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Abstract: The Fourth Industrial Revolution, also named Industry 4.0, is leveraging several mod-
ern computing fields. Industry 4.0 comprises automated tasks in manufacturing facilities, which
generate massive quantities of data through sensors. These data contribute to the interpretation of
industrial operations in favor of managerial and technical decision-making. Data science supports
this interpretation due to extensive technological artifacts, particularly data processing methods and
software tools. In this regard, the present article proposes a systematic literature review of these
methods and tools employed in distinct industrial segments, considering an investigation of different
time series levels and data quality. The systematic methodology initially approached the filtering of
10,456 articles from five academic databases, 103 being selected for the corpus. Thereby, the study
answered three general, two focused, and two statistical research questions to shape the findings. As
a result, this research found 16 industrial segments, 168 data science methods, and 95 software tools
explored by studies from the literature. Furthermore, the research highlighted the employment of
diverse neural network subvariations and missing details in the data composition. Finally, this article
organized these results in a taxonomic approach to synthesize a state-of-the-art representation and
visualization, favoring future research studies in the field.

Keywords: Industry 4.0; data science; machine learning; literature review; taxonomy

1. Introduction

A way of better understanding the current civilization is through the industrial rev-
olution timeline. The first phase of this movement began in the late 18th century, based
on the evolution of mechanical equipment for manufacturing and the emergence of steam
machines. Then, at the beginning of the 20th century, the possibility of implementing
large-scale production based on task division started the second phase of the industrial
revolution with the advent of electricity. Afterward, in the early 1970s, the usage of elec-
tronics associated with information technology enabled the automation of manufacturing
processes, establishing the third phase of this movement [1]. Today, the world lives the
so-called new wave of the industrial revolution which started in Europe and spread world-
wide [2]. The fourth phase of this revolution, named Industry 4.0, employs technological
advances and concepts such as the Internet of things (IoT) and cyberphysical systems (CPS)
to assist in the development of smart factories [3,4].

Along with the aforesaid advances, the expression “Data Science” began to be dis-
cussed by the information technology community in the first decade of the 21st century.
Data scientists are people who deal with significant quantities of data from different sources
to extract relevant information in decision-making [5]. One of data science’s main goals is
to predict outcomes considering the domain knowledge of interest [6]. A successful data
scientist must have a perspective of business problems, in addition to the knowledge of
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data mining algorithms, computational methods, and software tools to extract knowledge
and insights from big datasets [7].

Frequently, these datasets organize observations in high dimensionality with various
data types, formats, and sizes. In this sense, one of the most frequent ways to deal with this
information is in the time domain. Observations sampled in the time domain constitute a
sequence of information named time series [8]. Time series may receive diverse processing
methods to understand machinery maintenance, production life cycle, and industrial
and business processes to generate valuable outcomes for companies. Moreover, time
series allow the aggregation, combination, and computational processing of data to create
higher information levels, such as contextual data [9]. Context, in turn, features a situation
regarding individuals, applications, and the surrounding environment. Contexts represent
the time and the state of something that can be an object, a machine, a system, a person, or
a group.

In this regard, the literature presents systematic reviews encompassing the aforemen-
tioned scope similar to this study. Manufacturing has generated research studies to deal
with decision-making problems using analytical techniques, data mining, and machine
learning [10]. Moreover, a review of big data tools and applications for manufacturing
presented the essential components to create complete solutions [11]. In addition to case
studies applied to a chemical company, a review of data mining and analytical categories
such as predictive, inquisitive, descriptive, and prescriptive categories focused on manu-
facturing processes [12]. However, these reviews do not retrieve and analyze data science
methods and software tools focused on general industrial applications. This article pro-
poses a systematic literature review of data science methods and tools employed in distinct
segments of the industry. Moreover, the study analyses the usage of different time series
levels and data quality concerning data science applications. In this sense, the article pro-
vides the answers to three general, two focused, and two statistical questions to synthesize
the literature through a taxonomy, favoring the findings’ representation.

The remainder of this article has the following structure. Section 2 describes related
works and how this study differentiates from them. Section 3 explains the methodology
employed in the systematic review. Section 4 presents the results and the findings based
on the research questions, highlighting industrial segments, data science methods, and
software tools. Section 5 depicts the proposed taxonomy to represent the findings covered
by the literature, and Section 6 discusses the findings. Finally, Section 7 approaches the
limitations, future work, and conclusions of this study.

2. Related Work

This section analyzes surveys and reviews in comparison to the proposed work.
Over the last years, some authors have reviewed the literature, aiming to exploit the best
techniques used by smart factories that correspond to the data science field. This is because
Industry 4.0 allows the employment of multiple types of technologies in different segments
of manufacturing.

Mazzei and Ramjattan [13] used natural language processing techniques to review
machine learning methods used in Industry 4.0 cases. The authors stated questions re-
garding Industry 4.0 main problems, which machine learning methods were used in these
situations, and how the areas focused on the academic literature and white papers. The
systematic review focused on two databases using the topic modeling technique BERTopic.
The most recurrent problems regarded security, smart production, IoT connectivity, ser-
vice optimization, robotic automation, and logistics optimization. Convolutional neural
networks were the most frequent machine learning method.

Wolf et al. [10] studied the lack of management tools oriented toward decision-making
problems in the manufacturing domain. The work provided a systematic mapping re-
view that identified seven application areas for data analytics and had advanced analyt-
ical techniques associated with each area. The mapping originated a novel tool to ease
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decision-making that identified promising analytic projects. Moreover, the management
tool employed data mining techniques and machine learning algorithms.

Cui et al. [11] published a systematic literature review aiming to classify big data
tools with similarities and identify the differences among them. The work took into
account industrial data, big data technologies, and data applications in manufacturing.
The conceptual framework of the systematic literature review had three perspectives:
data source, big data ecosystem, and the data consumer. Data types, source devices,
data dynamics, data formats, and systems composed the data source perspective. The
big data ecosystem perspective presented data aspects as storage, resource management,
visualization, analysis, database, data warehouse, search, query, processing, ingestion, data
flow, workflow, and management. Prediction, optimization, monitoring, design, decision
support, data analytics, scheduling, data management, simulation, and quality control
were part of the components of the data consumer perspective. Four research questions
featured the drivers and requirements for big data applications, the essential components
of the big data ecosystem, the capabilities of big data ecosystems, and the future directions
of big data applications. In conclusion, the authors found six key drivers and nine essential
components of the big data ecosystem. The study did not find any enterprise-ready big
data solution in the literature.

Belhadi et al. [12] systematically reviewed the literature regarding big data analytics in
manufacturing processes in addition to multiple case studies applied to a leading chemical
company. The three cases were part of a digital transformation project, the first case being
an implementation of big data analytics in a fertilizer plant, the second in a phosphoric acid
company, and the third one, an intelligent and self-controlled production unit. The article
classified the selected works according to data mining and analytics categories: predictive,
inquisitive, descriptive, and prescriptive. Moreover, the implemented techniques categorized
papers into offline and real-online. Moreover, the work established the following research
trends: real-time data mining approaches, big data analytics enabler architecture, integrated
human-data intelligence, and prescriptive analytics. Each research trend pointed to the
research questions regarding performance management, production control, and maintenance
in manufacturing processes. The authors realized that the emergence of advanced technologies,
particularly sensors, generated data with a wide variability, large variety, high velocity, intense
volatility, high volume, unascertained veracity, and low value. Furthermore, the study
proposed a framework of big data analytics in the manufacturing process, which presented
the process challenges, faculties, and capabilities of big data analytics.

None of the related works retrieved and analyzed data science methods and software
tools focused on industrial applications (Table 1). Therefore, this article identifies and
organizes industrial segments, data science methods, and software tools employed in
industrial environments to produce a taxonomy. In turn, the taxonomy synthesizes the
literature favoring the representation of the findings. For this, the article describes a
systematic literature review converging towards three main themes: Industry 4.0, data
science, and time series. These themes are the basis to create general, focused, and statistical
questions that shape this work’s investigation. In this sense, the study also investigates
specific approaches derived from these themes, particularly the usage of context and the
data quality employed in studies. These aspects provide the differential approach of this
article regarding the aforementioned reviews.

Table 1. Related works and the presence of data science methods and tools compared to this work.

Paper Methods Tools

Mazzei and Ramjattan (2022) [13] Yes No
Wolf et al. (2019) [10] No Yes
Cui et al. (2020) [11] No Yes
Belhadi et al. (2019) [12] Yes No
This work Yes Yes
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3. Methodology

This section presents the research methods employed in this work. The structure
follows the methodology proposed by Petersen [14]. Figure 1 summarizes the stages
organized into four steps with three substeps each. First, the stages encompass the research
planning, followed by the execution of the systematic review, analysis of the data, and
reporting of the results.

