “Smart Traffic Light Control System”
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refers to employing sensors and algorithms to control and optimize vehicular traffic. Real-
time traffic data analysis allows the system to fine-tune traffic lights and improve traffic
flow to minimize congestion and maximize safety. The control system may use machine
learning models and optimization techniques to reduce travel time or to find the relation
between various traffic signal parameters. An intelligent traffic light control system is gen-
erally more advanced and complex than traditional ones. Overall, an intelligent traffic light
system aims to manage and control traffic signals as per the traffic volume at intersections.
Intelligent traffic light control systems may also include anomaly detection, passage to
emergency vehicles, connection to public transport systems, and integration with other
smart city technologies.

2. Literature Review

The difficulties of urban traffic and intersections have prompted several proposed
remedies from researchers in recent years. Ghazal et al. [5] proposed a system that uses in-
frared sensors and microcontrollers to control traffic lights at simple two-way intersections
based on vehicle density. Diaz et al. [6] built an intelligent traffic light system with a Rasp-
berry Pi, PIR sensor, and LED traffic light for a simple, single-lane, two-way intersection.
These two approaches consider only single-lane traffic. Additionally, the traffic modeling is
not specified for the performance evaluation part.

Silva et al. [7] proposed intelligent traffic lights for low-traffic conditions. This work
presented a methodology that used a LanPro module installed on the vehicles to decide the
path and avoid the red traffic signals. However, as mentioned in the paper, this method is
only suitable for low traffic scenarios. Alharbi et al. [8] showcased a dynamic traffic light
management system, which increases the green light time if more vehicles are detected but
does not explicitly mention if the green time is reduced if fewer vehicles are detected.

Sen and Head [9] proposed a system that can skip green lights for the approaches/roads
without vehicle flow during a traffic light cycle. This technique is better when the traffic is
less on a particular route, and the traffic volumes do not change very often. Li et al. [10]
proposed a methodology to optimize the fixed traffic light timings on isolated intersections.
They optimized the traffic signal plan to reduce weighted vehicle and pedestrian delays.
However, their system is not smart, which will detect pedestrians and vehicles in their
respective lanes and adjust the traffic signal time as per the detected traffic.

Younis and Moayeri [11] worked on the simulation of dynamic traffic lights with one
method based on sensors and another based on communication between vehicles. This
work shows the results based on the through-vehicle movement but does not consider
turning vehicles at the intersection. Tchuitcheu et al. [12] considered adjusting traffic lights
based on the waiting queue of vehicles at the intersection in incoming and outgoing lanes.
Gandhi et al. [13] also considered a smart traffic light system, which calculates the green
traffic light timing based on vehicles detected by the camera sensor but does not consider
the phases which allow the signaling of green light to non-conflicting movements from
different incoming streets.

Pratama et al. [14] proposed a system to change the green light timings based on
the vehicle density in incoming and outgoing lanes. This method is effective when there
are a bunch of intersections close to each other, affecting the traffic density on the streets.
Chavan et al. [15] presented a sensor network with embedded technology to manage traffic
flows. In this work, they did not clearly mention the traffic light parameters for their
technique’s performance evaluation.

Hirankitti et al. [16] showcased an agent-based intelligent traffic light control model.
In this work, they used rules which will perform actions based on inputs such as current
traffic phase, traffic light timing, the queue length of vehicles, and incoming and outgoing
vehicles at an intersection and outline lane space availability, but did not mention the
sensor type or how frequently and when the data will be collected. Almawgani [17] used a
technique that applies different image processing algorithms for nighttime and daytime
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traffic detection. However, the work built a simple prototype to showcase the working of
an image processing system and did not include modeling traffic flows at an intersection.

Li et al. [18] used cameras to capture images or videos of traffic conditions and applied
machine learning algorithms to analyze and interpret the data. Wiering et al. [19] simulated
an intelligent model using reinforcement learning to optimize the traffic light setting.
They evaluated the performance of their technique on a group of intersections by making
decisions based on vehicles at the traffic intersection. This method is more focused on
optimizing traffic light parameters and, thus, there is no mention of the sensors to collect
the data.

Wei et al. [20] also used deep reinforcement learning to optimize traffic light timing.
Their system minimized the delays and improved traffic flow for through-movement
vehicles but did not consider the left-turning vehicles. Liu et al. [21] presented a multi-
agent Q-learning approach to control the traffic lights at the intersection. This method
mentions adapting to pedestrians, but the algorithm does not employ the technique when
pedestrians are detected at the intersection. Linag et al. [22] proposed a method that uses
deep reinforcement learning with multiple optimization elements. Their system improved
the vehicle waiting time by 20%. Their system inputs are vehicle position and vehicle speed
but do not include when and where the data points are captured and what should be the
frequency of data capturing in real-time. Göttlich et al. [23] utilized linear programming
optimization to determine the optimal traffic light timing for a given set of traffic conditions.
Park et al. [24] proposed genetic algorithms to optimize specific traffic signal parameters
only for high-traffic cases at intersections.

Genders and Razavi [25] proposed a technique using reinforcement learning and
a convolutional neural network to optimize the traffic light timings for an intersection.
The inputs to the neural network include the presence of the vehicles in a specified area,
vehicle speed, and the current phase of traffic lights. Oliveira et al. [26] used multiple
neural networks to optimize the traffic light timings. This method gives the same inputs to
different ANN, which predicts the same output. This work focuses more on neural network
performance and does not specify parameters such as traffic flows or traffic light cycles for
an intersection. Abbas et al. [27] presented a high-accuracy controller that can change the
next phase timing and net phase green light time based on the current phase data collected
from the roadside data collection (RSDC) units but did not mention the exact type of the
sensors and the frequency of data collection. Additionally, the system evaluation does not
mention the details of traffic light phases.

