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Abstract: Viral infections can pose a major threat to public health by causing serious illness, leading
to pandemics, and burdening healthcare systems. The global spread of such infections causes
disruptions to every aspect of life including business, education, and social life. Fast and accurate
diagnosis of viral infections has significant implications for saving lives, preventing the spread
of the diseases, and minimizing social and economic damages. Polymerase chain reaction (PCR)-
based techniques are commonly used to detect viruses in the clinic. However, PCR has several
drawbacks, as highlighted during the recent COVID-19 pandemic, such as long processing times and
the requirement for sophisticated laboratory instruments. Therefore, there is an urgent need for fast
and accurate techniques for virus detection. For this purpose, a variety of biosensor systems are being
developed to provide rapid, sensitive, and high-throughput viral diagnostic platforms, enabling quick
diagnosis and efficient control of the virus’s spread. Optical devices, in particular, are of great interest
due to their advantages such as high sensitivity and direct readout. The current review discusses
solid-phase optical sensing techniques for virus detection, including fluorescence-based sensors,
surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), optical resonators,
and interferometry-based platforms. Then, we focus on an interferometric biosensor developed by
our group, the single-particle interferometric reflectance imaging sensor (SP-IRIS), which has the
capability to visualize single nanoparticles, to demonstrate its application for digital virus detection.

Keywords: solid-phase optical biosensors; virus diagnostics; fluorescence-based sensors; surface
plasmon resonance; optical resonators; interferometric biosensors; single-virus detection

1. Introduction

Viral infections can pose a serious threat to public health, as demonstrated by the recent
COVID-19 pandemic, which was caused by a novel coronavirus, SARS-CoV-2, infecting
676 million people and causing 6.8 million deaths worldwide as of March 2023 [1]. Human
history has witnessed several outbreaks caused by viruses such as the plague [2], cholera [3],
flu [4], and HIV [5]. The 1918 Spanish flu pandemic that was caused by the H1N1 virus
was the deadliest flu pandemic in recorded human history, with an estimated 50 million
deaths worldwide [6]. The recent COVID-19 pandemic and the constant emergence of
new outbreaks such as Ebola, Zika, RSV, and monkeypox highlighted the urgent need
for sensitive and high-throughput viral diagnostic techniques. It is crucial to detect viral
infections in a fast and sensitive fashion to enable effective infection control and improve
health outcomes [7].
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Over the years, several approaches have been used for clinical virus diagnostics
including virus isolation in culture, enzyme-linked immunosorbent assay (ELISA), and
polymerase chain reaction (PCR) [8]. Virus culture, referred to as the ‘old gold standard’, is
performed by growing viruses in cell culture and takes 2–12 days [9]. In addition to being
time-consuming, virus isolation in culture can be difficult and expensive [10]. Serological
diagnostics using ELISA is based on the detection of antibodies produced by the immune
system as a result of the viral infection. This indirect detection approach has its limitations.
The antibody response may not be strong enough to allow detection in the early stages of
the infection, or a weak serological response in certain patients can lead to false negative
results [11]. Quantitative or real-time PCR (RT-PCR) is the current gold standard for molec-
ular diagnostics of viruses in clinical settings [12]. This technique involves the amplification
of certain regions in the viral genome using specific primers and other reagents such as en-
zymes and nucleotides. Although RT-PCR is an extremely sensitive detection technique, it
requires highly automated equipment for nucleic acid extraction, expensive thermocyclers
for the amplification reaction, and skilled users to operate these instruments. Moreover,
as revealed during the peak times of the COVID-19 pandemic, reagent and trained per-
sonnel shortages and insufficient equipment and infrastructure led to long turnover times,
overwhelming the laboratories and delaying the results [13]. In an effort to overcome these
limitations, alternative virus-detection methods, either nucleic-acid- or antigen-based, were
developed for rapid point-of-care (POC) diagnostics and received emergency use autho-
rization (EUA) from the U.S. Food and Drug Administration (FDA) during the COVID-19
pandemic [14]. These include isothermal amplification-based and CRISPR (Clustered Reg-
ularly Interspaced Short Palindromic Repeats)-based nucleic-acid-detection platforms as
well as antigen tests employing immunofluorescence or immunochromatographic lateral-
flow assays [15–18]. However, despite providing quick results at the POC, these tests have
a limited throughput and variable sensitivities [19]. Due to the continuing need for rapid,
sensitive, and high-throughput virus detection platforms, there has been considerable effort
toward developing biosensors for viral diagnostics applications [20].

An ideal viral diagnostic platform should be highly sensitive, fast, high-throughput,
and easy to use and require minimal sample processing and temperature-sensitive reagents.
Since the first biosensor was developed in 1956 by Leland C. Clark for detecting oxygen,
there have been tremendous advancements in the biosensor field [21]. Biosensors consist
of a biological sensing element for specific analyte binding and a transducer system to
convert the binding events to a measurable signal. Biosensors can use electrical, optical,
or mechanical transduction mechanisms to convert the changes induced by the biological
interactions on the sensor to an observable output, which then can be correlated with the
biological binding interactions. Biosensors hold great potential for being used as viral
diagnostic tools at the POC owing to the advantages they offer such as simple workflows,
cost-effectiveness, portability, and rapid answers. Moreover, the integration of microarray
and microfluidics technologies into biosensors enabled multiplexed detection and the use of
smaller sample and reagent volumes compared to the laboratory techniques such as ELISA.

In this review, we focus on solid-phase optical sensors for viral diagnostics applica-
tions. Optical sensors have advantages compared to other transduction mechanisms due to
their direct detection capability and minimal dependence on environmental conditions [22].
For viral diagnostic applications, an optical biosensor can be used to determine the pres-
ence of an infection by detecting viral antigens, whole viruses, viral nucleic acids, or an
individual’s antibody response in biological samples. In solid-phase biosensors, capture
agents against one of these analytes are immobilized on the sensor surface. The solid-phase
optical biosensors that are covered in this review include fluorescence-based optical sensors,
colorimetric biosensors, surface plasmon resonance (SPR), surface-enhanced Raman scatter-
ing (SERS), optical resonators, and interferometry-based platforms including single-particle
interferometric reflectance imaging sensor (SP-IRIS), a label-free biosensor developed by
our group.
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2. Solid-Phase Optical Sensors and Their Applications in Virus Detection

Optical biosensors measure the optical signals as the changes in the optical properties
and characteristics on the transducer surface in the case of an interaction of the immobilized
biorecognition element with the measured substance [23–25]. Figure 1 shows a general
illustration of an optical biosensor. The optical biosensor consists of an optical source, a
transduction platform and an optical detector. Optical biosensors can use different types
of biorecognition elements such as antibodies, aptamers, peptides, nucleic acids, peptide
nucleic acids, proteins, enzymes, or whole cells on the transducer surface, which is designed
to bind with the target substance specifically [26–30]. The optical transducer is integrated
closely with the biosensing element. The optical biosensors are classified based on their
transducers and can also be classified based on their dependence on a label for signal
generation as label-based [31,32] and label-free [33–37]. In label-based biosensors, the
detected signal originates from the label, such as a fluorophore or chromophore, conjugated
to the detection molecule, which binds to the captured target. In contrast, in label-free
biosensors, the signal produced by the interaction between the target and the biorecognition
element is measured directly. In this section, we discuss a selection of surface-based optical
biosensor technologies for the detection of viruses with an emphasis on their principles of
detection and their applications in sensitive viral diagnostics.
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Figure 1. A general illustration of optical biosensors.

2.1. Fluorescence-Based Optical Sensors for Virus Detection

Fluorescence-based optical biosensors employ fluorescent labels to produce the optical
signal, which results from the binding of the labeled detection molecule to the capture
probe and analyte complex on the transducer [23,38,39]. They are widely used in assay
development owing to numerous commercially available fluorescent labels, uncompli-
cated labeling methods, multi-color fluorophores for multiplexed assays, fast response
times with localized fluorescence signal, high temporal resolution, and sufficient detection
sensitivity [40]. These advantages of fluorescence optical biosensors are desirable for the
detection of viruses and biological molecules [41–44]. However, certain limitations such
as fluorophore blinking, photobleaching, and insufficient detection limits for some target
molecules make fluorescence-based optical biosensors less applicable in certain applications,
for instance, in the detection of low-abundance nucleic acids [45]. Moreover, nonspecific
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binding of the fluorescent labels to other components in the sample media remains an
issue in fluorescence detection systems [46]. Additionally, irreversible photobleaching of
the fluorescent label restrains the observation time, hence affecting the reliability of the
test [47].