Figure 1. Sequence of the four stages of the research: planning, execution, analysis and reporting.
Each stage is organized into three substeps.

3.1. Research Planning

The research planning establishes the objectives, defines the research questions, and
plans the selection of the studies. The following subsections explain each step in detail.

3.1.1. Objectives

A systematic review of the state of the art in data science methods and tools employed
in Industry 4.0 is the central aspect of this article. The goal was to find studies that employ
Industry 4.0, data science, and time series to produce useful insights for the industrial
field. After collecting the papers, the objectives concerned the classification of each study
according to the industrial segments, data science methods, and software tools. Afterward,
this work synthesized the results with graphics, tables, and a taxonomy of the findings to
ease the data analysis.

3.1.2. Research Questions

The research questions focused on the three main themes of the review: “Industry 4.0”,
“Data Science” and “Time Series”. The seven research questions had the following division:
three general questions (GQ), two focused questions (FQ), and two statistical questions
(SQ), as shown in Table 2.

Table 2. The research questions divided into general questions (GQ), focused questions (FQ), and
statistical questions (SQ).

Ref. Research Questions

GQ1 Which industrial segments applied data science techniques?
GQ2 What are the data science methods used in the studies?
GQ3 What are the software tools used in the studies?
FQ1 How do the studies employ contextual time series?
FQ2 What is the data quality over time used in the studies?
SQ1 In which databases are the studies published?
SQ2 What is the number of publications per year?

The motivation to look for the industrial segments involved with data science was
to find out where big quantities of data needed to be analyzed and show new work
opportunities (GQ1), the kinds of methods used for this purpose (GQ2), and what were
the techniques employed in industry (GQ3). Moreover, understanding how the data are
used over time is key to choosing the best technique to use in specific situations (FQ1).
Furthermore, the quality of the datasets available is important to analyze how well an
algorithm performs related to data gaps and balance (FQ2). Finally, the sources (SQ1) and
the number of publications over time (SQ2) help the research process.
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3.1.3. Studies Selection

The process of selecting the studies involved five relevant databases in the field
of research: ACM, IEEE, Scopus, Springer, and Wiley. A study regarding the research
questions helped to define the search string. Moreover, the usage of synonyms and related
words allowed the search to get more embracing results. Table 3 shows the organization of
the search string considering three themes.

Table 3. The search string and its three themes: “Industry 4.0”, “Data Science” and “Time Series”.

Theme Search Terms

Industry 4.0 ( “industry 4.0” OR “industrie 4.0” OR “cyber physical systems” )
AND

Data science ( “data science” OR “machine learning” OR “big data”
OR “data analytics” OR “data mining” )
AND

Time series ( “time series” OR “context histories” OR “contexts histories”
OR “context history” OR “trails” )

The refining of the search occurred using six exclusion criteria (EC). First, the filtering
process disregarded the papers not written in English (EC1) and not found in journals,
conferences, or workshops (EC2). Next, the titles (EC3) and abstracts (EC4) analysis
only considered the works in agreement with the research questions. Then, the filtering
excluded duplicated papers (EC5). Finally, the last filtering criteria (EC6) was the three-pass
approach. This approach uses the analysis of the title, abstract, introduction, title of sections
and subsections, mathematical content, and conclusions in the first pass. The second pass
is the observation of the images, diagrams, and illustrations. At last, the third pass searches
the entire text [15].

3.2. Execution

After the planning phase, the execution of the planned steps occurred according to the
search string’s insertion in the selected databases. Further, the usage of the Zotero tool and
an SQL database allowed us to organize the results.

3.2.1. Search String

The databases’ initial search occurred with no filters, using the proposed search string
and organizing the data gathered in collections named according to each database. The
filtering process occurred all in the “zotero.sqlite” file, which is the SQL database generated
by Zotero. The chosen search databases were ACM, IEEE, Scopus, Springer, and Wiley.
Figure 2 shows the name of the databases and the number of papers retrieved from the
initial search and after applying each exclusion criterion.

3.2.2. Zotero Tool

A single management tool’s usage aims to ease the collecting process, smoothing
the papers’ search and classification. A tool with open access to its database is prefer-
able. At the beginning of this study, tests were conducted with the Mendeley (https:
//www.mendeley.com; accessed on 17 May 2023) and Zotero (https://www.zotero.org;
accessed on 17 May 2023) reference management tools. Zotero was chosen, due to the
authors’ need of accessing the SQL database with no restrictions, since it is an open-access
database. Zotero is a reference manager tool that provides a practical way of gathering
papers. It organizes the search results thanks to the possibility of using a browser connector
that makes the process faster, by allowing the metadata gathering of a set of papers instead
of one by one. Moreover, the use of the ZotFile (http://zotfile.com; accessed on 17 May
2023) browser plugin in the individual analysis of the selected papers eased the extraction
of highlighted sentences [16].

https://www.mendeley.com
https://www.mendeley.com
https://www.zotero.org
http://zotfile.com
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Figure 2. The number of papers retrieved from each database: (a) from the initial search; (b) after
exclusion criteria 1 and 2; (c) after exclusion criterion 3; (d) after exclusion criterion 4; (e) after
exclusion criterion 5; (f) after exclusion criterion 6. Exclusion criterion 4 discarded the remaining
papers from Wiley. Scopus had the greatest number of works selected for the corpus, followed by
Springer, IEEE, and ACM.

Table 4 presents the exclusion criteria used in the filtering process with the Zotero tool.
In the main screen of Zotero, the field called “Extra” allows the user to insert additional
information about the papers. The appending of the pipe symbol (“|”) to the end of the
“Extra” field created a new field to be used by SQL queries called “Status”. This new field
used along the filtering process assigned a different “Status” to every paper after applying
each exclusion criterion. Before the application of the exclusion criteria, all the papers had
the “Status” set to empty (“ ”). The usage of SQL sentences in the Zotero database provided
a practical way to apply the first two exclusion criteria at the same time, filtering papers
not written in English (EC1) and not found in journals, conferences, or workshops (EC2).
The papers that met these exclusion criteria had their “Status” set to “ec”, which meant
excluded by EC1 or EC2. The remaining papers with an empty status underwent a filtering
by the third exclusion criterion, the title analysis (EC3). The discarded papers had their
status changed to “ec3”, and the accepted ones to the next step gained the status “ec3_next”.
The filtering process continued with the papers with the status “ec3_next”, which had their
abstracts analyzed in the fourth exclusion criterion (EC4), and accepted to the next phase
(“ec4_next”) or rejected (“ec4”). The next filter eliminated duplicated works, representing
the fifth exclusion criterion (EC5), by setting the status to “ec5” or keeping the paper in the
next phase, setting the status to “ec5_next”. The last exclusion criterion (EC6) applied the
three-pass approach and changed the status of the discarded papers to “ec6” and of the
accepted papers to “final”.

Table 4. Exclusion criteria and status filters used during the corpus selection.

Short Exclusion Criteria Status Excluded Next Criteria

EC1 Not written in English “ ” “ec” -
EC2 Not found in journals, conferences “ ” “ec” -

or workshops
EC3 Title analysis “ ” “ec3” “ec3_next”
EC4 Abstract’s analysis “ec3_next” “ec4” “ec4_next”
EC5 Duplicated papers “ec4_next” “ec5” “ec5_next”
EC6 Three-pass approach “ec5_next” “ec6” “final”
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3.2.3. SQL Database

The SQL database allowed an organization of the data extracted during the pro-
cess. Furthermore, the relational model enabled us to organize the data collected over
the development of the systematic review and eased the generation of graphics and
the extraction of information. Nine tables and a database view of the Zotero tool com-
posed the model. Figure 3 depicts the relational model, developed with the QuickDBD
(https://app.quickdatabasediagrams.com; accessed on 17 May 2023) diagram tool.

The table “Paper” had four attributes, a unique identifier of the paper (field “idPaper”),
a field to store the title of the work (“title”), an identifier code of the work in the Zotero
tool (“idZotero”), and a field with the order of the article in the corpus (“idCorpus”). This
table had a one-to-one relationship with the view “Sysmap”, which represented the most
relevant data used from the Zotero database.