McKenney and White [28] applied an approach to control traffic signal lights based on
the number of vehicles in a section of a road near the intersections. The approach considers
various parameters related to data collection to decide the traffic light switching and green
light timing change. Zhou et al. [29] used a wireless sensor network to detect the traffic at
multiple intersections. This work used a technique that adjusted the traffic light phases and
timing based on detected vehicles’ information. Piris et al. [30] also proposed a technique
to optimally place the wireless sensors in a network of intersections. Additionally, this
work presented a traffic light management system that focused on controlling multiple
intersections and efficient communication of messages in a sensor network.

Navarro-Espinoza et al. [31] applied various machine learning models to predict the
traffic flow for intelligent traffic lights. Muntean [32] proposed a multi-agent system to
estimate the traffic volumes at junctions and car parking. Neither approach presented
any control strategy for the traffic lights. Artega et al. [33] proposed a fuzzy logic method
to control traffic lights based on the flow rate of vehicles. Nimac et al. [34] presented
pedestrian detection and a traffic light control scheme using radars, but this technique is
focused on the traffic light trigger mechanism and is not optimizing the pedestrian traffic
lights.

Table 1 summarizes the details of the methodologies discussed in the literature review.
From the table, it is clear that many researchers tend to give weightage to one factor: solving
the congestion of vehicles and optimizing the traffic light systems using various techniques
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and tools. These methodologies generally focus more on the vehicle parameters that impact
vehicle travel time. They try to reduce the delays at the intersection using sensors and
algorithms. Moreover, many approaches involve modeling the traffic flow through an
intersection and then finding the timing that minimizes some measure of congestion, such
as travel time or delay. They apply machine learning and optimization techniques to reduce
vehicle delay, but reducing pedestrian delay is not considered.

Table 1. Comparison of various intelligent traffic light systems.

Previous Work Sensor(s) Type
Mentioned

Controller
Type

Mentioned

Simulation
Platform

Mentioned

Machine
Learning

Used

Results
Presented

Categorization
of Traffic

Ghazal et al. [5] IR sensors PIC 16F877A
microcontroller No Yes No

Yes: high
density and low

density

Diaz et al. [6] PIR sensors Raspberry Pi No No No No

Silva et al. [7] Cameras,
radars No No No Yes No

Alharbi et al. [8] WSN, RFID
tags No MATLAB No Yes No

Younis and
Moayeri [11]

Piezoelectric
(proposed)

Raspberry Pi 3
(proposed) C++ No Yes

Yes: light traffic
and heavy

traffic

Tchuitcheu et al. [12] WSN No SUMO No Yes No

Gandhi et al. [13] Cameras No Python,
Pygames Yes Yes No

Pratama et al. [14] IR sensors PIC 16F876A
microcontroller N/A No Yes No

Chavan et al. [15] IR sensors AT 89C51
microcontroller

Microcontroller
assembly
language

No Yes No

Hirankitti et al. [16] No No NetLogo
simulator No Yes No

Almawgani [17] Camera Arduino No No Yes No

Li et al. [18] UAV/
cameras No SUMO Yes Yes No

Wiering et al. [19] No No
Green Light

District
simulator

Yes Yes No

Wei et al. [20] Camera No C++, MATLAB Yes Yes No

Liu et al. [21] Cameras No SUMO Yes Yes No

Linag et al. [22]
Vehicular/

Sensor
networks

No SUMO Yes Yes No

Genders and
Razavi [25] No No SUMO Yes Yes No

Oliveira et al. [26] No No SUMO Yes Yes
Yes: small,

medium, and
large vehicles
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Table 1. Cont.

Previous Work Sensor(s) Type
Mentioned

Controller
Type

Mentioned

Simulation
Platform

Mentioned

Machine
Learning

Used

Results
Presented

Categorization
of Traffic

Abbas et al. [27] No No

SIRDA
intersection
simulator,
MATLAB

No Yes No

McKenney and
White [28] No No SUMO No Yes No

Zhou et al. [29] WSN No No No Yes No

Piris et al. [30] WSN No SUMO No Yes No

Navarro-Espinoza et al.
[31] No No No Yes Yes No

Muntean [32] WSN No No Yes Yes No

Artega et al. [33] On-road
sensors No SUMO No Yes

Yes: very low,
low, medium,
high, and very

high

Nimac et al. [34] Radar No No No No No

Thus, this paper’s objective is to propose an intelligent traffic light system and dynamic
traffic interval technique that considers both vehicle and pedestrian traffic volumes to
minimize waiting time at intersections. The next sections of this paper will describe the
proposed system’s design, implementation, and evaluation.

3. Methodology

The traffic lights control the vehicle and pedestrian flow at intersections where traffic
travels in different directions. The traffic flows moving in various directions are called
movements and are categorized as left-turn, through, right-turn, and pedestrian move-
ments, as shown in Figure 1. To differentiate the traffic flows, each movement is identified
by a separate number (HCM) [4]. The traffic signal phases are then used to group certain
movements, which allows the traffic to move in an orderly manner.

Figure 2 depicts a ring and barrier diagram for an 8-phase intersection. In this diagram,
rings organize phases so that they are synchronized without interference and consist of a
series of competing stages. At barriers, phases in both rings conclude concurrently. This
enables dual or two-ring operations, allowing compatible phases to run concurrently with
those of the opposite ring. The phases are an important part of the system as they control the
timing and sequence of the green, yellow, and red lights for the incoming traffic movements
at the intersection. Typically, they distinguish between major and minor street segments.
Additionally, the movements are categorized as permitted and protected movements.
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3.1. Dynamic Traffic Intervals

As the number of vehicles or pedestrians waiting at the intersection increases or
decreases, the time required for them to pass through the intersection changes. Thus,
the traffic light timings need to be appropriately planned so they do not cause delays
at the intersection. To effectively manage the traffic flow at the intersection, this work
proposes a dynamic traffic interval technique where the vehicle and pedestrian volumes
waiting at a red light at the intersection are divided into low, medium, high, and very
high categories. This is done to efficiently use the traffic light timings for all the phases
and movements. Dividing the traffic into intervals allows setting the time of the green
light only for the vehicles and pedestrians that request to cross the intersection. This work
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selects the four categories of traffic based on the simulation parameters and results. Each
category represents a group of vehicles waiting at an intersection at a red light. The number
of vehicles can be different for each category for different intersections and depends on
the demand for the service requested by the user. To establish the categories of traffic, it
is important to perform a critical movement analysis and define the detection zone at an
intersection, as explained further in this section.