Fluorescence-based optical biosensor technologies are commonly compared with
ELISA due to the similarities in the detection method, application, the use of common
fluorescence labels, and ELISA’s widespread use and reliability. ELISA requires a laboratory
environment, an intricate process, sophisticated equipment, and trained personnel, making
it a less-ideal choice for low-resource settings [48,49]. On the other hand, fluorescence-based
optical sensors stand out by offering point-of-care (POC) testing and cost-effectiveness.
With the advances in technology, smartphones have become more integrated into the
recent designs of fluorescence-based POC optical biosensor platforms. Smartphones can
be used to visualize labeled viruses and fluorescent nanoparticles by incorporating them
into POC devices. Biosensors using smartphones for monitoring either take advantage
of the phone’s built-in sensors, such as the camera, magnetic sensor, and ambient-light
sensor, or use external sensor modules connected via wired or wireless connections to
the integrated diagnostic system. Smartphone-based virus-detection systems are not as
sensitive as gold-standard diagnostic methods. However, these systems are portable and
scalable, and therefore, they have good prospects for the development of an accessible POC
for viral disease surveillance and management [50].

Here, we present a number of fluorescence-based biosensor applications for
virus detection.

A multiplex imaging array was developed for the rapid and low-cost diagnosis of
trace avian influenza virus (AIV) using DNA biomarkers by Jiang et al. (Figure 2) [51].
They detected three subtypes of AIV DNA biomarkers (H1N1, H7N9, and H5N1) simulta-
neously using fluorescence imaging and gray-level analysis. They utilized a smartphone
for imaging the output and completed detection in 20 min. They employed catalytic hairpin
assembly (CHA) amplification reactions and utilized thioflavin T, a specific G-quadruplex
fluorescence probe for labeling. CHA is a non-enzymatic amplification technique that is
commonly used for the detection of various nucleic acids with high sensitivity. In CHA,
two complementary nucleic acid hairpins are used, which undergo a cascade of very quick
hybridization events and, at the end, the final double helices are produced. These helices
can generate fluorescence signal in a short time. In the study, the authors reached detection
limits of 136 pM, 141 pM, and 129 pM for H1N1, H7N9, and H5N1, respectively. Moreover,
the array sensors exhibited excellent anti-interference among the different subtypes and
good mismatch discrimination in real samples. Such a system can easily be applied for the
early detection of disease diagnostics in low-resource settings.

Another rapid viral detection and identification study was performed by Hepp et al.
for detecting influenza virus, avian infectious bronchitis virus, and SARS-CoV-2 specifically
and quantitatively in approximately 20 min (Figure 3) [52]. They used a fluorescence in
situ hybridization (FISH) protocol, specifically a rapid viral FISH protocol (rvFISH), where
they used fluorescence microscopy to spatially detect and quantify DNA and RNA inside
fixed cells and tissues using complementary and fluorescently labeled oligos. They used a
single-molecule TIRF microscope to image immobilized and stained virus particles, where
they count the bound FISH probes by stepwise photobleaching (Figure 3C). They obtained
Figure 3C by averaging the decrease in fluorescence intensity of the last bleaching step
over several molecules, then obtained the average fluorescence intensity related to the
single fluorophore of each FISH probe on the virus particle. They were able to detect
influenza particles and infectious bronchitis virus (IBV), an avian coronavirus, down to a
concentration of 105 PFU/ mL and 102 PFU/ mL, respectively, in a 20 min assay.
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and gray-level analysis. Reproduced with permission from [51]. Copyright © 2021 Elsevier.
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Figure 3. (A) Illustration of FISH-based virus detection. (B) Image of an array after staining with
48 fluorescent hybridization probes for influenza A/WSN/33 virus particles (106 PFU/mL). Red
boxes point diffraction-limited, isolated particles which were analyzed with stepwise photobleaching.
Scale bar 3 µm. (C) Representative photobleaching curve for obtaining the average number of
probes bound to a virus particle in the FISH assay. Arrow shows the final bleaching step used for
determining the average intensity of a single probe on a particle. Reproduced with permission
from [52]. Copyright © 2021 Springer Nature.
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Shiaelis et al. present a methodology for virus detection and identification that uses
a convolutional neural network (CNN) to distinguish between microscopy images of
fluorescently labeled intact different viral particles (Figure 4) [53]. They utilized single-
particle fluorescence microscopy and deep learning. The assay successfully performed
labeling, imaging, and virus identification in less than 5 min and did not require any lysis,
purification, or amplification steps. They carried out two clinical tests using 155 patient
samples in total, which provided high overall sample accuracies of 98.0% and 97.1%.
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Figure 4. (A) Illustration of how the viruses are labeled and imaged to identify and classify different
viruses using trained convolutional neural network (CNN). (B) Sample field of views for CoV (IBV),
two strains of H3N2 influenza (A/Udorn/72 (Udorn), and A/Aichi/68 (X31)), an H1N1 influenza
strain (A/PR8/8/34 (PR8)) detection, and a negative control. White boxes were used to point out
merged red and green localizations as an example of colocalization. Scale bar, 10 µm. Reproduced
with permission from [53]. Copyright © 2022 American Chemical Society.

Moreover, Yeo et al. have demonstrated a field-level fluorescent lateral flow im-
munoassay that was combined with a smartphone-based fluorescent diagnostic device
with an efficient reflective light-collection module for the detection of avian influenza (AI)
(H5N1, H5N3, H7N1, and H9N2) (Figure 5a,b) [54]. The fluorescence light efficiency was
improved with the use of latex beads along with the coumarin-derived dendrimer-based
fluorescent as anti-influenza nanoparticles. The lowest detectable virus titers were found
as 6.25 × 103 PFU/mL for H5N3, 5.34 × 102 PFU/mL for H7N1, and 5.23 × 101 PFU/mL
for H9N2 in throat-swab samples. The diagnostic test system was also compared with
sandwich ELISA in the quantification of all the virus samples both in distilled water (DW)
and normal throat swabs. The results showed that the proposed smartphone device had
an improved diagnostic performance compared to ELISA and the table-top version. In
addition, clinical validation of a smartphone-based diagnostic device with H5N1-infected
patient samples was completed within 15 min with a sensitivity of 96.55% (28/29) [95%
confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to
99.96) (p < 0.0001).
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Figure 5. (a) Illustration of the fluorescence-detector design using a smartphone and fluorescent
lateral-flow strip. (b) Illustration of the fluorescence lateral strip for influenza A and the components
for lateral-flow strip design. A nitrocellulose membrane as the base was decorated with anti-influenza
A nucleocapsid (NP) antibody on the test line (TL) and anti-mouse IgG on the control line (CL).
Bioconjugate-AI virus complex is captured by the anti-influenza NP on the TL. On the other hand,
the unreacted bioconjugates are captured by the anti-mouse IgG on the CL. The fluorescence intensity
is measured using the smartphone-integrated diagnostic device. (c) ELISA quantification results
and (d) table-top fluorescent immunoassay strip reader (FICT) and the smartphone-based detector
quantification results of H5N3, H7N1, and H9N2 viruses containing samples in distilled water (DW)
or a normal throat swab. The normalized fluorescent values of TL/CL for each negative control were
shown with horizontal dotted lines. Each data point represents mean ± SD (n = 3). Reproduced with
permission from [54]. Copyright © 2016 Ivyspring International Publisher.
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2.2. Colorimetric Biosensors for Virus Detection