The field “itemID”, of the view “Sysmap”, was the unique identifier of the paper
used by Zotero and it was related to the field “idZotero”, of the table “Paper”. The field
“typeName” represented the type of publication (book section, journal article, conference
paper, manuscript, book, or report). This work only considered journal articles, conference
papers, and workshops, which are a variant of conferences. The field “collectionName”
was the name of the collection chosen to organize the documents. This work used the
names of the search databases and an identifier representing the search round. The field
“author” was the name of the first author. The field “year” was the year of publication,
“title” was the title of the article, and “abstract” was the abstract of the paper. The field
“keywords” organized the keywords of the work separated by a comma. The “language”
was the writing language of the paper. The field “extra” was used to set a status for each
paper using a pipe character followed by a code. Another attribute called “status” showed
the status code. Papers from a conference or workshop used the fields “conferenceName”
and “proceedingsTitle” to store the conference or workshop name and the title of the
proceedings. Finally, the field “venue” indicated whether the paper was from a journal,
conference, or workshop.

The main tables “Industry”, “Question”, “Tool”, and “Methods” related to the ta-
ble “Paper” in a disjoint many-to-many relationship into one-to-many relationships with
auxiliary tables. The table “Industry” had the register of the industrial segments used in
the review. “Question” stored the research questions of the paper. The table “Tool” held
the software tools used in the selected papers. The table “Method” had the data science
methods implemented by the works. The auxiliary tables “PaperIndustry”, “PaperQues-
tions”, “PaperTool”, and “PaperMethod” had the primary keys of the main tables. The
auxiliary table “PaperIndustry” had two extra fields. One of them was responsible for
indicating when a specific industrial segment acted in a simulated environment (field
“simulated”) and the other one for storing the time period of the data used in the work
(field “timePeriod”).

3.3. Analysis

The selected works were carefully investigated looking for data to answer the research
questions and classify each work in a specific industry segment. Moreover, the investigation
allowed the identification of the data science methods and software tools applied in the
studies. Although some papers mentioned the industrial segment, their data actually
resulted from a simulation environment. Furthermore, the time duration of data used in
the studies, when available, appeared in hours, days, months, or years.

3.4. Reporting

The reporting provided results in different ways. The creation of graphics favored the
analysis process providing information in figures with data grouped and organized. In
addition, the creation of a taxonomy synthesized a general view of the results. Furthermore,
the research questions had the answers discussed which produced research highlights.

https://app.quickdatabasediagrams.com
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Figure 3. The diagram shows nine tables created to support the systematic review and a view
with the essential data of the Zotero database. The table “Paper” is the central entity and has a
one-to-one relationship with the view “Sysmap”. The other main tables are “Industry”, “Question”,
“Tool”, and “Method”, besides the auxiliary tables “PaperIndustry”, “PaperQuestion”, “PaperTool”,
and “PaperMethod”.

4. Results

This section presents the results of the systematic literature review. Figure 4 shows each
step of the process with the number of papers from each database used along the process.
Moreover, the figure depicts the number of papers discarded by the exclusion criteria.

First, the initial search returned 10,456 papers from the five databases. With the aim
of finding the first years that matched the string, the search did not use any filter besides
the keywords present in the search string, which meant no cut by years. Then, the two
initial exclusion criteria (EC1 and EC2) removed the papers not written in English and
the ones not found in journals, conferences, or workshops (22.61%). The third exclusion
criterion (EC3) removed the papers which did not pass the title analysis (67.36%). The
fourth exclusion criterion (EC4) excluded papers according to the abstract analysis (7.90%).
The combination of the remaining papers resulted in 223 works, representing 2.14% of the
initial search. The fifth exclusion criterion (EC5) removed 19 duplicated studies. Finally, the
sixth exclusion criteria (EC6) excluded 101 papers using the three-pass approach, leaving
103 works in the corpus, which corresponded to 0.99% of the initial search. Table A1, of
Appendix A, shows the selected papers and the corpus identification codes.

The next step consisted of a thorough analysis of the corpus aiming to answer each
research question, showing the results with graphics and tables. The rest of this section
presents the research questions and respective answers.
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Figure 4. The figure shows the five databases used in the study (ACM, IEEE, Scopus, Springer, and
Wiley) with the number of papers discarded after each one of the exclusion criteria applied. The
number of papers after the initial search, the combination, and the final step is shown in blue. The
number of papers discarded by the exclusion criteria is displayed in red.

4.1. GQ1: Which Industrial Segments Applied Data Science Techniques?

Aiming to standardize the industrial segments present in the corpus, these results
considered the classification proposed by the International Labour Organization (https:
//www.ilo.org; accessed on 17 May 2023), a United Nations agency. This classification
presents 22 industrial segments, of which 15 were in the corpus. Table 5 shows the industrial
segments and each paper’s corpus identification code, besides an extra segment for papers
with segments fitted in the general-purpose use segment.

Table 5. Industrial segments and the identification codes of the papers in the corpus.

Industrial Segment Corpus ID

Agriculture, plantations, other rural sectors 35, 59
Basic metal production 13, 14, 19, 25, 50, 66, 103
Chemical industries 89
Construction 86
Food, drink, tobacco 22, 46, 88
Forestry, wood, pulp and paper 53
Health services 9, 18, 49, 58
Mechanical and electrical engineering 4, 11, 12, 16, 20, 26, 45, 52, 56, 61, 62, 72, 76, 78, 79, 80, 82, 87, 90, 102
Media, culture, graphical 100
Mining (coal, other mining) 23, 54, 70, 91
Oil and gas production; oil refining 3, 15, 27, 74, 75, 81
Postal and telecommunications services 63, 85
Textiles, clothing, leather, footwear 48, 51
Transport equipment manufacturing 5, 6, 10, 31, 34, 40, 41, 44, 55, 57, 60, 68, 84, 92, 98, 101
Utilities (water, gas, electricity) 8, 28, 33, 39, 41, 47, 71, 93, 96
General purpose/others 1, 2, 7, 17, 21, 24, 29, 30, 32, 36, 37, 38, 42, 43, 64, 65, 67, 69, 73, 77, 83, 94, 95, 97, 99

The general purpose/others industrial segment represented the major number of papers
with 24.04% related to the corpus’s total. After, mechanical and electrical engineering was
the second industrial segment with 19.23%, followed by transport equipment manufacturing
with 15.38%. The other segments represented less than 10% of the total each. Luo et al. [17]
used two industrial segments: transport equipment manufacturing and Utilities (water, gas,
and electricity). That paper was accounted twice for percentage analysis purposes.

Utilities represented 8.65% of the corpus. basic metal production approached 6.73% of the
corpus. Oil and gas represented 5.77% of the corpus. Health services and mining encompassed

https://www.ilo.org
https://www.ilo.org
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3.85% each. Food represented 2.88% of the corpus. Agriculture, postal and telecommunications
services, and textiles encompassed 1.92% of the corpus each. Chemical industries, construction,
forestry, and media approached 0.96% of the corpus each.

4.2. GQ2: What Are the Data Science Methods Used in the Studies?

A primordial aspect of the successful use of data science is the choice of suitable
methods. Table 6 shows the abbreviations of the data science methods used in each paper,
ordered by the corpus identification code, and Table A2 of Appendix B contains the names
of the methods. Long short-term memory (LSTM) was the most used data science method,
appearing in 22 papers, followed by support vector machine (SVM), with 19 appearances,
and random forest (RF), which appeared 14 times. Convolutional neural network (CNN)
appeared 11 times. Recurrent neural network (RNN) appeared nine times. Multilayer per-
ceptron (MLP) and Principal component analysis (PCA) appeared eight times each. Neural
network (NN) appeared seven times. Autoregressive integrated moving average (ARIMA)
and logistic regression (LR) appeared six times each. Autoencoder (AE), deep neural
network (DNN), local outlier factor (LOF), and synthetic minority oversampling technique
(SMOTE) appeared five times each. Convolutional neural network–long short-term mem-
ory (CNN-LSTM), density-based spatial clustering of applications with noise (DBSCAN),
gated recurrent unit (GRU), K-means (KM), K-nearest neighbor (KNN), one-class SVM
(OCSVM), support vector regression (SVR), and XGBoost (XGB) appeared four times each.
AdaBoost (AB), bidirectional long short-term memory (BLSTM), backpropagation neural
network (BPNN), decision tree (DT), gradient boosting decision tree (GBDT), Gaussian
mixture models (GMM), hidden Markov models (HMM), linear regression model (LRM),
and isolation forest (iForest) appeared three times each. Agglomerative hierarchical cluster-
ing (AHC), attention-based long short-term memory (ALSTM), artificial neural network
(ANN), bidirectional gated recurrent unit (BGRU), Bayesian ridge/regularization (BR),
classification and regression tree (CART), fault detection and classification convolutional
neural network (FDC-CNN), gradient boosting machine (GBM), hierarchical clustering
algorithm/analysis (HCA), linear discriminant analysis (LDA), matrix profile (MP), ontol-
ogy (Ontology), self-organizing maps (SOM), short-term Fourier transform (STFT), visual
analytics (VA), and wide-first kernel and deep convolutional neural network (WDCNN)
appeared two times each. The other data science methods appeared just one time each over
the corpus.