Figure 3 shows dynamic traffic light timing distribution for an 8-phase intersection.
Each phase has green light timing for four categories of traffic. The timing of the green light
can be adjusted as per the traffic category detected. Based on the green light timing of an
ongoing phase, the red-light timing for other phases and the total cycle length will change.
The cycle length is the time it takes for a traffic signal to complete a full cycle of all its signal
phases. The yellow clearance time alerts drivers that the right-of-way assignment at the
intersection is going to change. The red clearance time allows vehicles that entered the
intersection during the yellow change period to reach a safe position before the next phase
begins (STM) [3]. HCM [4] has suggested the red and yellow clearance interval timing
for different vehicles approaching speeds. The timing for both lights is referred to as the
change period. This change period is fixed and is based on the average approaching vehicle
speed at the intersection.
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Critical movement analysis is performed to calculate the traffic light timings. Critical
movement analysis is a methodology used to identify the movements of vehicles that have
the highest potential for conflict at an intersection. Critical movement analysis aims to
evaluate phasing requirements and signal timing parameters. This analysis uses conflicting
phases, often a left-turn phase and an opposing through-movement phase, to identify the
crucial phase pairings. To determine the critical phase pair, the total volume of cars for all
sets of conflicting phases is compared. Figure 4 shows the vehicle volumes associated with
each phase. The following equations determine the critical volume for an intersection.

CPP1 = max(v1 + v2, v5 + v6) (1)

CPP2 = max(v3 + v4, v7 + v8) (2)
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CV = CPP1 + CPP2 (3)

where

CPP1: Critical phase pair for street 1.
CPP2: Critical phase pair for street 2.
v1−8: Critical lane volume for phases 1 to 8 (vehicles/h).
CV: Critical volume for an intersection.
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This critical volume is then divided into four volumes where the traffic is categorized
as low, medium, high, and very high traffic. Thus, using the critical volumes for each
category, the four different cycle lengths are calculated by the following equation based
on Webster’s Least delay cycle [35]. The cycle length will be fixed for each of the four
categories as it is based on the critical volume for an intersection. This equation considers
the saturation flow rate of 1900 passenger cars per hour per lane as stated by HCM [4].

C =
1.5L + 5
1.0−Y

(4)

where

C: Optimum, minimum delay cycle length (s).
L: Lost time per cycle (s).
Y: Sum of the critical lane volumes divided by saturation flow rate.

Then, the timing of the green light for each phase is estimated using Equations (5)
and (6) [36] for four traffic conditions. This time is determined based on the expected cycle
length and critical movement analysis.

At = C−
(
∑ CPi

)
(5)

Gi =
VA
VT
× At (6)

where

At: Available time to apportion between all phases’ green interval (s).
C: Calculated cycle length (s).
CPi: Change period (yellow change interval plus red clearance interval) for each phase (s).
Gi: Phase green interval for each phase (s).
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VA: Critical lane volume for phase i (vehicles/h).
VT : Sum of critical lane volumes for all phases (vehicles/h).

The green light timing for each traffic category is based on the sensor detection zone.
The detection zone is the area where the sensor collects the data. For this research, the
cameras are considered as sensors installed at the intersection. Cameras provide data-
rich information, and recent advancements in machine learning models prove that vision
systems are effective in detecting traffic. This work assumes that cameras will have a clear
view of the lanes and will detect the traffic at night when the lights are installed at the
intersection.

The occupancy zone is divided into four segments, as shown in Figures 5 and 6 for
vehicles and pedestrians, respectively, according to the critical volumes for each category
of traffic. Each segment represents the number of vehicles/pedestrians that will be waiting
at the red light with respect to the critical volume. The traffic will occupy a certain
area of the zone and the number of vehicles and pedestrians will be calculated based
on these four segments. For the pedestrians, the cameras will take the image of curbside
where pedestrians wait on a red signal. The traffic category and its respective occupancy
percentages are given in Table 2. The 100% occupancy is the area under the detection where
the camera sensor can clearly see vehicles and pedestrians.

Table 2. Traffic categories and corresponding occupancy.

Traffic Category Occupancy

Low traffic 0–25%
Medium traffic 26–50%

High traffic 51–75%
Very high traffic 76–100%
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3.2. Framework

Figure 7 depicts an overview of the framework. The proposed framework is organized
into three systems: physical, cyber, and control. The physical system consists of a junction
where two or more streets cross, vehicles and pedestrians who wish to cross the junction,
sensors that collect data, traffic lights that allow or prevent vehicles and pedestrians from
crossing, and a programmable logic controller that controls the traffic lights. The cyber
system employs machine learning (ML) algorithms to predict traffic conditions and light
timings, reducing delays for pedestrians and automobiles. The control system, which
includes a ladder logic program, influences the physical system by altering the on and off
times of the traffic lights.
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The operation of the smart traffic light control system is given in Figure 8. The
proposed system’s role is to detect traffic conditions and regulate intersection traffic lights.
The sensors are cameras that supply the information required by the cyber system. The
CNN model determines the traffic category, while the ANN/SVM predicts green light
timings based on traffic photos, vehicle count, and pedestrian count. After that, the
anticipated values are saved in the DDE client file, which communicates with the DDE
server and ladder logic. To eliminate delays, the smart traffic light control system can adjust
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the timing of the green and red lights based on predictions. MATLAB was used to create
machine learning models. Visual Basic for Applications (VBA) was used to convey data to
ladder logic, and the control system runs on the RSLinx Classic and RSLogix platforms.
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3.2.1. Physical System

This work focuses on an intersection to reduce vehicle and pedestrian travel delays.
The traffic intersection is a central part of the physical system and framework. Traffic
intersections can be regulated by traffic lights, stop signs, yield signs, or other traffic
control devices to ensure safe and efficient traffic flow. They are critical components of
transportation systems in urban areas and are designed to manage traffic movements and
minimize the risk of collisions and accidents.