Colorimetry-based biosensors allow visual detection via a change in color detected
with the naked eye or simple, low-cost, and portable optical detectors. These features
make them proper candidates to fabricate POC devices that can be used for rapid and cost-
effective virus detection [55]. They employ a simple platform with a quick response and fair
sensitivity and selectivity [56]. In colorimetry-based solid-phase biosensors, on the sensor
surface, which is usually a simple test strip, when the sample solution is introduced, a
ligand–target complex is formed on the solid support. This complex results in a shift in color
that can be easily observed for quantitative measurements. With the recent advancements
in nanotechnology, the sensitivity of colorimetric detection systems has been improved by
using various functional nanomaterials such as metal and metal oxide NPs, quantum dots,
graphene, and derivatives [57]. In the NP-based approach, colloidal NPs that change color
during aggregation or dispersion are conjugated with the biosensing element. Plasmonic-
based colorimetric biosensors benefit from the localized surface plasmon resonance (LSPR)
extinction coefficient in the visible range of noble metal NPs such as gold NPs (AuNPs).
Binding events between the analyte and the AuNP-conjugated bioreceptor cause visible
color change to show the presence of the virus [58]. NP-based colorimetric sensors can
be used in a wide range of virus sensing applications. Khoris and coworkers designed an
immunoassay-based sensing technique that detected hepatitis E virus (HEV) in real-time
using Ag-decorated AuNPs. Anti-HEV IgG antibodies were conjugated to AuNPs and in
situ silver deposition was achieved on the surface of antibody–AuNP conjugates as a signal-
amplification strategy. The virus particles were entrapped by the utilized nanocomposites
whereas 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2 were added to decompose back
the Ag shell to Ag+. After the addition of TMB-H2O2, based on the obvious color change,
the concentration of HEV was quantified and real-time monitoring of HEV in a real sample
was realized [59].

Paper-based lateral flow immunoassays (LFIAs) as POC devices are widely used
for early disease diagnostics. Despite their widespread use, they are often limited due
to insufficient sensitivity for the required sample sizes and short time frames of testing.
Loynachan et al. designed a highly sensitive, serum-stable, paper-based, and nanoparticle
catalyst-labeled LFIA for the detection of a viral capsid protein, p24, one of the earliest and
most conserved biomarkers of HIV. They used porous platinum core-shell nanocatalysts
(PtNCs), and then explored the application of antibody-functionalized PtNCs with high-
affinity and -specificity modified nanobodies toward p24. They established the key larger-
nanoparticle-size regimes needed for efficient amplification and performance in LFIA [60].
In another study, Wang et al. designed a rapid diagnostic platform integrated with a
low-cost reader and a multicolor four-plex immunoassay to detect and distinguish between
dengue virus (DENV) and chikungunya virus (CHIKV) IgM/IgG [61]. The developed
platform employs a unique color-mixing encoding and quantitative readout strategy while
using an optical reader designed to minimize the variation in color detection. The assay
uses red- and blue-colored 400 nm latex nanoparticles conjugated to DENV (red) and
CHIKV (blue) envelope proteins. When DENV and/or CHIKV IgM/IgG antibodies are
present in the sample, they bind to the corresponding NPs, which are then captured on the
appropriate line of the test strip (Figure 6). This platform provides a consistent multiplexed
detection of dengue and chikungunya IgM/IgG antibodies in human clinical samples
within 30 min. The multiplex assay requires low sample volumes and has the ability to test
four samples simultaneously, which makes the rapid diagnostic platform a great candidate
to be used in resource-limited settings.
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Figure 6. (A) A 4-plex colorimetric lateral-flow test strip and an optical readout device. Red and blue
nanoparticle conjugates in the conjugate pad bind to DENV and CHIKV antibodies in the sample,
respectively. Nanoparticle-IgG complexes are captured by the first test line (red), and nanoparticle-
IgM complexes are captured by the second test line (blue), causing a color change. When both DENV
and CHIKV antibodies of the same isotype are present, a mixture of red and blue (purple) appears at
the test line. Unbound nanoparticle conjugates are captured at the control line (purple). (B) Parts of
the optical reader. (C) Inner view of the optical reader. (D) Fully assembled version of optical reader
with lightproof casing. (E) Examples showing the color development on the test strip for various
cases. Reproduced with permission from [61]. Copyright © 2019 American Chemical Society.

2.3. Virus Detection with Surface Plasmon Resonance and Localized Surface Plasmon Resonance

Surface plasmon resonance (SPR) is defined as an electromagnetic (EM) phenomenon
depending on the collective resonant oscillations of free electrons and incoming protons
passing through a metal-dielectric interface. The working principles of SPR-based optical
sensors depend on the detection of changes in the refractive index that arise on the dielectric
surface near the metal layer [62,63]. The properties of this metal layer strongly influence
the SPR response that is generated according to the refractive index change. The metals
that have conduction-band electrons, such as gold, silver, aluminum, and copper, show
the ability to resonate at an appropriate wavelength with the incident light. Gold is
the most preferred metal film due to its chemical stability and sensitivity for sensing
applications [64]. A typical SPR-based sensor consists of three main components: (i) the
immobilized recognition element, (ii) the prism of light, and (iii) the analyte [65]. The
recognition molecule is immobilized onto the gold surface of the sensor chip. After surface
functionalization, a sample solution containing the analyte is passed across the chip surface.
The incident light passing through the prism excites the electrons of the metal film to
form a surface plasmon. As the incident light reaches the medium at various angles, the
photons are absorbed by the plasmon wave at a specific angle, the critical angle, which is
affected by the refractive index of the medium. When an analyte binds to the immobilized
recognition element, due to the mass accumulation on the immobilized layer, the refractive
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index of the medium near the chip surface changes, which shifts the critical angle for the
immobilized molecule [66–68]. Thus, any physical change that causes a refractive index
change can be monitored without labeling in real time. SPR-based sensing techniques offer
good potential for rapid and POC detection of viruses due to their sensitive and label-
free detection mechanisms. Antibodies against viral antigens are used as bio-receptors
to capture viral proteins and intact viruses on the sensor chip surface. Additionally,
artificial recognition sites obtained using molecular imprinting or laboratory-made capture
molecules, such as DNA and RNA aptamers, are used to capture several viruses [69]. SPR
sensing technology, which is highly accurate in detecting biomolecular interactions, also
offers various advantages such as label-free monitoring, rapid and sensitive detection, and
the ability to miniaturize for on-site monitoring [70]. However, to succeed in the early
diagnosis of viruses using the SPR method, further enhancements in the selectivity and
sensitivity are still required [69]. Here, different SPR-based techniques that can detect
viruses are discussed.

Chang et al. developed an intensity-modulated surface plasmon resonance (IM-SPR)
biosensor integrated with a newly generated monoclonal antibody that enables the rapid
and sensitive detection of a new strain of avian influenza A H7N9 virus that emerged
in China in 2013 [71]. The novel antibody displays high specificity for the H7N9 virus
compared with other human influenza viruses. They experimentally reported a detection
limit of 144 copies/mL using the proposed approach for the H7N9 virus, which is a 20-fold
increase in sensitivity compared with homemade target-captured ELISA. They reported a
less than 10 min assay time. 10 µg/mL of the capture antibody H7-mAb was covalently
immobilized to the reaction spot of the SPR chip through mixed self-assembled monolayers
of 11-mercaptoundecanoic acid and 6-Mercapto-1-hexanol (1:9) via the amine coupling
protocol (Figure 7). The results demonstrated that the simple SPR-based technology was
successfully used in sensitive H7N9 virus detection. They reported that the proposed SPR
system can be used in the implementation of other emerging virus-detection platforms.
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chip and detection of the viruses using the IM-SPR sensor. The bottom graph shows the SPR
signal for different concentrations of the H7N9 virus in PBS, spanning a range between 2.3 × 102

and 2.3 × 105 copies/mL. Reproduced with permission from [71]. Copyright © 2018 American
Chemical Society.
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As effective and simple methods are needed for virus detection, Yoo et al. designed a
reusable magnetic SPR sensor chip for H1N1 influenza virus detection in a conventional
SPR sensor. They used ferromagnetic patterns on an SPR sensor chip to prepare a layer of
magnetic particles and a solid substrate for SPR sensing [72]. They demonstrated a sensor
platform which enables repetitive use of the SPR chip by removing magnetic particles at
the end of an experiment using external magnetic fields without the need for antibody-
modifying processes. Figure 8 shows the schematic of virus detection using antibodies
conjugated to magnetic beads on the substrate. Figure 8A,B depict the ferromagnetic nickel
patterns and trapping of magnetic particles on the SPR chip, and Figure 8C schematizes
the antibody immobilization on magnetic particles using EDC-NHS coupling. Figure 8D,E
show the detection of target molecules and then the removal of the magnetic particles with
an external magnetic field, respectively. The magnetic particles on the sensor chip surface
are removed using strong external magnetic fields so that the aggregation of magnetic
particles on the sensor surface is reduced. The nucleoprotein (NP) of H1N1 influenza
virus was applied to the SPR sensor at concentrations between 300 ng/mL and 10 µg/mL.
A larger increase in the SPR signal was reported with a higher concentration of the NP
solution. This study showed the use of a single reusable SPR chip for the detection of NPs
of H1N1 influenza virus for more than seven times without drastic signal degradation. The
cost of the SPR sensing was significantly reduced by reusing the SPR chip repeatedly.
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field, 150 mT, black dotted arrow). Magnetization of the ferromagnetic Ni patterns are shown with
the red arrows. (C) immobilization of antibodies on magnetic particles using EDC-NHS coupling
in a conventional SPR system, (D) detection process of target molecules, (E) removal of magnetic
particles with an external magnetic field in the opposite direction to that for trapping. Reproduced
with permission from [72]. Copyright © 2020 Elsevier.