Furthermore, to better follow the evolution over the timeline, Figure 5 shows how
many times a data science method appeared over the years of publication. Long short-
term memory (LSTM) networks were the method that most appeared in the corpus, with
22 occurrences. Then, support vector machine (SVM) had 19 occurrences. Next, the random
forest (RF) method appeared 14 times. The years 2019, 2020, and 2021 presented the highest
concentration of data science methods.
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Table 6. Identification codes of the papers at the corpus and the data science methods used by each one.

ID Method(s) ID Method(s)

1 CNN, GAF 52 BDA, CNN, DT, GFK, JDA, KNN, LDA, SVM, TCA
2 DWT, LRM, NN, STFT 53 MLP
3 RMS 54 ARIMA, DES
4 AFDC-CNN, CDSAE-AD, CSAE-AD, EncDec-AD, FDC-CNN, LSTM-AD 55 LRM, MLP
5 ANFIS, MLP, NHPP, RBF, SVR, Weibull 56 RNN
6 AE, LOF, RF, iForest 57 CNN
7 DPCA, GBDT 58 ANN, SVM
9 RF 59 EEMD-DL-LSTM

10 ARIMA 61 LSTM, OntoLSTM
11 BINN, I-Forest, OCSVM, PCA 62 MCOD, MP
12 BPNN, DBN, DNN, KNNC, SVM, WPD 63 LOF
14 2-DConvLSTMAE, ARIMA, CNN-LSTM, DeepLSTM, PersistenceModel, RSNet 65 CST, GA, KM
15 ARIMA, CNN, LSTM, ResNet 66 RNN, SOM
16 LSTM, RNN, SBA 67 CNN, CNN-LSTM, LSTM
17 GBM, RF, SVM, TCN 68 CRISP-DM, DT, KNN, LRM, Prophet, RF, SVM
18 BR 69 LR, LSTM, RF, SVM, TNN
19 GHMM, HMM, MCU 70 CART, GST, LDA, SDM, SVM
20 AE, VGG 71 CNN-LSTM, LSTM
21 AGRU, ALSTM, FFT-MLP, FFT-SVM, GRU, LSTM, RNN-WDCNN, SRDCNN, WDCNN 72 GBT, LR, RF, SVC
22 AOD 73 AE, CMD, CNN, CNN-MMD, KNN, MDDAN, MDIAN, MLCAE, MLCAE-KNN, SVM
23 AE, BGRU, BLSTM, BRNN, GRU, LSTM, RNN 74 MLP, SMOTE, SVM
24 AML, FFNN, RF, XGB 75 AB, CART, GBDT, LGBM, NN, RF, XGB
25 HMM, LSTM, MDP 76 AHC
26 AE, LOF, TSO, iForest 77 LSTM, MORL
27 VQS 78 AHC, SOM, Ward
28 VA 79 BGRU, BLSTM, CNN, GRU, LSTM, RNN
29 AnoGAN, FFT, LMS, LSTM, OCSVM, PCA, Tikhonov, UKF, t-SNE 80 1NN-DTW, FDC-CNN, MC-DCNN, MTS-CNN, SAX-VSM, SF
30 PCA, SSA-BLSTM 81 CDT, DBSCAN, GEC, KNN, NN
31 AE-GRU, DNN, GRU, LSTM, MLP, RNN 82 AEWGAN, LR, RF, SMOTE, SVM, WGAN
32 CNN, PCA, SVM 83 HCA, KM
33 CNN, LSTM 84 DBSCAN, LR, MLP, NB, RF
35 Methontology 85 WSM
36 BGM, GMM, HDBSCAN, MP, PCA 86 ANOVA, SVM, VR
37 CNN, OCSVM, RNN, iForest 87 CNN-LSTM
38 LSTM 88 LSTM
39 GMM, KM, SPIRIT, SVR 89 AB, GBM, MLP, PCA, RF, SVR, XGB
40 GMM, LSTM 90 DF, LR, NN, SVM
41 BNN, GLM, NN, SGB, SVM 91 HCA
42 ARMA, BPNN, LSTM, SVR 92 Ontology
43 ARIMA, DBSCAN, KM, LOF, LSTM, MV, OCSVM 93 SNN
44 NN 94 AR
45 SVM 96 GDN, LSTM-NDT, LSTM-VAE, MTAD-GAT, STGAT-MAD, USAD
46 IDEAaS 97 ARIMA, CNN, DNN, LSTM, MLP, RF, SN, WN, ZO
47 CxDBNet, DBNet 98 DNN, HMM, PCA
48 ANN, SMOTE 99 ALSTM, BPNN, BR, DNN, GBDT, GR, SVM, TSMC-CNN
49 DBSCAN, LOF, LSTM, MAD, RNN, SMOTE, SVM 100 LSTM, RNN
50 AB, DT, NN, PCA, RF, SMOTE, SVM, XGB 101 Ontology
51 VA 103 BLSTM, LR, RF, SVM
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Figure 5. Data science methods grouped by year. The definition of each method is in Table A2. Long
short-term memory—LSTM was the method with the most occurrences (22), followed by support
vector machine—SVM (19), and random forest—RF (14). For better visualization, only methods with
more than two occurrences appear in the picture.

4.3. GQ3: What Are the Software Tools Used in the Studies?

Implementing data science methods requires proper software tools such as program-
ming languages, databases, and toolkits. Table 7 shows the abbreviation of the software
tools used in each paper of the corpus, and Table A3 of Appendix C, contains the complete
names of the tools. Python was the most used software tool, appearing in 20 papers,
followed by Keras, in 15 papers, and Tensorflow in 13. MATLAB appeared in eight works
and the R language appeared in six. Hadoop and SKLEARN appeared in five studies each.
Kafka and MongoDB appeared in four papers each. Spark appeared in three studies. doPar-
allel, fastcluster, foreach, InfluxDB, JavaScript, Jupyter, Knime, MES, MSSQL, PyTorch,
rpud, SQL, Storm, and SWRL appeared in two papers each. The remaining software tools
appeared just once in the corpus.
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Table 7. Identification codes of the papers in the corpus and the software tools used by each one.

ID Tool(s) ID Tool(s)

2 Python, PyWavelets 56 Python, PyTorch

4 Keras, Python, SKLEARN, Tensorflow 57 OpenCV

5 MATLAB 60 Elasticsearch, Flatform, Hadoop, Jupyter, Kafka, Kibana, NiFi, Parquet, Python, Spark, Zeppelin

6 Keras, Python, SKLEARN, Spark, Tensorflow 61 Imblearn

7 CouchDB, freqdom, QlikView, R, XGBoost 63 Cassandra, EYE, Hadoop, R, Spark

10 R 65 HealthMon, MATLAB

11 PyOD 66 SQL

13 Keras, Pandas, Python 67 Jupyter, Python, SKLEARN

14 Python, Tensorflow 68 Hadoop, MySQL, Python

15 GAI, GPyOpt, Keras, Tensorflow 69 Colab

18 MATLAB 70 MATLAB

20 Keras, Tensorflow 72 iSTEP, MLlib

21 Keras, Tensorflow 73 Python

23 Keras 74 Knime, RPropMLP

25 InfluxDB, Kafka, RAMI4.0, Storm, UPTIME 76 doParallel, fastcluster, foreach, R, rpud

27 ExtruOnt, Neo4j, RDFox, SPARQL, Stardog, SWRL, Virtuoso 77 BURLAP, ERP, Kafka, Keras, MES, Tensorflow

28 Hadoop, MongoDB 78 doParallel, fastcluster, foreach, kohonen, R, rpud

29 PyTorch, SKLEARN 79 Keras, Tensorflow

32 Python, R 81 Hadoop

34 MATLAB, MES, MSSQL, QlikSense, SSDT, SSIS 84 JavaScript, Kafka, MongoDB, Python, Storm

35 AquaONT, Fuseki, Hermit, OWL, Pallet, Protege, SWRL 85 PlanningVis

37 AnoML-IoT, Python 86 Ruptures

38 Keras, Python, Tensorflow 87 Keras, Tensorflow

39 Python 88 Azure

42 MATLAB 89 Flask, Keras, Python, SKLEARN

43 AngularJS, ChartJS, D3JS, Docker, JavaScript, MongoDB, NodeJS, Python 90 AzureML

46 MongoDB 92 SemML

47 SCADA 94 ARHoloLens, C#, C++, Direct3D, MSSQL

49 MATLAB 95 MATLAB, SPHM

51 MUVTIME 97 Keras, Python, Tensorflow, ThunderML

52 t-SNE, Tensorflow 98 InfluxDB, KafkaStreams, Keras, Tensorflow

53 AZAP 101 SQL

54 Python 102 GADPL

55 Knime, Weka 103 Keras, Python, Theano

Moreover, Figure 6 shows the software tools grouped by years. The Python program-
ming language was the most used tool, appearing in 20 papers, followed by Keras, which
appeared in 15 papers, and Tensorflow which appeared in 13 articles.