The collector roads are common in cities, and they connect local streets to arterial roads
and are designed to provide access to local destinations, such as homes and businesses. This
research considers a four-way junction on collector roads, where many users can approach
the intersection at once. The junction has two streets crossing each other. Each street can
have one or more incoming and outgoing vehicle lanes and two lanes for pedestrians
on either side. The pedestrians can cross the junction using marked crosswalks at the
intersection.

The traffic lights are usually installed at the intersection on poles or mast arms over the
roadway. The lights face each lane, indicating when vehicles and pedestrians are allowed to
move and when they must stop. The location and placement of traffic lights at intersections
are carefully planned to convey the information and right-of-way to the users clearly. The
MUTCD [1] recommends the traffic light types and installation procedures based on the
intersection characteristics. This work considers the green, yellow, and red lights for each
lane. Additionally, a flashing yellow light is considered for the permitted movements of
the vehicle.

A traffic detection camera is the most common type of sensor utilized at intersections
to detect traffic. The cameras are usually installed on the traffic poles with a certain height
to get a specific view of the lanes. The camera specification is chosen based on the demand
for traffic signal service and local jurisdiction guidelines TCM [4]. In this work, the cameras
are programmed to capture images of the lanes when the traffic light changes from red to
green. Then, the captured photos of the intersection are sent to computer vision algorithms
to estimate traffic patterns and volume.
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Traffic light controllers are electronic devices that control the operation of traffic lights
at intersections. These are the cabinets that can be installed in a central control room,
allowing operators to monitor and adjust signal timing across multiple intersections in
real time. Alternatively, controllers can be distributed across individual intersections and
communicate with each other to coordinate signal timing and optimize traffic flow across a
wider area. The controllers are programmed to control the on/off times of all the traffic
lights at the intersection. Sensors installed at the intersection continuously communicate
real-time information to the controllers. The controller then sends the data to the cyber
system for further processing.

3.2.2. Cyber System

The cyber system consists of machine learning models to process the sensor data. In
this work, the four traffic categories are predicted using different kinds of pre-trained CNN
models. In CNN models, the images are represented as numeric matrices where a single
image is divided into pixels, and each pixel is assigned a numeric value. These matrices
are processed by CNN models using filters or kernels, which have been trained to identify
features. This process is known as convolution. The convolutional layer applies numerous
convolution filters to the image. Then, the pooling, or subsampling layer acts to decrease
the spatial dimensions of the data, which helps to reduce computational needs and control
overfitting. Finally, the fully connected layer, functioning like a traditional multi-layer
perceptron, usually employs a SoftMax activation function to classify the input image into
different categories based on the training dataset.

The CNN models are provided with simulation images to detect the traffic condition,
as shown in Figure 9. Here, the images of the vehicles and pedestrians are given to the
algorithms separately. The output of the models is the probability for the low, medium,
high, and very high categories.
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This work uses a feed-forward artificial neural network (ANN) and support vector
machine (SVM) model to predict the green light time for a through movement of vehicles
at an intersection by using the sensor data as input. It is assumed that the sensor provides
the number of vehicles and pedestrians as an input to the algorithms. The output from the
models is the green light timings for the ongoing phase. For the ANN model, one hidden
layer with five neurons was selected, as shown in Figure 10. The following equations
describe the ANN model parameters.

uk =
2

∑
j=1

wkjxj (7)

yk = ϕ(uk + bk) (8)
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where

uk: linear combiner output;
wkj: weights of neuron k;
xj: inputs to the neural network;
yk: output of kth neuron;
ϕ: activation function;
bk: bias.
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The SVM model maps the input data into high dimensional space via mapping the
function f (x). The following is the equation for the SVM model.

f (x) = 〈w, x〉+ b (9)

where

f (x): mapping function;
x: input vector;
w: weight vector perpendicular to the higher plane;
b: bias term.

The predicted data are then stored in a DDE client. Dynamic data exchange (DDE) is
a protocol that allows communication between applications. Here, the DDE client is the
Excel file where the data are stored. In this work, to initiate the conversation with the DDE
server and the ladder logic, a VBA code was used. The client then connects with the control
system and sends the input data to the DDE server to adjust the traffic light timings.

3.2.3. Control System

The control system consists of a DDE server that receives the data from the cyber
system. The process begins with the Excel sheet requesting data to be entered in the ladder
logic. The server receives the request and retrieves the specific instruction from its memory
where the data need to be updated. The controller then uses the data in the ladder logic to
change the traffic light timing. Whenever the data in the Excel file change, an update is
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sent to the ladder logic, ensuring that the controller sending the signal to the traffic light is
always up to date.

A ladder logic program is utilized to implement the dynamic traffic interval strategy.
It is a programming language used in programmable logic controllers (PLCs) to create
control systems for industrial processes and machines. The language is based on ladder
diagrams, which represent the physical components of the control system, such as traffic
lights, and the logic that connects them.

The ladder logic represents the control system as a series of rungs on a ladder. Each
rung consists of one or more input conditions that must be met for the output to be activated.
The input conditions are connected by logical operators such as AND, OR, and NOT, which
allow complex logical operations to be performed. The output of one rung can be connected
to the input of another rung, allowing for more complex control systems to be created.

In this work, the ladder logic is separated into main routines and sub-routines. The
main routine is the primary program that controls the overall operation of the system. It
consists of a series of rungs that are executed sequentially, with each rung controlling a
specific sub-routine, as shown in Figure 11. The sub-routines represent the timing operation
of the low, medium, high, and very high categories, as shown in Figure 12. Sub-routines
can be called from within the main routine, allowing them to be used as building blocks to
create more complex control systems.
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4. Simulation and Modelling

A simulation model was built in the Simulation of Urban Mobility (SUMO) to mimic
the real-world intersection and the dynamic traffic interval strategy. It is a widely used
open-source microscopic traffic simulation software used for various research purposes [37].
SUMO is primarily used for modeling and analyzing different traffic light control strategies.
Researchers use SUMO to simulate different strategies, such as fixed-time or actuated
control, and then compare their performance in various metrics, such as average wait
time or fuel consumption. This can help understand the relative performance of different
strategies and inform the design and operation of traffic light systems.