The receptor–analyte interaction occurring on the surface of plasmonic biosensors is
also monitored using localized surface plasmon resonance (LSPR). Unlike SPR, LSPR is
formed by a light wave absorbed within conductive nano-plasmonic materials that are
smaller than the wavelength of the incident light [58]. Owing to the enhanced signal
amplification achieved by nanomaterials that have specific optical, electrical, and magnetic
features, a low limit of detection can be obtained. While the incident light interacts with
the metallic nanoparticles (NPs) of the surface, a strong localized EM field generated
around these nanostructures enables a strong peak in the course of the absorption spectrum
collection at the resonance [73]. The height of the LSPR peak and the corresponding
wavelength are affected by not only the sensing medium but also the material type, size,
and shape of the plasmonic NPs. The utilization of the nanoparticles for the decoration
of the chip surface also provides a large surface area to immobilize a high number of
bioreceptor molecules, increasing the sensitivity and specificity of the sensing technique.
Several metallic nanostructures, such as nanospheres, nanofibers, nanorods, nanoshells,
and nanowires, can be used to fabricate sensing surfaces [74]. The dimensions and the shape
of these nanostructures directly affect their plasmonic properties (scattering and absorption
ratio, resonance wavelength) [75]. Two main drawbacks of SPR are circumvented with
LSPR: first, temperature sensitivity is not an issue for LSPR since the method depends on
a simple absorbance measurement; second, less time is required for the whole binding
assay due to the faster spread of the analyte to the increased surface area of the NPs
compared with a metallic film [76,77]. On the other hand, the response generated by
non-specific binding during the analyte incubation and the refractive index variation is
the major drawback of LSPR, limiting the applicability and effectiveness of the sensor,
especially for the detection from complex samples [78]. Over the last decade, there was a
significant increase in the number of nanomaterial-based sensing techniques developed for
viral diagnosis.

Kim et al. designed a unique structure that used gold nanoparticles (AuNPs) to
develop a highly sensitive method for the hepatitis B surface antigen (HBsAg) detection [79].
They designed a single-layered LSPR chip format via antigen–antibody reaction-based
detection symmetry using AuNPs. The virus was sandwiched between two different
sizes of AuNPs on a glass substrate fabricated with AuNPs. In their study, two AuNPs
in close proximity repulse each other in a plasmon resonance state in the presence of
the virus, resulting in a stronger peak shift effect than that in the non-sandwich state. A
diagrammatic of the LSPR biosensor chip is shown in Figure 9A,B. They showed that
implementation-based systems are affected by the particle size in LSPR system. Different
concentrations of HBsAg from 1 pg/mL to 1 µg/mL were applied in the single assay LSPR
chip format. As shown in Figure 9C, a 10 pg/mL limit of detection value was obtained
(Figure 9D). They fabricated a modified detection format to further improve the detection
limit by fixing a secondary antibody to the AuNP monolayer, which achieved a 100-times
sensitive detection. They showed highly sensitive detection of HBsAg, at 100 fg/mL within
10–15 min, using a novel sandwich immunoassay LSPR chip. Furthermore, the increase in
the HBsAg concentration directly caused an increase in the LSPR signals.
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Figure 9. Diagrammatic of LSPR biosensor chip surface. AuNPs are arrayed on the glass substrate.
(A) LSPR sensing chip surface for single-assay format; (B) LSPR chip for modified hetero-assembled
AuNP sandwich immunoassay using immune colloidal AuNPs; (C) detection of HBsAg using LSPR
single-assay format; and (D) modified hetero-assembled AuNP sandwich immunoassay format using
immunocolloid AuNPs. Reproduced with permission from [79]. Copyright © 2018 Elsevier.

Kim et al. developed a gold-nanorod-enhanced surface sandwich assay for norovirus
(NoV) capsid protein detection via a novel pair of aptamers, in conjunction with SPR [80].
They used four different DNA aptamer sequences that were known to be specific for
the NoV protein to find the strongest binding constant. The aptamer II sequences were
covalently bonded onto a chemically modified thin Au chip surface. For the formation of
the surface sandwich complex, the NoV-specific aptamer was attached to the surface of
the SPR chip, which was modified via 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide
hydrochloride and N-(hydroxy-sulfosuccinimide) solution. Then, the NoV capsid protein
and gold-nanorod-enhanced aptamer were adsorbed. The authors reported a 50 aM limit
of detection value for the NoV capsid protein after flowing different concentrations of NoV
protein solutions over the aptamer-modified chip. The NoV capsid protein concentrations
were also analyzed in human serum samples. The schematization of the aptamer–aptamer
sandwich assay strategy and representative SPR sensorgrams are shown in Figure 10.
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Figure 10. Top: The schematic illustration of the aptamer–aptamer sandwich assay for NoV capsid
protein detection. Bottom: (a) Representative SPR sensorgrams for 20–500 pM NoV protein con-
centrations ((i) 20 pM, (ii) 50 pM, (iii) 100 pM, and (iv) 500 pM) when 500 nM DNA aptamer I was
used, (b) Normalized RU responses for NoV protein sensing. Reproduced with permission from [80].
Copyright © 2018 Elsevier.

2.4. Virus Detection with Surface-Enhanced Raman Scattering

Surface-enhanced Raman scattering (SERS)-based sensing platforms rely on the am-
plification of the Raman response of an analyte molecule absorbed on the nanostructured
noble metal substrate. The generation of a new complex between the analyte and metal
surface causes modification of the adsorbate polarizability and EM enhancement by im-
proving the re-emitted Raman scattering coming from the analyte and local incident field
on the analyte [81,82]. SERS-based sensing gained attention over the last few decades due
to its advantages: (i) high sensitivity, (ii) capability for multiplex sensing, (iii) applicability
as a POC device, and (iv) laborless sample preparation [83]. Although Raman spectroscopy
is a useful tool for analyte determination by providing fingerprints such as a spectrum
for complex samples, its inherently weak signals limit its use for diagnosis. However, in
SERS technology, the limitations of the weak signal of Raman-active material are overcome
by enhancing the EM field by using metallic nanostructures. The development of high-
sensitivity SERS sensors with an advanced EM field is carried out by optimizing the design
of plasmonic nanostructures [73]. The main advantages of SERS technology are the specific
analyte determination even at very low concentrations without sample pre-treatment and
its applicability as a POC device [84]. On the other hand, the main challenge that limits the
reproducibility of the SERS signal is the signal-reducing degradation in the substrate over
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time due to the requirement for close contact between the analyte and the amplification
surface [85]. SERS-based sensors can be classified as direct and indirect. While the direct
method relies on the detection of the spectrum of an analyte, in the indirect technique that
is constructed in sandwich format, SERS signals are obtained from the reporter molecule,
not the analyte. To differentiate the spectral data of an analyte in the direct technique, the
main component and linear discriminant analysis must be performed by comparing the
samples of patients and healthy individuals [86]. In the indirect technique, the sensitivity of
the method is significantly increased at ultra-low concentrations by using an immunoassay
format to detect the analyte. In order to meet the growing need for accurate and rapid
virus detection, multiplex immunoassay-based SERS has become prominent due to the
limitations of PCR-based techniques that depend only on genetic material for testing [87].