4.4. FQ1: How Do the Studies Employ Contextual Time Series?

Eleven papers used the concept of context in some way. The works approached
ontologies, visual analytics, dynamic Bayesian networks, context-aware cyberphysical
systems, convolutional neural networks, recurrent neural networks, and long short-term
memory networks.

Wu et al. [18] used context information to develop an interactive visual analytics
system for a petrochemical plant. The system worked in the operation stage, using time-
series data from 791 sensors which provided the status of different parts of the factory.
Tripathi and Baruah et al. [19] proposed a method to identify contextual anomalies in a time-
series-modifying dynamic Bayesian network (DBN) method to support context information,
named contextual DBN. The tests of the new method efficacy occurred in oil well drilling
data. Majdani et al. [20] developed a framework for cyberphysical systems using machine
learning and computational intelligence. The framework used context data from 25 sensors
of different parts of a gas turbine. Canizo et al. [21] proposed a convolutional neural
network–recurrent neural network (CNN-RNN) architecture to extract features and learn
the temporal patterns of context-specific time-series data from 20 sensors installed at a
service elevator.
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Figure 6. Software tools grouped by year. The definition of each tool is in Table A3. Python was
the tool with the most occurrences (20), followed by Keras (15), and Tensorflow (13). For a better
visualization, only tools with more than one occurrence appear in the picture.

Jiang et al. [22] used two deep learning methods to predict the remaining useful life
(RUL) of bearings. The methods employed context vectors in time-series multiple-channel
networks for convolutional neural networks (TSMC-CNN) and extended the method to
attention-based long short-term memory networks (TSMC-CNN-ALSTM). Stahl et al. [23]
presented a case of steel sheets’ failure detection using bidirectional recurrent neural net-
works (RNN) with an attention mechanism. The method used context vectors to represent
each state of the process. Ma et al. [24] proposed a predictive production planning ar-
chitecture based on big data for a ceramic manufacturing company. The architecture
used cube-based models to deal with context-aware historical data using LSTM networks.
Yasaei et al. [25] developed an adaptive context-aware and data-driven model using mea-
sures from 62 heterogeneous sensors of a wastewater plant. The model used LSTM net-
works to detect sensing device anomalies and environmental anomalies.

Abbasi et al. [26] developed an ontology for aquaponic systems called AquaONT,
using the methontology approach to formulate and evaluate the model. The ontology used
contextual data from a standard farm to provide information on the optimal operation of
IoT devices. Bagozi et al. [27] proposed an approach focused on resilient cyberphysical
production systems (R-CPPS), exploiting big data and the human-in-the-loop perspective.
The study used context-aware data stream partitioning, processing data streams collected
in the same context, which means the same smart machine and the same type of process to
produce the same kind of product. Kim et al. [28] conducted an experiment to observe the
participants’ attentiveness in a repeated workplace hazard, using virtual reality to avoid the
risk of injuries. The experiment used a construction task to measure the participants’ biosig-
nals by means of eye-tracking sensors and a wearable device to measure the electrodermal
activity, together with contextual features.

4.5. FQ2: What Is the Data Quality over Time Used in the Studies?

Data quality is primordial for all types of industrial segments, including the assembly
lines of industries. Knowing the quantity of data over time used in an experiment is
fundamental for a better understanding of the data analysis. Out of one hundred and three
papers in the corpus, the equivalent of 39.81% (41 papers) mentioned the quantity of data
used over a certain period of time. Table 8 presents this information along with the paper
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identification. Despite mentioning the quantity of data, the units of measure appeared in
different forms. The years represent the quantity of data in 14 studies, months in 17 works,
days express data in 7 papers, and hours in 3 works.

Table 8. Quantity of data over time employed in each paper as described by the authors, identified
by the ID of the paper in the corpus. The quantity of data appears in years, months, days, and hours.

ID Quantity ID Quantity ID Quantity

6 2 days 36 1 year 71 8 days
7 61 days 37 2 days 72 3 years
8 7 days 38 2 years and 6 months 74 4 years and 5 months

10 3655 h 39 1 year 76 2 years
11 5 months 42 1 month 77 3 years
13 3 months 44 1 year 78 6 months
14 1 year 45 1 year 84 8 months
15 4 months 46 1 year 85 30 days
16 2 years 51 8 months 87 1 year
19 3 months 53 7 years 88 242 days
27 1 year 55 3 months 98 50 h
28 3 months 59 2 months 102 7 years
33 3 months 66 50 h 103 6 months
34 6 months 68 1 year and 7 months

Another crucial point regarding data quality is the origin of the datasets used in the
experiments. Table 9 shows ten papers of the corpus that made their datasets available to
public. Three papers used the same repository, although two of them focused on Turbofan
engine degradation (Lu et al. [29] and Wu et al. [30]), and the other one on bearings
(Ding et al. [31]). Shenfield et al. [32] and Kancharla et al. [33], which worked with two
datasets, also used bearings but from different repositories. Moreover, Apiletti et al. [34]
used data from hard-drives, Mohsen et al. [35] worked on a human activity dataset, Zvirblis
et al. [36] used data from conveyor belts, Wahid et al. [37] worked with a component failure
dataset, and Zhan et al. [38] used data from wind turbines.

Table 9. The papers whose datasets are available to the public, identified by the ID of the paper in
the corpus, the author, and the URL where the data can be downloaded. Ten papers presented the
dataset used. Accessed on 17 May 2023.

ID Author URL

21
Shenfield and
Howarth et al. [32]

https://engineering.case.edu/bearingdatacenter/download-data-file

23 Ding et al. [31] https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#bearing
31 Lu et al. [29] https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan
40 Wu et al. [30] https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan
67 Mohsen et al. [35] https://www.kaggle.com/datasets/drsaeedmohsen/wisdmdataset2021
69 Zvirblis et al. [36] https://github.com/TadasZvirblis/CORBEL
72 Apiletti et al. [34] https://www.backblaze.com/b2/hard-drive-test-data.html
73 Kancharla et al. [33] https://engineering.case.edu/bearingdatacenter/download-data-file

https://mb.uni-paderborn.de/kat/forschung/datacenter/bearing-datacenter
87 Wahid et al. [37] https://github.com/ashishpatel26/Predictive_Maintenance_using_Machine-Learning_Microsoft_Casestudy
96 Zhan et al. [38] https://github.com/zhanjun717/STGAT

4.6. SQ1: In Which Databases Are the Studies Published?

The review applied the searches to five databases: ACM, IEEE, Scopus, Springer, and
Wiley. However, only four databases had studies selected into the corpus, as shown in
Figure 7. Scopus had the great majority of papers (71.84%), followed by Springer (24.27%),
IEEE (2.91%), and ACM (0.97%).

https://engineering.case.edu/bearingdatacenter/download-data-file
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#bearing
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan
https://www.kaggle.com/datasets/drsaeedmohsen/wisdmdataset2021
https://github.com/TadasZvirblis/CORBEL
https://www.backblaze.com/b2/hard-drive-test-data.html
https://engineering.case.edu/bearingdatacenter/download-data-file
https://mb.uni-paderborn.de/kat/forschung/datacenter/bearing-datacenter
https://github.com/ashishpatel26/Predictive_Maintenance_using_Machine-Learning_Microsoft_Casestudy
https://github.com/zhanjun717/STGAT
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Figure 7. The number of papers in each database by year. Of the five databases used in this work,
only four had papers in the corpus. Scopus was the database with the greatest number of studies
(74), followed by Springer (25), IEEE (3), and ACM (1). Wiley stayed out of the corpus with no
papers selected.