This research uses a common four-way intersection in the SUMO model to demonstrate
the dynamic traffic light logic shown in Figure 13. This intersection has eight phases, where
the left turn movements and the through movements on the same road are divided into
separate phases. The traffic light phases follow the National Electrical Manufacturers
Association (NEMA) convention. Each incoming road is divided into four lanes, and the
outgoing road is divided into three lanes. There is a sidewalk for every road that only
pedestrians can use. The pedestrians use the crosswalks at the intersection during the
through-movement phases.

4.1. Parameters

The simulation model defined the traffic flow for each lane to represent real-world
traffic scenarios. The highest critical volume used in the simulations was 1000 passenger
cars per hour per lane. Additionally, the flows were defined to allow vehicles or pedestrians
coming from one direction to travel in all directions. The dimensions of the intersections
were default values generated by SUMO. The length of the edges was 150 m. The passenger
vehicles were considered to have a length of 5 m, and the minimum gap between vehicles
was presumed as 2 m when the vehicles were fully stopped at the intersection. The speed
limit was 25 mph for vehicles with a 10% deviation in speed. The pedestrians were
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considered adults with an average speed of 1.06 m/s with a speed deviation of 10%.
Additionally, they would occupy a 0.3 m2 area while waiting at the curbside [38]. The
detection zone length for the through-movement lanes was 61 m. The pedestrian detection
zone was defined before the area where the pedestrian stops, as SUMO has no default option
to place the lane area detectors where the pedestrians stop. For turning-movement lanes
(left and right), the volume of vehicles was considered as 75% of the through movement
lanes. Using the parameters for vehicles and pedestrians, the number of vehicles and
pedestrians waiting at the intersection was calculated for low, medium, high, and very high
categories, as shown in Table 3. The parameters were kept the same for all traffic flows
coming from all directions.
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Table 3. Parameters for traffic categories.

Parameters
Traffic Conditions

Low Medium High Very
High

Critical volume (vehicles/h/lane) 416 718 920 1071

Detection zone
Vehicle (length) (m) 16 32 48 61

Pedestrian (area) (m2) 1.86 3.72 5.58 7.44

No. of vehicles
Left vehicles 0–1 2–3 4–5 6–7

Through vehicle 0–2 3–4 5–6 7–8

No. of pedestrians 0–2 3–4 5–6 7–8

Green Light timing
(s)

Pedestrian 4 5 6 7
Left movement 9 12 15 19

Through movement 16–19 16–19 20 26

4.2. Traffic Distributions

To generate a certain category of traffic flow in the simulation, this work uses the
Poisson and binomial distribution for a vehicle flow approaching an intersection. Past line
of work [39–42] shows that the Poisson probability distribution can be used to approximate
the behavior of low traffic flow, and the binomial probability distribution can be used
to estimate the high traffic flow. Table 4 contains Poisson probabilities for the low and
medium traffic flow, whereas the binomial probabilities were used to model the high
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and very high traffic flow. Similarly, the Poisson probabilities were used to model the
pedestrians approaching an intersection. These probabilities would generate four different
traffic conditions for vehicles and pedestrians.

Table 4. Probabilities for four traffic conditions.

Traffic
Conditions

Lane Probabilities (Vehicles/s) Pedestrian Probability
(Pedestrians/s)Through Vehicle Left Vehicle

Low 0.033 0.024 0.012
Medium 0.057 0.042 0.024

High 0.065 0.049 0.035
Very High 0.079 0.059 0.047

4.3. Dynamic Traffic Light Algorithm

This work uses the Simulation of Urban Mobility (SUMO) Traffic Control Interface
(TraCI) module that controls the SUMO model using dynamic traffic logic. It allows the
retrieval of item values and the live modification of their behavior by granting access to a
running road traffic simulation [37]. Algorithm 1 shows the pseudo-code for adjusting the
green traffic light timing based on the detected number of pedestrians and traffic detected
for the through traffic phase.

Algorithm 1 Dynamic Traffic Light adjustment

1 Input: n← number of through phases
2 i← current through phase
3 vi← detected vehicles
4 pi← detected pedestrians
5 ti ← traffic light timing
6 Output: W1 ← average vehicle delay
7 W2 ← average pedestrian delay
8 Procedure: AdjustTrafficLightTiming
9 pi = GetHaltedPedestrians (Tr→ Condition)
10 vi = GetHaltedVehicles (Tr→ Condition)
11 for i= (1 to n) do
12 if Tr = low then
13 ti = low
14 elseif Tr = medium then
15 ti = medium
16 elseif Tr = high then
17 ti = high
18 else Tr = very high then
19 ti = very high
20 end if
21 end for
22 Output: W1, W2

Figure 14 shows the architecture of the dynamic traffic light interval control strategy. At
the beginning of each phase, the sensors input the dynamic traffic logic, and the green light
timing will be altered according to the dynamic logic. This research utilizes a combination
of pedestrian and vehicle green time in the simulation to reduce the waiting time for
automobiles and pedestrians. The TraCI module interacts with the simulation online,
whereas the communication between the TraCI and the cyber system happens in fixed
iterations.
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4.4. Design of Experiments

To check the performance of the dynamic control logic, it was compared with the
pre-timed and semi-dynamic traffic systems. The simulation parameters were the same for
all the traffic light control strategies except the traffic light timings. In the pre-timed traffic
light system, the green light timings were fixed irrespective of the traffic condition. The
green light timings for each phase were set to allow the highest volume to pass through
the intersection without green light extension. So, the pre-timed traffic light system used
the timing of the very heavy traffic condition category. For the semi-dynamic traffic light
system, the traffic light timings were divided into two categories: rush hours and non-rush
hours. So, here, the timings of medium and very heavy traffic conditions categories were
used for the green light during non-rush hours and rush hours, respectively. The traffic
demand was built in a way to mimic real-world traffic conditions for 24 h. Table 5 gives a
detailed breakdown of the vehicle and pedestrian volumes at different times of the day.