Liu et al. used SERS-based lateral flow immunoassay (LFIA) to detect COVID-19 at
the POC [88]. They used Raman molecules to functionalize dual layers of a silver shell
on SiO2-core NPs as SERS tags. Anti-human IgM and IgG were immobilized onto two
test lines of the strip to capture the formed SiO2–Ag–spike (S) protein–anti-SARS-CoV-
2 IgM/IgG immunocomplexes. The author used a 785 nm excitation wavelength with
10.0 mW laser power. The limit of detection value was 1 pg/mL of the S-protein antibody,
which was 800 times lower than that of standard gold-NP-based LFIA for IgM and IgG
detection. A schematic of the dual layers of the Raman reporter molecule 5,5′-dithiobis-2-
nitrobenzoic acid (DTNB) modified silica–Ag NPs (SiO2–Ag) and SERS-LFIA test strip is
shown in Figure 11. The outer Ag shell was coated on the SiO2 core by the reduction of
Ag+ on the Au seeds. As for the optical properties, the change of the UV–vis spectrum
of SiO2–Ag NPs was reported after Ag shell formation. The absorption peak of SiO2–Au
seed NPs was centered at 588 nm, while no obvious absorption peak of SiO2 NPs and SiO2–
PEI (polyethyleneimine) NPs was displayed. The transversal and longitudinal plasmon
resonances of the SiO2–Ag NPs were shown at 371 and 769 nm, respectively, from the Ag
shell coating. They revealed that the results showed a high accuracy and specificity for
patients with SARS-CoV-2 infection using the designed method.Sensors 2023, 23, x FOR PEER REVIEW 17 of 34 
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Figure 11. (A) Schematic of the dual-layer DTNB-modified SiO2–Ag NPs. (B) Schematic of the
preparation of the SARS-CoV-2 S-protein-modified SiO2–Ag SERS probes. (C) Simultaneous highly-
sensitive anti-SARS-CoV-2 IgM/IgG identification using the SERS-LFIA strip. Reproduced with
permission from [88]. Copyright © 2021 Elsevier.
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Another new SERS detection system was developed by Zhang et al. They used citrate
to reduce AgNPs and added acetonitrile solvent to form a “hot spot” suitable for the
capture of viruses. By adding Ca2+ and the virus sample together, they detected the human
adenovirus and SARS-CoV-2 without the use of a marker [89]. They showed an LOD
of 100 PFU/test for these viruses within 1 to 2 min using machine learning techniques.
Figure 12 shows the experimental process where AgNPs were modified by bromide ions
and acetonitrile, and the generation of hot spots with Ca2+ addition.
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Figure 12. (A) Schematic showing the silver-enhanced substrate preparation and virus detection with
the SERS technique. (Ag@cit: Silver NPs formed as a result of reduction of citrate; Ag@B: AgNPs
with bromide ion; Ag@BCNPs: Ag@B with acetonitrile and calcium ions added). (B) Schematic
illustration of the interaction between the viruses and the “hot spots” produced by the Ag-enhanced
substrate. (C) SERS spectra collected from 20 random groups of SARS-CoV-2 (104 PFU/test) and
HAdV (105 copies/test) samples using the Ag@BCNP-based method. Reproduced with permission
from [89]. Copyright © 2022 Elsevier.
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2.5. Optical Resonators for Virus Detection

Optical resonator-based sensor systems have recently attracted significant attention
as a powerful tool for detecting a range of biological and chemical analytes with high
sensitivity and specificity [90]. These sensors measure the spectral changes in the resonant
frequency of an optical cavity when the analyte is introduced into the cavity. The main
principle of an optical resonator sensor is based on detecting light-intensity changes induced
by changes in the refractive index of the medium surrounding the resonator. The resonator
consists of a thin film layer or a ring resonator that supports resonant modes, which are
excited by a laser beam. The resonant modes of the resonator are highly sensitive to changes
in the refractive index of the surrounding medium. When a target molecule or virus binds
to the resonator surface, it causes a change in the refractive index which is detected as a
shift in the resonator’s resonant frequency [91].

The basic design of an optical resonator sensor consists of a high-quality factor (Q-
factor) resonator, such as a microdisk or microring, and a waveguide coupled to the
resonator. The resonator acts as a sensitive transducer capable of detecting changes in
the refractive index of the surrounding environment caused by the analyte binding to the
resonator’s surface. The change in the resonant frequency is then measured by monitoring
the light transmitted through the waveguide. Some of the most common types of optical
resonators are Fabry–Perot cavities, whispering gallery mode (WGM) cavities, photonic
crystal cavities (PC), and plasmonic resonators [92,93].

For biological particle detection, optical resonators such as microspheres and micro-
toroids have been used to detect individual virus particles of about 100 nm in a label-free
format [94,95]. WGM cavities are highly efficient optical resonators with high Q-factors,
allowing for the detection of very small changes in the refractive index of the cavity, and
therefore making them useful for various sensing applications. He et al. developed a WGM
microresonator using frequency splitting in a microlaser and showed the detection of the
influenza A virus on this sensor [96]. Their method relies on measuring the changes in the
beat frequency as an ultra-narrow emission line from a WGM microlaser is split into two
modes due to nanoparticle binding. Before the nanoparticles arrive, there is a single laser
mode with constant laser intensity. The lasing mode splits into two modes when the first
nanoparticle binds, generating a beat note with a frequency that is equal to the frequency
difference between the two modes. Using this approach, they could detect sizes as small
as 15 nm for polystyrene nanoparticles and 10 nm for gold nanoparticles, as well as the
influenza A virus. However, this system was tested with purified nanoparticle and virus
solutions and has yet to show multiplexed virus detection from complex biological systems.

As another type of resonator-based sensor, ring resonators have been preferred owing
to their unique potential to be coupled in high-throughput arrays efficiently for multiplexed
analysis [97,98]. The rapid detection of an Ebola virus (EBOV) biomarker with optical
microring resonators was performed by Qavi et al. [99]. Soluble glycoprotein (sGP) is
the primary product of the glycoprotein (GP) gene of the EBOV, which is a nonstructural
secreted GP that is expressed from the unedited RNA transcript. There are several roles sGP
appears to play in EBOV pathogenesis; therefore, it is useful to be utilized as a biomarker
in virus detection. In this study, the authors developed a sensor by adapting a silicon
photon microring resonator platform to detect EBOV sGP (Figure 13). They used an HRP-
dependent sandwich immunoassay to increase the sensitivity and specificity of the assay.
The sensitivity is increased due to the precipitate localization on the sensor surface as a
result of the enzymatic reaction, providing signal amplification. The sensitivity is enhanced
through the use of a secondary antibody since any non-specifically bound molecules on
the surface would not be recognized by the secondary antibody. The microring resonator
sensor detected sGP in under 40 min with an LOD of 1.00 ng/mL in serum, a much higher
analytical sensitivity than the ELISA tests.

Koo et al. reported an isothermal, label-free, one-step RNA amplification and detection
system, termed iROAD, for the diagnosis of respiratory diseases based on silicon microring
resonators [100]. Figure 14 shows the chip fabrication and functionalization for the assay.
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The iROAD provided an example of a one-step viral RNA amplification/detection assay
for rapid analysis (<20 min). They obtained an LOD for the iROAD assay that is ten times
lower than that of the real-time reverse transcription-PCR method. The authors tested the
iROAD system on 63 human respiratory samples and confirmed its utilization for clinical
use as a more robust operation by using an array of microrings for multiplexed detection.
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Figure 13. Schematic of microring resonator-based detection of sGP: (A) Steps of sGP detection
using the microring resonator. (1) Binding of sGP in the serum sample to the specific antibodies
immobilized on the microring surface (black). Blue antibodies represent non-specific antibodies as a
negative control. (2) Detection of the captured sGP using secondary antibodies, which are biotinylated
panfiloviral antibodies. (3) Addition of streptavidin horseradish peroxidase to detect the sandwich
complex. (4) Enzymatic reaction. (B) Corresponding microring traces for steps 1–4 in (A). The solid
line represents the average response of 8–12 replicates, while the surrounding halo corresponds to
the spread of individual rings. Inset shows the tracing for steps 1–3. Reproduced with permission
from [99]. Copyright © 2022 Elsevier.
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Figure 14. Schematic representation of iROAD assay, which involves an isothermal RNA amplifi-
cation and label-free detection. (1) iROAD chip preparation by forward primer grafting on the
sensor. (2) Addition of the recombinase polymerase amplification (RPA) reagents, reverse primers,
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and extracted RNA. (3) cDNA synthesis from the RNA template using RT-RPA. (4) Binding of
recombinase–primer complexes to cDNA for strand exchange. When the displaced strand makes a
D-loop by gp32 (sky blue), primers on the microring surface are extended by polymerase (light green).
(5) Formation of two duplexes in solid and solution. The amplification is detected by measuring the
wavelength shift on the microring resonator for 20 min. Reproduced with permission from [100]
Copyright © 2017 Elsevier.