4.7. SQ2: What Is the Number of Publications per Year?

Over the last five years, the publications related to this study increased, doubling from
2018 (10 papers) to 2019 (23 papers). Figure 8 shows the annual progress of the publications,
taking into account the date of publishing. The first publication that fit the selection criteria
was in 2013 and the last in 2022. Only fourteen works emerged until the end of June 2022
because this was the date when the searches were executed.

Regarding the types of publications, Figure 9 shows the paper identification code
inside a geometric shape. Conference works use a square symbol, journal papers use a
circle, and workshop papers use a diamond symbol. Journals had the greatest number of
papers (63.11%), followed by conferences (31.07%) and workshops (5.83%).

Figure 8. The number of publications present in corpus per year. The years with the higher number
of works published were 2019, 2020, and 2021 with 23, 22, and 29 papers, respectively. The years refer
to the papers’ publication date.
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Figure 9. Types of publication by year, classified as conference, journal, or workshop. The number
inside the geometric shapes is the identification code of the paper in the corpus. The years 2019, 2020,
and 2021 with 23, 22, and 29 papers, respectively, had the biggest number of publications. Overall,
there were 65 publications from journals, 32 from conferences, and 6 presented in workshops.

5. Taxonomy

This section summarizes the answers to the three general research questions, previ-
ously presented in Table 2, using a taxonomic approach to better visualize and understand
the results. Figure 10 depicts a taxonomy that hierarchically organizes, classifies, and
synthesizes the industrial segments (GQ1), data science methods (GQ2), and software tools
(GQ3) found in the corpus with the nodes industry [39], methods [40–42], and tools [43,44],
respectively. Industrial segments featured sixteen classes, data science methods organized
algorithms and techniques into nine branches, and software tools presented applications
and libraries organized into nine components.

The industrial segments used in this work originated from the International Labour
Organization (ILO) (https://www.ilo.org/global/industries-and-sectors; accessed on
17 May 2023), an agency of the United Nations, which classifies industries and sectors
into 22 segments. The 103 papers resulted from the systematic review fell into 15 of the
22 segments proposed by the ILO: agriculture, basic metal production, chemical industries,
construction, food, forestry, health services, mining, mechanical and electrical engineering, media,
oil and gas, postal and telecommunications services, textiles, transport equipment manufacturing,
and utilities. These different segments complement those industries with general purpose.

The data science methods found included data structure, machine learning, mathematical,
metric, statistical, symbolic, visual analytics, process, and combinatorial search, as shown in the
taxonomy and more detailed in Figure 11. Due to the significant number of methods and
their variations, the machine learning branch had a separated taxonomy shown in Figure 12.
The machine learning method long short-term memory (LSTM) networks represented the
most used method, with 22 occurrences. Furthermore, there were ten LSTM variations:
attention-based long short-term memory (ALSTM), which uses a context vector to infer dif-
ferent attention degrees of distinct data features at specific time points [22]; bidirectional
long short-term memory (BLSTM), which processes data both in chronological order, from
start to end, and in the opposite direction, the reverse order [21,23]; deep long short-term

https://www.ilo.org/global/industries-and-sectors
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memory (DeepLSTM), an LSTM network with stacked layers connected to a dense layer
distributed over time [45]; long short-term memory with nonparametric dynamic thresholding
(LSTM-NDT) [38]; long short-term memory variational autoencoder (LSTM-VAE) [38]; singular
spectrum analysis bidirectional long short-term memory (SSA-BLSTM) [46]; long short-term mem-
ory autoencoder (LSTMAE) [47]; long short-term memory anomaly detection (LSTM-AD) [48].
encoder–decoder anomaly detection (EncDec-AD) [48]; and the ontology-based LSTM neural
network (OntoLSTM), which implements semantics concepts using an ontology to learn
the representation of a production line, together with an LSTM network for temporal
dependencies learning [49].

Figure 10. The taxonomy has three main branches: industry, methods, and tools. Industry organizes
the papers into industrial segments, according to the International Labour Organization. Methods
depict the data science methods employed in the papers. Tools organize the software tools used in
the works.

The second most used data science method was the support vector machine (SVM) method,
representing 19 occurrences. Moreover, the method had four variations: fast Fourier transform
based support vector machines (FFT-SVM), a version of SVM which uses a fast Fourier transform
to extract features [32]; one-class SVM (OCSVM), an unsupervised version of SVM using
a single class to identify similar or different data [50]; support vector classification (SVC), a
variation used for classification tasks [34]; and the support vector regression (SVR) variation,
which implements a linear regression function to the mapped data [51].
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Figure 11. The methods branch presents the data science methods split into data structure, machine
learning, mathematical, metric, statistical, symbolic, visual analytics, process, and combinatorial
search. As a result of the significant number of specialized methods, the machine learning branch is
presented in more detail in Figure 12.

The data science method that was the third-most used was the decision tree method
random forest (RF), accumulating 14 occurrences, followed by convolutional neural network
(CNN), with 11 occurrences, and recurrent neural network (RNN), with 9 occurrences. Twelve
CNN variations stood out as branches: fault detection and classification convolutional neural
network (FDC-CNN), designed to detect multivariate sensor signals’ faults over a time axis,
extracting fault features; multichannel deep convolutional neural networks (MC-DCNN), whose
objective is to deal with multiple sensors that generate data with different lengths; multiple-
time-series convolution neural network (MTS-CNN), designed for diagnosis and fault detection
of time series, uses a multichannel CNN to extract important data features [52]; temporal
convolutional network (TCN), which works by summarizing signals in time steps, using a
maximum and minimum value per step [53]; residual neural networks (ResNet) [54]; residual-
squeeze Net (RSNet) [45]; stacked residual dilated convolutional neural network (SRDCNN) [32];
wide first kernel and deep convolutional neural network (WDCNN) [32,55]; convolutional neural
network maximum mean discrepancy (CNN-MMD) [33]; deep convolutional transfer learning
network (DCTLN) [55]; attention fault detection and classification convolutional neural network
(AFDC-CNN) [48]; and the time-series multiple-channel convolutional neural network (TSMC-
CNN), which uses as inputs N-variate time series split into segments, smoothing the
extraction of data points [22]. RNN represented three branches: gated recurrent unit (GRU),
long short-term memory (LSTM), and bidirectional recurrent neural network (BRNN).
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Figure 12. Machine learning branch has the following organization: clustering, decision trees, ensemble,
Gaussian processes, linear models, naive Bayes, nearest neighbors, neural networks, reinforcement
learning, support vector machines, transfer learning, genetic algorithm, and AutoML.

Regarding the software tools, nine main classes appeared in the taxonomy: anomaly
detection, databases, distributed computing, model, prediction, programming languages, toolkits,
visualization, and reasoner, as depicted in Figure 13. The Python language was the most
used software tool, with 20 occurrences, followed by Keras (15 occurrences), and Tensorflow
(13 toccurrences). Keras is a deep learning framework, and Tensorflow is a machine learning
back end [32], and both are branches of Python in the taxonomy hierarchy.
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Despite covering industrial segments, data science methods, and software tools hi-
erarchically, the taxonomy did not link them horizontally. These relations are in Table 5,
representing industrial segments, Table 6 showing data science methods, and Table 7
providing software tools.

Figure 13. The tools branch presents the software tools used by the authors, split into anomaly
detection, databases, distributed computing, model, prediction, programming languages, toolkits,
visualization, and reasoner. All the branches represent one or more ramifications.
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6. Discussion

The results presented in this study originated from a systematic review process focused
on Industry 4.0, data science and time series. There was no restriction regarding the
publication year to provide a whole spectrum of literature in these aforementioned fields.
With this, the review showed industrial segment applications both from real cases and
simulated environments, in addition to identifying data science methods, software tools,
and the data quality used by the experiments.

Several industrial segments are interested in analyzing data, and more and more
data analysis is crucial for companies. This contributes to decision-making in the function
of historical data generated by each industry. Moreover, these data analytical processes
contribute to the companies’ specific needs since previous experiences are substantial to
improve future outcomes.

The industrial segments explored by the literature were classified and grouped ac-
cording to the International Labour Organization pattern. This provided a better way of
visualization in the taxonomy (Figure 10). The general purpose/others industrial segment
appeared in 25 papers, being the most present in the corpus. The mechanical and electrical
engineering industrial segment was the second most common one (20 papers). The segment
includes industries strictly connected to technology, such as semiconductors, computers,
and electronics, which explains why it was the most frequent segment in the study, after
general purpose/others. Furthermore, this industry usually has controlled environments and
employees trained to work with technology, making the collection of data simpler. This
favors the execution of studies because those industrial environments are already prepared
to produce data combinations toward high-level decision-making.