Table 5. Vehicle and Pedestrian volume for 24 h simulation.

Time of the Day
Traffic Conditions

Vehicles Pedestrians

12:00 a.m.–5:00 a.m. Low Low
5:00 a.m.–6:00 a.m. Low Medium
6:00 a.m.–7:30 a.m. Medium Medium
7:30 a.m.–9:00 a.m. Very high High

9:00 a.m.–10:30 a.m. Very high Very high
10:30 a.m.–12:00 p.m. High Medium
12:00 p.m.–1:30 p.m. Medium High
1:30 p.m.–3:00 p.m. Low Very high
3:00 p.m.–4:30 p.m. Low High
4:30 p.m.–6:00 p.m. Medium Very high
6:00 p.m.–6:45 p.m. High High
6:45 p.m.–7:30 p.m. High Very high
7:30 p.m.–8:15 p.m. Very high Medium
8:15 p.m.–9:00 p.m. Very high Low
9:00 p.m.–10:30 p.m. High Low
10:30 p.m.–12:00 a.m. Medium Low

The distribution of the traffic flow was based on the peak hours for urban areas
from 6 am to 10 am and 4 pm to 8 pm as stated by FHWA [43], where the vehicle and
pedestrian categories used around this time are medium, high, and very high. Additionally,
to establish demand at an intersection, the travel time for Houston was considered over a
period of day for the year 2022 [44]. The demand was built to test the control strategy for
different combinations of vehicle and pedestrian volume. This demonstrates the variability
in the volume of vehicles and pedestrians over the course of a day. In the simulations,
the overall waiting time was checked and compared for pre-timed, semi-dynamic, and
dynamic traffic systems.
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5. Data Analysis and Findings

Simulations were conducted using the parameters given in Table 6 to check the effect
of pedestrian volume on vehicle waiting time and vehicle volume on pedestrian waiting
time. In total, 160 simulations were conducted, where ten samples were taken for each
combination of pedestrian and vehicle volume. The pedestrian volume was changed, and
the average waiting of the vehicles and pedestrians was noted over the one-hour simulation
period with an average of 30 traffic cycle lengths, keeping the vehicle’s volume constant. All
the parameters were kept same in one combination set of vehicle and pedestrian volume,
while changing the seed value for each simulation. This would generate slightly different
spawning patterns of vehicles and pedestrians in the simulation.

Table 6. Parameter settings for hypothesis test simulations.

Volume Category Traffic Light Timing

Vehicle Pedestrian Through
Vehicles Pedestrians Left Turn

Vehicles

Low

Low 12 4 9
Medium 12 5 9

High 12 6 9
Very high 12 7 9

Medium

Low 12 4 12
Medium 12 5 12

High 12 6 12
Very high 12 7 12

High

Low 16 4 15
Medium 16 5 15

High 16 6 15
Very high 16 7 15

Very high

Low 22 4 19
Medium 22 5 19

High 22 6 19
Very high 22 7 19

A one-way ANOVA (analysis of variance) test was performed to compare the differ-
ence of mean among the various combinations of traffic category groups as listed. It is a
statistical method used to analyze the differences between the means of three or more inde-
pendent groups based on a single categorical independent variable. A one-way ANOVA
aims to determine whether there is a significant difference among the means of the groups,
suggesting that the factor has a significant effect on the continuous dependent variable.
Table 7 lists the vehicle waiting time for pedestrian volume change, and Table 8 lists the
pedestrian waiting time for vehicle volume change.

The results show that the p-value for each group combination is less than the 0.05 sig-
nificance level. Thus, the null hypothesis is rejected, and there is a difference in the mean of
the groups. Similarly, for the pedestrian waiting time, the p-value for each group combina-
tion is less than the significance level, indicating that the change in user volumes affects the
other users at the intersections. Additionally, an examination of the average waiting times
reveals that the traffic waiting time increases as the volumes change from low to high. The
results are given in Tables 9 and 10.
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Table 7. Effect of pedestrian volume change on vehicle waiting time.

Vehicle
Volume

Pedestrian
Volume Vehicle Waiting Time (s) Average Std. Dev.

Low

Low 12.3 11.4 12 12.4 12.3 12.2 12.1 12.3 12.2 11.7 12.084 0.31711
Medium 13.1 12.4 12.8 12.6 12.7 12 12.1 11.7 12.1 12.7 12.422 0.45161

High 13.1 13.8 13.6 12.9 13 12.5 12.8 12.9 13 13 13.065 0.37041
Very high 13.3 13.7 13 13.5 13.2 13.4 13 13.8 13.6 13 13.334 0.30537

Medium

Low 16.4 16.3 15.9 15.7 16.7 15.9 15.2 15.9 15.7 15.1 15.863 0.50953
Medium 16.4 16.2 15.7 17 16.1 15.6 16.1 17 17 16.6 16.368 0.52434

High 16.1 17.4 17 16.5 17.5 17 16.4 16 16.3 17.7 16.787 0.61056
Very high 17.5 17.2 16.5 16.4 17.7 16.9 17.2 16.5 16.5 18 17.037 0.55331

High

Low 19.4 18.5 19 20.1 19.4 19.3 18.6 18.8 19.2 18.6 19.077 0.48585
Medium 19.9 21.2 20.6 19.2 20 20.7 20.4 20.1 20 20.1 20.207 0.55542

High 20.8 21.1 22 20.1 19.9 19.7 19.9 20.9 20.6 21.5 20.63 0.75673
Very high 20.9 19.6 19.9 21.3 21.9 21.7 22.3 21.8 20.1 21.1 21.062 0.91183

Very high

Low 28.6 29.8 26.8 28.2 25.6 27.5 26 32.5 28.1 27.9 28.095 1.9663
Medium 32.6 27.5 30.8 28.2 26.3 32 27.1 30.1 32.4 29.8 29.668 2.31398

High 32.1 28.1 33.3 33.2 30.8 30.3 32.5 31.5 29.2 31.3 31.227 1.68779
Very high 32.1 31.6 30.7 31.1 30.2 32.9 33 33.3 28.8 31.6 31.516 1.40426

Table 8. Effect of vehicle volume change on pedestrian waiting time.