Optical resonators offer several advantages over traditional optical devices, including
high sensitivity, selectivity, and miniaturization. Optical resonators can be designed to have
a very high Q-factor, which allows for the efficient coupling between the optical signal and
the surrounding environment. However, optical resonators also have some limitations,
including sensitivity to temperature and fabrication complexity.

2.6. Interferometry-Based Sensor Platforms

Viruses are difficult to detect using conventional light microscopy, which mostly relies
on measuring the light scattered by the imaged objects. This is due to their small size
(typically 20–300 nm in diameter) and low contrast. The light–particle interaction for
small-sized particles can be represented by an induced dipole. The strength of an induced
dipole is directly proportional to the polarizability of the particle, which can be given as

α = 4πε0R3 εp − εm

εp + 2εm
(1)

where R is the radius of the particle and εp and εm are the permittivity of the particle
and medium, respectively. The optical techniques that detect the scattered light intensity
generate a signal proportional to |Es|2, which scales with |α|2; thus, R6. Therefore, the
scattering signal recorded at the detector drops below the shot-noise limit for small particles.
On the contrary, interferometric imaging utilizes a strong reference beam (Er) that interacts
with the weak scattered fields (Es) from the particle and modifies the intensity obtained at
the detector as

I ∝ |Er + Es|2 ∝ |Er|2 + |Es|2 + 2|Er||Es|cosθrs (2)

where θrs is the phase angle difference between the reference and scattered fields. As
the particle size becomes smaller, the scattered field, the second term in Equation (2), be-
comes very small compared to the other two terms representing the reference field and
the interference signal. Once the reference field is subtracted, the signal recorded at the
detector is proportional to the multiplication of the reference and scattered fields, and thus
proportional to R3 instead of R6. As a result, interferometric imaging makes it possible
to detect smaller particles and a higher dynamic range of particle sizes. Due to these
advantages, interferometry has been utilized for both ensemble-based measurements and
single-nanoparticle detection in previous studies [35]. One example of ensemble-based mea-
surement techniques is biolayer interferometry (BLI), a label-free, real-time characterization
technique for biomolecular interactions [101]. In this technique, a fiber optic biosensor is
used to illuminate the sensor area with white light, and the resulting shift in the wavelength
of the reflected light is recorded. Although this technique was shown to perform antibody
detection with a similar sensitivity to ELISA, there are some disadvantages associated with
it, such as the inability to detect single nanoparticles and signal jumps as the new solutions
are introduced to the well [102]. Interferometry-based nanoparticle imaging techniques
have also been developed for single-virus detection [103,104]. However, these techniques
use cost-inefficient lasers as the light source and can be time-consuming due to their small
measurement area.

Interferometric reflectance imaging sensor (IRIS), developed by Ozkumur et al., is a
label-free biosensor that can probe bimolecular interactions on a silicon/silicon dioxide
(Si/SiO2) substrate in a multiplexed microarray format [105,106]. The detection mechanism
of IRIS depends on obtaining the interference signature of the reflected light from the
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Si/SiO2 substrate and measuring the optical thickness of the top layer (Figure 15). The
substrate is a silicon chip with a thermally grown oxide layer that is spotted with capture
probes that are specific for the target molecule. The binding of target molecules in the
solution to the surface causes a height increase in the transparent oxide film, which in turn
changes the optical path length difference (OPD). The intensity of the reflected light at a
given wavelength is determined by the OPD between the top of the biomass layer and the
Si/SiO2 interface. The thicker the biomass layer becomes, the higher the OPD becomes, and
this increase in the OPD leads to a shift in the spectral reflectivity curve (Figure 15a) and a
change in the reflected light intensity at a specific wavelength. In the IRIS optical setup,
four LEDs with different wavelengths (455, 518, 598, and 635 nm) illuminate the substrate
sequentially and the intensity of the reflected light is recorded with a CCD to generate an
intensity image of the chip surface. Then, each pixel in this intensity image is fitted to the
reflection function from which the thickness of the transparent film (oxide layer plus any
biomass layer) is obtained. The calculated thickness difference for a given spot before and
after analyte incubation is converted to biomass density using simple conversion factors,
and an average mass density is calculated from replicate spots [107].
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Figure 15. Principle of detection for IRIS: (a) shows the shift of the reflectivity curve due to 5 nm
step increases in biofilm thickness on the chip surface. The reflectivity curve is sampled by using
4 different-wavelength LEDs shown by the colored Gaussians. (b) Schematic of the sensor’s imaging
path illustrating biomass accumulation and associated grayscale intensity changes on the CCD
camera. (c) Example of the sensor’s surface with an array of protein spots. (d) Surface height
profile along the blue dashed line in (c) across spots. Reproduced with permission from [105].
Copyright © 2021 Elsevier.

IRIS is shown to be a versatile platform for monitoring protein–protein [108,109],
DNA–DNA [110], and DNA–protein interactions [111], with applications in cytokine
detection, the identification of single nucleotide polymorphisms (SNPs), the study of DNA-
binding proteins such as transcription factors, and antibody affinity measurements. IRIS
was also used to detect intact vesicular stomatitis virus (VSV) particles with a detection
limit close to 105 PFU/mL as well as internal viral proteins, such as nucleocapsid and
matrix proteins, by lysing the viruses with detergent [112]. The IRIS platform was later
modified to generate a digital detection modality to allow for the visualization and count-
ing of single nanoparticles. This platform, referred to as single-particle IRIS (SP-IRIS),
is composed of a single-wavelength LED (525 nm) for illumination of the substrate, a
high-numerical-aperture (NA = 0.8) objective to obtain a high-spatial-resolution image,
and a CCD camera [113]. The thickness of the oxide layer was adjusted to optimize the
interference of the particle scattered field with the reference field. The schematic of the
optical setup for SP-IRIS is shown in Figure 16a.

For detecting biological nanoparticles such as viruses, an array of high-affinity capture
probes is generated on the surface that can selectively bind to the target virus. Capture
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probe immobilization is achieved using a 3D copolymer coating that provides NHS groups
for the covalent attachment of amine-containing biomolecules [114]. When virus particles
bind to the capture antibodies, scattered light from the particles interferes with the reference
field reflecting from the Si/SiO2 interface, which enhances the signal detected on the CCD
camera. The particles captured on the chip surface are bright dots in the recorded image
(Figure 16b). SP-IRIS takes images of the spots in a microarray. Then, these spot images
are analyzed using custom software that finds particle-associated intensity peaks that
correlate with a Gaussian profile. A forward model is applied to associate the background
normalized intensities (contrast) of the particles with the particle size [113]. Therefore, the
diffraction-limited dots with an expected size range are selected for a given spot using a
Gaussian filter (red circles in Figure 16b) and counted to obtain the number of virus particles
bound to the spot. The pre-incubation particle count is subtracted from the post-incubation
particle count, and the net virus count is divided by the spot area to obtain the bound virus
density (number of particles per mm2). The single-particle detection ability of SP-IRIS offers
a significant advantage over ensemble-based methods, such as BLI, where many binding
events need to occur to record a signal above the background noise. The high sensitivity
achieved by single-virus counting, when combined with the on-chip multiplexing ability,
renders SP-IRIS an attractive platform for viral diagnostics applications.
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Figure 16. Optical setup of SP-IRIS and its application to virus detection. (a) Illustration of optical
setup of SP-IRIS platform (BF: back focal plane). (b) Top part is an example of SP-IRIS microarray chip
with antibody spots. The image was taken with the low-magnification modality of the IRIS system.
Each antibody spot is about 150 µm in diameter. Bottom images are zoomed-in antibody spots from
an SP-IRIS image after incubation with the specific virus sample. Captured virus particles appear as
white dots, and they are detected (red circles) and counted using custom software. Reproduced with
permission from [115]. Copyright © 2023 Spring Nature.