The majority of studies used real industrial facilities in the experiments (81 papers).
However, some papers employed simulated environments (23 works). The work of
Luo et al. [17] appeared twice in the simulated cases due to the presence of two industrial
segments in the paper. The usage of real data in most papers provides evidence of the
evolution of data science applications in the industry’s production line. This is because
sensors and database tools have evolved and become more affordable in the last years.
Moreover, the quality of real datasets is a positive point for the training of machine learning
algorithms since it can improve the accuracy of predictive models and substantiate future
applications that use the same type of data. This is also positive because it reflects real
industrial scenarios and potentially provides technology for real-world problems.

Furthermore, the literature presents a wide usage of different technologies, which can
hinder the right choice of a suitable method since there is a chance of empirically employing
the methods. Aside from the methods, choosing the right tool is another challenge due
to different implementations of the same method in distinct tools, e.g., programming
languages which present alternative values to initialize the weights of a neural network.
A couple of tools rely on specific methods, such as the Keras tool, which deals with deep
learning applications employing LSTM and GRU methods. Moreover, it is common to
see Keras and Tensorflow tools used together [21,32,54,56–58]. Both Keras and Tensorflow
support the Python language, which is widely used for scientific purposes, appearing in
20 papers of the corpus, as presented in Table 7. On the other hand, regarding the usage
of data combination to create high-level information, the corpus included 11 papers that
mentioned contextual data [18–28].

In addition to the aforesaid technologies, neural networks were among the 13 varia-
tions of machine learning methods according to the taxonomy. On the other hand, neural
networks themselves presented 31 subvariations. With this machine learning method’s
improvement, three approaches stood out: attention-based, bidirectional, and autoencoder
networks. The attention-based mechanism acts like the human visual attention behavior,
using a context vector and focusing on the importance of different features over distinct
time steps to improve the prediction accuracy. The studies which focused on this attention-
based mechanism explored the usage of, for example, ALSTM and AGRU. Bidirectional
models work as two different neural networks walking through a data sequence in both
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directions to avoid forgotten data. One network goes from the start to the end of the
sequence, and the other one comes from the opposite direction. In this respect, studies
encompassed the usage of BLSTM, BGRU, and BRNN. An autoencoder is an unsupervised
feed-forward neural network commonly used for feature extraction and dimensionality
reduction, composed of an encoder and a decoder. The encoder compresses the data to
a hidden layer, and the decoder reassembles it to the original input data. In particular,
studies used 2-DConvLSTMAE, AEWGAN, AE-GRU, and AE. Hence, these techniques
focused on novel combinations and variations of neural networks, which provide versatile
methods to exploit problems and questions within the scope of data science in industries.

More specifically, the data quality analysis is critical to ensure a proper functioning
of the above-mentioned data science methods. Missing details in the data composition
can hamper the paper’s understanding and the reproducibility of the experiment. The
quantity of data over time is not enough to supply all the information needed since the
frequency can vary during the same period. For example, it is possible to measure the air
temperature every hour or every minute of the day. If the measurement occurs every hour,
it results in 24 rows. On the other hand, if the measurement occurs every minute, it results
in 1440 rows. Therefore, these measurements provide different data granularity, which
consequently affects the way results are described. More importantly, these cases require an
adequate exposure to methodologies and discussions considering the method’s specificity.

Regarding data structures found in the methods, ontologies provide an advanced way
to retrieve information. Classes and relations organize data as a taxonomy but with the
possibility to query and reason. The SPARQL is the language used to retrieve information
and Hermit, Pallet, and RDFox are examples of reasoners found in the review. An important
aspect of ontologies is that they are extendable and reusable [26,49,59].

In addition, another crucial piece of information that studies should clearly provide is
the percentage of data used for training and testing the model because this strategy of data
splitting directly affects the results. Moreover, to guarantee the experiment’s reproducibility,
some specific details of the methods are of significant importance, for example, the number
of hidden layers of a neural network, or the type of kernel used by a support vector machine,
or even the number of interactions used by a random forest. In this sense, there is a need for
studies to present more about the data organization and how the data science methods were
employed. Papers must include all details of the implementation, such as the architecture
and parameters of the machine learning methods and the whole composition of feature
vectors. With this, the practitioners will find the methodologies clearer to understand
and reproduce in their studies. Hence, this will benefit the community, ensuring potential
common situations among different segments to avoid technical and managerial aspects.

7. Conclusions

This article presented a systematic literature review focused on Industry 4.0, data
science, and time series. This work investigated the usage of data science methods and soft-
ware tools in several industrial segments, taking into account the implementation of time
series and the data quality employed by the authors. Furthermore, a taxonomy organized
the industrial segments, data science methods, and software tools in a hierarchical and
synthesized way, which eased the reading of how studies from Industry 4.0 have employed
these technologies.

The literature presented several mature methods which covered vast possibilities for
industrial analysis. This strengthens both the market and academia because the more
companies employ the technologies, the more researchers and practitioners become experts
in those methods and tools. In this sense, the industrial investment in these analyses is
beneficial because it provides empirical results for the community about applicable use
cases in several segments. Moreover, it contributes to the maturity and evolution of the
technological methods and tools employed in the process of industrial data analysis.

Even with efforts to reduce biases, this review has limitations as any other systematic
review. The search string was applied to five research databases intending to use different
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academic sources, which potentially decreased the source bias. The search string’s concep-
tion used three axes employing respective known keywords and synonyms for each axis,
focusing on reducing keywords biases. Moreover, six exclusion criteria filtered the resulting
papers, providing the corpus. Accordingly, these exclusion criteria and the remaining
filtering process followed Petersen et al.’s [14] guidelines to reduce process bias.

The taxonomy represents an important contribution to further research since the orga-
nization of data science methods and software tools helps the visual search in categories,
assisting in discovering research gaps. In addition, the variation of a specific method or tool
into a node points to trends in the use of that technology, which is important when choosing
what technique to use. Therefore, the taxonomy’s faculty of organizing and classifying the
results in hierarchical classes constitutes a relevant achievement of this work. Moreover, the
class industry was an attempt to standardize the segments according to the International
Labour Organization. Hence, the visualization of the outcomes in the form of a taxonomy
increases the possibilities of new research.

Finally, this research study did not focus on how the works dealt with data treatment
before applying data science methods to datasets. This situation constitutes an additional
limitation, and hence, it is suggested as future work. Moreover, how the software tools are
linked to the data science methods is another potential future work. Furthermore, the last
topic suggested for future work is to specifically correlate the most used methods and tools
with each industrial segment.
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Appendix A. Corpus

Table A1. Corpus of articles derived from this research.

ID Author Title Venue

1 Toma et al. (2022) [60] A Bearing Fault Classification Framework Based on Image Encoding Techniques and a Convolutional Neural Network under Different Operating Conditions Journal

2 Onus et al. (2021) [61] A Case Study on Challenges of Applying Machine Learning for Predictive Drill Bit Sharpness Estimation Workshop

3 Rezende et al. (2018) [62] A case study on the analysis of an injection moulding machine energy data sets for improving energy and production management Conference

4 Tchatchoua et al. (2021) [48] A Comparative Evaluation of Deep Learning Anomaly Detection Techniques on Semiconductor Multivariate Time Series Data Conference

5 Soltanali et al. (2021) [63] A comparative study of statistical and soft computing techniques for reliability prediction of automotive manufacturing Journal

6 Ribeiro et al. (2021) [64] A Comparison of Anomaly Detection Methods for Industrial Screw Tightening Conference

7 Zhang et al. (2020) [65] A CPPS based on GBDT for predicting failure events in milling Journal

8 Ding et al. (2013) [66] A Data Analytic Engine Towards Self-Management of Cyber-Physical Systems Workshop

9 Mulrennan et al. (2019) [67] A data science approach to modelling a manufacturing facility’s electrical energy profile from plant production data Conference

10 Subramaniyan et al. (2018) [68] A data-driven algorithm to predict throughput bottlenecks in a production system based on active periods of the machines Journal

11 Carletti et al. (2019) [50] A deep learning approach for anomaly detection with industrial time series data: A refrigerators manufacturing case study Conference

12 Li et al. (2019) [69] A deep learning driven method for fault classification and degradation assessment in mechanical equipment Journal