Pedestrian
Volume

Vehicle
Volume Pedestrian Waiting Time (s) Average Std. Dev.

Low

Low 29.1 26.3 26.2 27.7 29.4 27.9 28.3 27.7 27.9 27.9 27.825 0.97328
Medium 31 28.5 28.7 30.6 29.8 29.1 28.5 27.5 29.3 30.5 29.343 1.04039

High 36 33.4 34.3 36.7 35.4 34.4 34.4 33.9 33.8 35.1 34.737 0.97946
Very high 42.2 44.3 41.8 41.9 40.1 41 41 39.7 42.3 41.3 41.547 1.21186

Medium

Low 29.6 30.1 29.9 30 30.6 30.4 30 27.5 29.3 28.4 29.566 0.92792
Medium 31.1 30.7 30.7 32.2 31.7 31.2 32.2 32 30.7 31.4 31.381 0.58911

High 35.9 35.1 36 35.2 36.8 37.7 37.1 36.2 35.5 36 36.154 0.80135
Very high 42.8 43.3 42.4 41.8 42.9 43.8 40.7 42.3 42.8 44.6 42.742 1.0153

High

Low 32.2 31.6 28.3 29.9 30 31.5 30.9 30.4 30 30.6 30.539 1.0476
Medium 32.7 33.5 32.5 32.7 32.2 32.3 32.8 32.3 32.1 32.7 32.565 0.37824

High 37 37.8 37.4 38.4 36.8 38.2 36 35.9 37.5 38.6 37.349 0.90547
Very high 43 42.6 44.8 44.8 44 44.7 42.3 44 45.8 44.2 44.019 1.0458

Very high

Low 31.7 30.6 31.3 31.4 31.4 31 31.2 30.4 31.7 32.2 31.28 0.49786
Medium 33.6 33.8 35.3 33.5 33.8 33.4 33.5 33.8 33.6 43.3 34.748 2.88001

High 39.2 37.4 38.5 40 38.4 41 38.6 39.2 39.5 39.5 39.137 0.94161
Very high 47 45.4 44.8 43.6 45.5 46.3 46.2 45.4 45.3 46.6 45.619 0.92143

Table 9. Results of ANOVA test for vehicle waiting time.

One-Way ANOVA Test F p-Value F Critical Hypothesis Result

Low vehicle vs. variable pedestrian volume 24.65366825 7.58 × 10−9 2.866265551 Reject null hypothesis
Medium vehicle vs. variable pedestrian volume 8.715096705 0.000177 2.866265551 Reject null hypothesis

High vehicle vs. variable pedestrian volume 14.92596812 1.79 × 10−6 2.866265551 Reject null hypothesis
Very high vehicle vs. variable pedestrian volume 7.101865068 0.000721 2.866265551 Reject null hypothesis
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Table 10. Results of ANOVA test for pedestrian waiting time.

One-Way ANOVA Test F p-Value F Critical Hypothesis Result

Low pedestrian vs. variable vehicle volume 311.4556 8.51 × 10−6 2.866266 Reject null hypothesis
Medium pedestrian vs. variable vehicle volume 432.7093 2.77 × 10−28 2.866266 Reject null hypothesis

High pedestrian vs. variable vehicle volume 409.7162 7.21 × 10−28 2.866266 Reject null hypothesis
Very high pedestrian vs. variable vehicle volume 133.925 1.39 × 10−19 2.866266 Reject null hypothesis

The machine learning performance was also tested. The ANN and SVM models were
given 1200 data samples to predict the green light timing for detected traffic conditions.
Out of all the samples in the dataset, 70% of the data were used for training, and 30% were
used in testing the neural networks. Table 11 shows the mean square error (MSE), R2 value,
average training, and testing accuracy of both models. The results indicate that both models
performed well, with the SVM model performing slightly better than the ANN model.

Table 11. Performance of ANN and SVM models.

Neural
Networks

Training
Accuracy

Validation
Accuracy MSE R2

ANN 97.897% 97.678% 0.44834 0.93813
SVM 98.557% 98.191% 0.47739 0.93412

SVM’s performance was better in this case because the relationship between the input
and output data was fairly linear so that the model could find an optimal decision boundary,
called the maximum–margin hyperplane, which tends to generalize well to unseen data.
Additionally, the models did not need to predict any complex patterns in the traffic light
timing. Moreover, SVM models tend to be more interpretable than ANNs, as they involve
finding a hyperplane that separates the data. This can be important when the goal is not
only to make predictions but also to understand the underlying patterns in the data.

On the other hand, the ANN model accuracy was very close to the SVM model
accuracy. However, ANN models are more vulnerable to overfitting, which may reduce the
accuracy of the ANN model in predicting the output.

Ten different pre-trained CNNs were used to predict the traffic condition from images.
The pre-trained models are typically trained on a large dataset and have learned valuable
features that can be reused in a new task. The training and testing accuracies of all the
networks are listed in Table 12. The results show that almost all the models performed
well in detecting the vehicles. Darknet53 achieved the highest accuracy of 97.5% validation
accuracy compared to others. Darknet53 is a CNN model that has a total of 53 layers.
This model performs well in detecting the objects from the given image dataset. Simi-
larly, Darknet19, Alextnet, and Inceptionv3 are known for their high accuracy in object
recognition.

The performance of the different CNN models depends on their architecture. Different
architectures have unique strengths and weaknesses. Resnet18 is designed to handle
deeper networks by introducing skip connections, while Mobilenetv2 uses depth-wise
separable convolutions for efficient computation. More complex models such as Resnet101
can capture more intricate patterns but may require more computation and be prone
to overfitting. Simpler models such as SqueezeNet and Mobilenetv2 are designed for
efficiency, trading off some accuracy for reduced computational requirements. Thus, their
validation accuracies are 47.5% and 80%, respectively, which are the least compared to
other models.
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Table 12. Performance of CNN models.