2.7. Virus Diagnostics Applications of SP-IRIS

SP-IRIS can count and size each nanoparticle bound to capture probes on the sensor
surface over a large sensor area, orders of magnitude larger than other virus-imaging
techniques such as electron microscopy. It allows for a large range of nanoparticle detec-
tion, including natural nanoparticles (e.g., viruses) and synthetic nanoparticles (e.g., gold
nanospheres, gold nanorods) in a highly-multiplexed microarray format. So far, SP-IRIS
has been shown to detect many different biological targets, such as viruses [116], allergen-
specific antibodies [117], extracellular vesicles [118], bacteria [119], and microRNA [120].
When the target is a nanoparticle itself, such as viruses, the detection can be performed
directly without using any secondary labels. If the biomolecule being searched for is below
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the size limit of SP-IRIS (~30 nm), the target binding can be monitored using specific
detection probes attached to nanoparticle barcodes such as gold nanoparticles. Since this
review’s main topic is solid-phase optical virus detection techniques, we will focus on the
SP-IRIS studies demonstrating this application.

The study by Daaboul et al. was the first report to show SP-IRIS as a virus-detection
platform by demonstrating the detection and sizing of individual H1N1 viruses [113]. In
this work, H1N1 viruses were immobilized on the sensor surface and imaged using both
SP-IRIS and scanning electron microscopy (SEM) for the exact same field of view. Their
results showed a one-to-one correspondence between SP-IRIS and SEM images, confirming
that the particles observed in the SP-IRIS system are virus particles, proving the sensor’s
ability to detect individual viruses (Figure 17). In the same work, using the forward model
mentioned before, they measured the mean size of the H1N1 particles as 116 nm with a
size distribution of 17 nm, which is in good agreement with the reported H1N1 virus size
in the literature.
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Figure 17. H1N1 virus detection and sizing: (a) SP-IRIS image of immobilized virus on the surface
with the same field of view as the SEM image; (b) SEM image of immobilized virus on the surface;
(c) measured size distribution of immobilized virus using SP-IRIS. The mean size of the H1N1 was
measured to be 116 ± 17 nm. Reproduced with permission from [113]. Copyright © 2010 American
Chemical Society.

Following the first virus-detection demonstration with immobilized H1N1 virus, SP-
IRIS was shown to perform sensitive and multiplexed detection of whole viruses from
serum and blood samples [116]. For this work, Daaboul et al. used genetically engineered
vesicular stomatitis virus (VSV) pseudotypes that express surface glycoproteins of Ebola
and Marburg viruses (rVSV-EBOV and rVSV-MARV, respectively) (Figure 18). They first
arrayed EBOV- and MARV-specific antibodies on SP-IRIS chips and incubated the chips
with either increasing concentrations of rVSV-EBOV only or the same increasing rVSV-
EBOV concentrations in the presence of a constant concentration of rVSV-MARV. The
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virus solutions were prepared in serum containing 106 CFU/mL E. coli K12 to mimic
a complex solution environment. Their results showed the specific detection of rVSV-
EBOV with increasing virus particles on anti-EBOV spots, whereas anti-MARV spots had
a constant signal in dual-virus samples. The limit of detection (LOD) reported for rVSV-
EBOV detection from serum and blood was 5 × 103 PFU/mL. A similar level of sensitivity
was also reached for rVSV-MARV detection in the same study. This work demonstrated
that SP-IRIS has great potential to be used as a viral diagnostic technique with its ability to
directly detect the target viruses from complex samples without labeling and complicated
sample preparation.
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Figure 18. Duplexed detection of Ebola- and Marburg-pseudotyped VSVs in serum and bacteria-
containing samples. (a) Schematic of virus sample preparation. Both single- and dual-virus samples
were prepared in serum containing 106 CFU/mL E. coli K12. (b) Anti-EBOV antibody spots showed
an exponential response as the rVSV-EBOV concentration increased. Single and dual virus samples
generated nearly identical virus counts on anti-EBOV spots for the same rVSV-EBOV titers, whereas
the addition of Marburg pseudotype at a constant concentration gave a steady signal on anti-MARV
antibody spots for all rVSV-EBOV concentrations. The inset displays an expanded view of virus
concentrations around 103 PFU/mL; the dashed line represents the detection threshold calculated
from the mean plus three standard deviations for the anti-EBOV spots incubated in the FBS alone. For
(b), the lines connecting the data points are given only to guide the reader’s eye between single- and
dual-virus sample responses. (c) The response observed between the anti-EBOV spots in single- and
dual-virus samples was similar, as shown by the linear regression fit to a scatter plot of single-virus
sample type against the dual sample. Reproduced with permission from [116]. Copyright © 2014
American Chemical Society.

SP-IRIS was further advanced to implement the ability to visualize virus particles in a
liquid environment, rendering the system a real-time imaging platform and eliminating
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the washing and drying steps (Figure 19). To increase the contrast of the virus particles in
the liquid, some changes to the optical setup were made, such as the use of a 40×, 0.9 NA
objective and adjustment of the oxide thickness of the sensor chip. In this setup, the SP-
IRIS chip is mounted in a disposable active microfluidic cartridge via a pressure-sensitive
adhesive, and the cartridge is fixed on the SP-IRIS stage. Scherr et al. reported a 50-fold
increase in sensitivity compared to in-air measurements, leading to an LOD of 100 PFU/mL
for detecting rVSV-EBOV from serum samples [121].
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Figure 19. (A) Picture of the first-generation polymeric cartridge used for real-time virus imaging.
(B) Cross-section model that demonstrates the fluidic path (in blue), the sensor (in gray), and the
window (in yellow). Image is not to scale. (C) Accumulation of viruses being imaged on the
sensor for a serial dilution ranging from 1 × 106 PFU/mL down to a blank sample. The high-
concentration samples show a very rapid accumulation of viruses followed by the saturation of
the sensor. (D) Lower concentrations expanded, showing a linear accumulation of viruses and a
limit of detection of 100 PFU/mL in less than 60 min. Reproduced with permission from [121].
Copyright © 2016 American Chemical Society.

To demonstrate the applicability of SP-IRIS to POC diagnostics as a rapid detection
method, a disposable passive microfluidic cartridge was designed with a multilayer poly-
mer laminate structure and an integrated absorbent paper to establish capillary flow of the
sample in the cartridge. This passive-flow integrated SP-IRIS achieved a better sensitivity
than ELISA and a commercial rapid antigen test by detecting 104 PFU/mL rVSV-EBOV in
less than 20 min [122,123]. A different study by Daaboul et al. demonstrated the usability
of SP-IRIS for the detection and characterization of a variety of virus sizes ranging from
40 nm for the Zika virus to 360 nm for the Vaccinia virus and filamentous virus particles
such as the Ebola virus [124]. Recently, Yurdakul et al. showed a different modality of SP-
IRIS, referred to as single-particle interferometric microscopy, for obtaining shape and size
information that will enable in-depth morphological studies of viruses [125]. Collectively,
these studies demonstrated the potential of SP-IRIS as a sensitive, fast, and multiplexed
virus-detection platform in a label-free and sample-to-answer format.

Besides the microfluidics integration and improvements in the optical setup of SP-IRIS,
sensor-chip surface chemistry was also studied in an effort to increase the sensitivity of de-
tection. By using a technique called DNA-directed antibody immobilization (DDI), Seymour
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et al. showed that capture antibodies can be elevated over the surface (~14 nm) through
the use of DNA linkers attached to the antibodies [126]. This new surface-preparation
technique provided a 16-fold increase in sensitivity for rVSV-EBOV detection for a 15 min
incubation period. This improvement is most likely due to the increased accessibility of the
antibodies for virus binding and increased functionality due to fewer surface attachment
points in the antibody structure. This work was recently extended to a novel approach
of mixing DNA–antibody conjugates and the virus sample in the solution phase before
incubating the chip (Figure 20). This homogeneous method achieved a slightly better
sensitivity than conventional DDI while decreasing the assay time [123]. Other advantages
of this approach include a configurable sensor surface, reduced amount of antibody needed
for the assay, and long shelf-life of the dried DNA–Ab conjugates.
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Figure 20. Schematic demonstration of the DNA–Ab conjugate-directed capture of the viruses on
SP-IRIS. (Step 1) involves mixing different DNA-conjugated antibodies, each targeting a different
virus, and adding this mixture to the sample potentially containing a virus. After about a 5 min
incubation, in (Step 2), the sample is flowed over an SP-IRIS chip that is assembled into a disposable
microfluidic cartridge. Virus–DNA–Ab complexes are captured on the chip surface through DNA–
DNA hybridization. Free DNA–Ab conjugates bound to the DNA spots are invisible in camera
images. Only captured viruses appear as bright dots.

Table 1 presents some examples of viral diagnostics platforms operating with the
optical mechanisms reviewed in this work and compares their performances in terms
of linear range, LOD, and assay time. With the recent advances in camera and detector
development and with the use of smartphones, fluorescence- and colorimetry-based optical
bioassays have become a common choice in POC technologies since they provide sufficient
sensitivity in virus detection. They provide the users with the advantages an ELISA assay
offers, such as a low limit of detection, quantitative measurement, and applicability with
various samples. However, some may require a tedious process for sample preparation,
and the assay conditions, such as the temperature and pH of the sample, may affect the
results. In addition, the labeling process is time-consuming for both techniques and may
require complex steps in some applications.
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Table 1. Examples of solid-phase optical biosensors using different detection mechanisms, their applications, and assay-performance characteristics.

Platform Optical Sensing Technique Application Linear Range LOD Time References

Porous Au@Pt nanoparticle
for metallic

nanozyme-catalysis
Colorimetric S1 protein of SARS-CoV-2 10–100 ng/mL 11 ng/mL NR [127]

SiO2@Au@QD nanobeads
(NBs) labels in lateral flow

immunoassay
(LFIA)

Colorimetric–Fluorescent
dual-mode

IgM and IgG
in human serum

101×–106× dilution of
serum specimens

1:106 dilution of serum
specimens

15 min [128]

SiO2@Au/QD in LFIA Colorimetric–Fluorescent
dual-functional

S1 protein of SARS-CoV-2
and real virus

0.05–1000 ng/mL
protein

Colorimetric:
1 ng/mL protein,

7.06 × 105 copies/mL
virions, Fluorescence:

33 pg/mL protein,
1.02 × 104 copies/mL

virions

30 min [129]

Wearable microfluidic
device with recombinase
polymerase amplification

(RPA)

Fluorescence HIV-1
DNA 102–105 copies/mL 100 copies/mL 24 min [130]

Hydrogel aptasensor
embedded with QD
fluorescent reporters

Fluorescence Avian
influenza virus (AIV) H5N1 0.4–32 HAU 0.4 HAU 30 min [131]

Intensity-modulated SPR SPR Avian influenza A H7N9
virus NR 144 copies/mL NR [71]

Magnetic particles based SPR SPR H1N1 influenza virus 300 ng/mL–10 µg/mL NR 350 s [72]
Gold nanoparticles

based LSPR LSPR Hepatitis B surface antigen 1 pg/mL to 1 µg/mL 10 pg/mL 10–15 min [79]

Self-assembled plasmonic
nanoprobe POC device LSPR SARS-CoV-2 1–1 × 104 CFU/mL 1.4 × 101 PFU/mL 10 min [132]

Gold nanorod-enhanced
surface sandwich assay SPR Norovirus 20–500 pM 50 aM NR [80]

SiO2–Ag nanocomposite SERS-based LFIA COVID-19 virus 10–0.001 ng/mL 1 pg/mL NR [88]
Ag NPs SERS SARS-CoV-2 NR 100 PFU/test 1–2 min [89]

MBSIs@Ag-SERS SERS H5N1 influenza virus 5.0 × 106–5.0 × 10−7

TCID50/mL 5.0 × 10−6 TCID50/mL NR [133]
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Table 1. Cont.

Platform Optical Sensing Technique Application Linear Range LOD Time References

Opto-fluidic
ring-resonator-based

sandwich assay
WGM microresonator M13 filamentous

bacteriophage
2.3 × 103–2.3 × 1010

PFU/mL 2.3 × 103 PFU/mL NR [134]

One-step viral RNA
amplification and

detection—iROAD
Silicon microring resonator

Influenza A/B, human
coronavirus

(HCoV)-OC43/229E, or
respiratory syncytial virus

(RSV)-A/B

2.5 × 101–2.5 × 105

copies/reaction
25 copies/reaction <20 min [100]

SP-IRIS Interferometric imaging Whole-virus detection
(VSV-based model viruses) 102–106 PFU/mL 102 PFU/mL <20 min [121,123]

Biolayer Interferometry
(BLI)-based antibody detection Interferometric Norovirus antibodies 102–103 fold dilution of

serum samples 1:104 dilution of serum 10–20 min [135]

Young Interferometer Sensor Interferometric Herpes simplex virus type 1
(HSV-1)

8.5 × 102 to
8.5 × 106 particles/mL

850 particles/mL 1 h [136]
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SPR sensors are commonly reported to have a very high sensitivity and provide
simple and real-time detection; however, the bulk effect and low selectivity are the main
disadvantages of SPR systems. The main advantages of LSPR systems are ease of operation,
fast detection, and insensitivity to the temperature changes, enabling their use in many
areas. However, LSPR-based platforms cannot distinguish between different binding
events, making them less useful for multiplexed analysis.

The SERS system has gained attention due to its sensitivity, capability for multiplex
sensing, and specific analyte determination ability, even at very low concentrations. On the
other hand, signal-reducing degradation in the substrate over time due to the requirement
for close contact between the analyte and the amplification surface is the main challenge
limiting the reproducibility of the SERS signal.

SP-IRIS offers significant advantages compared to the other optical biosensing plat-
forms mentioned in this review. First, SP-IRIS has a comparable sensitivity to SPR, the
most commonly used label-free biosensor, while having a higher multiplexing capability,
substantially less-expensive substrates, and a shorter analysis time [109]. Moreover, the
detection principle of SP-IRIS is immune to the bulk effect, a major problem of SPR-based
systems caused by the changes in the refractive index of the solution. SP-IRIS overcomes
any background-related effect by imaging only the nanoparticles bound to the surface.
Moreover, unlike optical-resonator-based sensors, the SP-IRIS signal is not affected by
environmental factors such as temperature changes or the binding position of the particles
on the sensor. Thus, SP-IRIS combines a robust and reliable signal-transduction mecha-
nism with high-sensitivity, high-throughput detection in a cost-effective and easy-to-use
platform. The challenges related to the surface probe immobilization and the sensor chip
shelf-life were overcome by implementing configurable DNA chips, and the assay proce-
dure was greatly simplified by microfluidic integration. These features make SP-IRIS an
ideal candidate for rapid and reliable virus diagnostics, especially for POC applications.

3. Conclusions

In this review, we discussed several surface-based optical biosensing techniques that
are used to detect and characterize viruses. Recent outbreaks revealed the importance
of developing sensitive, reliable, rapid, and affordable viral diagnostic platforms. Multi-
plexing ability is also considered critical, especially in cases where diseases with similar
physical symptoms occur at the same time, such as COVID-19 and seasonal flu. In addition,
the ideal virus-detection platform should operate with minimum sample preparation in a
preferably enclosed environment.

The biggest advantage of SP-IRIS compared to other optical techniques lies in its
ability to detect single viruses in a robust and cost-efficient platform. Moreover, recent
advancements in SP-IRIS enabled it to work with integrated microfluidic cartridges, elimi-
nating the chip-handling steps. SP-IRIS can also perform sensitive and specific detection
from complex media such as blood and serum, decreasing the assay time and complexity.
In addition, lately, data processing for SP-IRIS assays has been improved, allowing it to be
performed in real time. Therefore, the assay results are available at the end of the sample
incubation period (<20 min). All these developments have increased SP-IRIS’s potential to
be a virus diagnostic platform that is attractive for both in-clinic and field use.
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