Pre-Trained
Networks

Vehicle Detection Pedestrian Detection

Training
Accuracy

Validation
Accuracy

Training
Accuracy

Validation
Accuracy

squeezenet 46.875% 47.5% 36.7188% 42.5%
googlenet 69.5313% 82.5% 54.6875% 57.5%
resnet18 92.1875% 90% 73.4375% 55%

mobilenetv2 88.2813% 80% 78.1250% 62.5%
resnet50 92.1875% 82.5% 85.9375% 57. 5%

resnet101 100% 85% 100% 60%
inceptionv3 98.4375% 90% 95.3125% 53.5%

alexnet 87.5% 92.5% 75% 67.5%
darknet19 100% 90% 100% 60%
darknet53 100% 97.5% 100% 55%

However, the validation accuracy of all models plunged for pedestrian detection
cases. This happened because of the incorrect data from the simulation. Some images of
the pedestrian lanes taken during the simulation represented more pedestrians than the
detected category. Pedestrians can move in two directions on a single lane, whereas the
vehicle forms a proper queue and moves in a single direction only on a single lane. So,
while capturing the images of the pedestrians looking towards the signal, the camera also
captured the pedestrians moving in the opposite direction of the traffic signal.

The method proposed in this work was compared with the time-gap-based and
delay-based traffic light actuation methods [45,46]. These two methods are established
methods and have been proven to reduce traffic delays at intersections in real settings and
in simulations. Table 13 compares the average waiting time of vehicles for 12 h simulations
for low, medium, high, and very high volumes of vehicles. In these simulations, pedestrian
flows were not considered. From the table, some instructive points can be noted. The
time-gap-based and delay-based traffic light control strategy performed better for the low
and medium volume of vehicles, whereas the waiting time was similar for a high traffic
volume. The dynamic traffic interval technique presented in this work outperformed the
others under the condition of very high traffic volume. This is because, in the dynamic
traffic intervals technique, the times are fixed for a detected volume of traffic for a given
phase in a cycle. Thus, even if there are more cars coming at an intersection after a certain
gap or time delay, the signal will remain green for the fixed period.

Table 13. Waiting time of vehicles for three different traffic light control strategies.

Traffic Volume Dynamic Traffic
Intervals (s) Gap-Based (s) Delay-Based (s)

Low 12.13 9.72 9.09
Medium 13.81 13.22 12.27

High 15.06 15.77 15.06
Very high 20.19 28.46 35.48

The dynamic traffic light interval technique was also tested alongside fixed time and
semi-dynamic traffic light plans to evaluate the performance in terms of the delay. In these
simulations, the pedestrian and vehicle flows were considered. Twenty-five simulations
were conducted to test out the proposed technique thoroughly. The experimental design
was structured to adjust the categories according to the time of day. The fixed-time traffic
light plan used very-high-category-traffic timing, and it remained fixed irrespective of the
change in input probabilities. Similarly, the semi-dynamic traffic plan used the timings of
medium- and very-high-category traffic. The time in semi-dynamic traffic lights would
change based on the rush and non-rush hours of the day.
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Based on the simulation results, there was a 20.11% to 26.67% reduction in the overall
vehicle waiting time for an intersection compared to the fixed-time traffic light system
and an 11.99% to 18.09% reduction compared to the semi-dynamic traffic light system.
Additionally, a 20.38% to 23.16% drop was observed in the overall pedestrian waiting
time at an intersection compared to the fixed-time traffic light system and an 8.55% to
10.95% reduction compared to the semi-dynamic traffic light system. Table 14 shows the
performance comparison for the three different traffic light control strategies.

Table 14. Performance comparison of different traffic light control strategies.

Technique
Vehicle Waiting Time (s) Pedestrian Waiting Time (s)

Average Std. Dev. Minimum Maximum Average Std. Dev Minimum Maximum

Fixed time 24.58 0.5616 23.93 26.25 42.36 0.1533 42.22 42.53
Semi-

dynamic 22.03 0.5171 21.25 23.5 36.16 0.1654 36.63 37

Dynamic 18.77 1.4653 18.28 19.25 33.16 0.2576 32.76 33.33

6. Conclusions and Future Work

This work proposed a system that simultaneously reduced the waiting time of vehicles
and pedestrians by categorizing the vehicle and pedestrian volume into categories. The
model achieved this result by adjusting the green light timings of the ongoing phase.
Reducing the waiting time of vehicles at the intersection means indirectly lowering vehicle
emissions, reducing fuel consumption, and effectively utilizing the traffic signal cycle length.
Moreover, lowering the delays for pedestrians decreases the chances of the dangerous
behavior of people trying to cross the roads.

This work also demonstrated a framework to implement the dynamic traffic interval
strategy. The cyber system, using CNN, proved its usefulness in detecting traffic condi-
tions at the intersection. ANN/SVM helped to set the timing for the combination of the
pedestrian and vehicle traffic condition. Moreover, ladder logic programming controlled
the traffic light timings based on the traffic condition detected. In this model, all vehicles
were assumed as passenger cars having an equal length, and each car approaching the
intersection maintained the same distance from the other. Additionally, the simulation
considered the same critical volume for all through movements of vehicles. As this tech-
nique is dependent on the service requested by the users, it will not be applicable at all
intersections. This is particularly true in areas where the demand is very low, where few
pedestrians are requesting a service, or when traffic variation is minimal over the course of
the day.

In the future, more parameters can be provided as inputs to machine learning mod-
els to predict traffic conditions accurately. Moreover, green light timing was calculated
based on the number of vehicles and pedestrians. In the future, more parameters will
be considered, such as pedestrians and vehicle speed, and other vehicles, such as trucks,
buses, and motorbikes, to adjust the green light time. One crucial assumption in this
research was that the cameras provide all the data to the cyber system. However, this may
not be possible in all scenarios; thus, data from different sensors such as ultrasonic and
infrared will be considered in the future. Additionally, this work focused on the working of
signal intersections. So, future work will include a control strategy considering multiple
coordinating intersections.
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