13 Bampoula et al. (2021) [47] A Deep Learning Model for Predictive Maintenance in Cyber-Physical Production Systems Using LSTM Autoencoders Journal

14 Essien and Giannetti et al. (2020) [45] A Deep Learning Model for Smart Manufacturing Using Convolutional LSTM Neural Network Autoencoders Journal

15 Villalobos et al. (2020) [54] A flexible alarm prediction system for smart manufacturing scenarios following a forecaster–analyzer approach Journal

16 Fu et al. (2018) [70] A Hybrid Forecasting Framework with Neural Network and Time-Series Method for Intermittent Demand in Semiconductor Supply Chain Conference

17 Van Herreweghe et al. (2020) [53] A Machine Learning-Based Approach for Predicting Tool Wear in Industrial Milling Processes Conference

18 Alexopoulos and Packianather et al. (2017) [71] A monitoring and data analysis system to achieve zero-defects manufacturing in highly regulated industries Journal

19 Sarda et al. (2021) [72] A Multi-Step Anomaly Detection Strategy Based on Robust Distances for the Steel Industry Journal

20 Cordoni et al. (2022) [73] A multi–modal unsupervised fault detection system based on power signals and thermal imaging via deep AutoEncoder neural network Journal

21 Shenfield and Howarth et al. (2020) [32] A novel deep learning model for the detection and identification of rolling element-bearing faults Journal

22 da Silva Arantes et al. (2021) [74] A novel unsupervised method for anomaly detection in time series based on statistical features for industrial predictive maintenance Journal

23 Ding et al. (2019) [31] A predictive maintenance method for shearer key parts based on qualitative and quantitative analysis of monitoring data Journal

24 Zufle et al. (2021) [75] A Predictive Maintenance Methodology: Predicting the Time-to-Failure of Machines in Industry 4.0 Conference

25 Bousdekis et al. (2019) [76] A RAMI 4.0 View of Predictive Maintenance: Software Architecture, Platform and Case Study in Steel Industry Workshop

26 Tedesco et al. (2021) [77] A Scalable Deep Learning-Based Approach for Anomaly Detection in Semiconductor Manufacturing Conference

27 Berges et al. (2021) [78] A Semantic Approach for Big Data Exploration in Industry 4.0 Journal

28 Wu et al. (2018) [18] A Visual Analytics Approach for Equipment Condition Monitoring in Smart Factories of Process Industry Conference

29 Tagawa et al. (2021) [79] Acoustic Anomaly Detection of Mechanical Failures in Noisy Real-Life Factory Environments Journal

30 Mahmood et al. (2022) [46] An accurate detection of tool wear type in drilling process by applying PCA and one-hot encoding to SSA-BLSTM model Journal

31 Lu et al. (2020) [29] An autoencoder gated recurrent unit for remaining useful life prediction Journal

32 Kiangala and Wang et al. (2020) [80] An Effective Predictive Maintenance Framework for Conveyor Motors Using Dual Time-Series Imaging and Convolutional Neural Network in an Industry 4.0 Environment Journal

33 Yue et al. (2018) [81] An End-to-End model based on CNN-LSTM for Industrial Fault Diagnosis and Prognosis Conference

34 Vicencio et al. (2021) [82] An Intelligent Predictive Maintenance Approach Based on End-of-Line Test Logfiles in the Automotive Industry Conference
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35 Abbasi et al. (2021) [26] An ontology model to represent aquaponics 4.0 system’s knowledge Journal

36 Nieves Avendano et al. (2021) [83] Anomaly detection and event mining in cold forming manufacturing processes Journal

37 Kayan et al. (2021) [84] AnoML-IoT: An end to end re-configurable multi-protocol anomaly detection pipeline for Internet of Things Journal

38 Mateus et al. (2021) [85] Anticipating Future Behavior of an Industrial Press Using LSTM Networks Journal

39 Vries et al. (2016) [51] Application of machine learning techniques to predict anomalies in water supply networks Journal

40 Wu et al. (2020) [30] Approach for fault prognosis using recurrent neural network Journal

41 Luo et al. (2019) [17] Big data analytics–enabled cyber-physical system: model and applications Journal

42 Ma et al. (2020) [24] Big data driven predictive production planning for energy-intensive manufacturing industries Journal

43 Rousopoulou et al. (2022) [86] Cognitive analytics platform with AI solutions for anomaly detection Journal

44 Hoppenstedt et al. (2019) [87] CONSENSORS: A Neural Network Framework for Sensor Data Analysis Workshop

45 Chen et al. (2018) [88] Construct an Intelligent Yield Alert and Diagnostic Analysis System via Data Analysis: Empirical Study of a Semiconductor Foundry Conference

46 Bagozi et al. (2021) [27] Context-Based Resilience in Cyber-Physical Production System Journal

47 Tripathi and Baruah et al. (2020) [19] Contextual Anomaly Detection in Time Series Using Dynamic Bayesian Network Journal

48 Park et al. (2019) [89] Cyber Physical Energy System for Saving Energy of the Dyeing Process with Industrial Internet of Things and Manufacturing Big Data Journal

49 Rousopoulou et al. (2019) [90] Data Analytics Towards Predictive Maintenance for Industrial Ovens Workshop

50 Kim and Lee et al. (2022) [91] Data-analytics-based factory operation strategies for die-casting quality enhancement Journal

51 Varela et al. (2019) [92] Decision support visualization approach in textile manufacturing a case study from operational control in textile industry Journal

52 Azamfar et al. (2020) [93] Deep Learning-Based Domain Adaptation Method for Fault Diagnosis in Semiconductor Manufacturing Journal

53 Bibaud-Alves et al. (2019) [94] Demand forecasting using artificial neuronal networks and time series: Application to a French furniture manufacturer case study Conference

54 Wang et al. (2022) [95] Design of PM2.5 monitoring and forecasting system for opencast coal mine road based on internet of things and ARIMA Mode Journal

55 Majdani et al. (2016) [20] Designing a Context-Aware Cyber Physical System for Smart Conditional Monitoring of Platform Equipment Conference

56 Wang et al. (2022) [96] Detecting anomalies in time series data from a manufacturing system using recurrent neural networks Journal

57 El Wahab et al. (2020) [97] Detection and Control System for Automotive Products Applications by Artificial Vision Using Deep Learning Journal

58 Garmaroodi et al. (2021) [98] Detection of Anomalies in Industrial IoT Systems by Data Mining: Study of CHRIST Osmotron Water Purification System Journal

59 Eze et al. (2021) [99] Developing a Novel Water Quality Prediction Model for a South African Aquaculture Farm Journal

60 Akin et al. (2021) [100] Enabling Big Data Analytics at Manufacturing Fields of Farplas Automotive Conference

61 Huang et al. (2019) [49] Enhancing deep learning with semantics: An application to manufacturing time series analysis Conference

62 Naskos et al. (2020) [101] Event-Based Predictive Maintenance on Top of Sensor Data in a Real Industry 4.0 Case Study Conference

63 Kurpanik et al. (2018) [102] EYE: Big data system supporting preventive and predictive maintenance of robotic production lines Journal

64 Jang and Cho et al. (2021) [55] Feature Space Transformation for Fault Diagnosis of Rotating Machinery under Different Working Conditions Journal

65 de Lima et al. (2021) [103] HealthMon: An approach for monitoring machines degradation using time-series decomposition, clustering, and metaheuristics Journal

66 Zurita et al. (2016) [104] Industrial process monitoring by means of recurrent neural networks and Self Organizing Maps Conference

67 Mohsen et al. (2021) [35] Industry 4.0-Oriented Deep Learning Models for Human Activity Recognition Journal

68 Mosavi et al. (2022) [105] Intelligent energy management using data mining techniques at Bosch Car Multimedia Portugal facilities Journal

69 Zvirblis et al. (2022) [36] Investigation of deep learning models on identification of minimum signal length for precise classification of conveyor rubber belt loads Journal

70 Ghosh and Banerjee et al. (2019) [106] IoT-based seismic hazard detection in coal mines using grey systems theory Conference



Sensors 2023, 23, 5010 27 of 37

Table A1. Cont.

ID Author Title Venue

71 Yasaei et al. (2020) [25] IoT-CAD: context-aware adaptive anomaly detection in IoT systems through sensor association Conference

72 Apiletti et al. (2018) [34] iSTEP, an Integrated Self-Tuning Engine for Predictive Maintenance in Industry 4.0 Conference

73 Kancharla et al. (2022) [33] Latent Dimensions of Auto-Encoder as Robust Features for Inter-Conditional Bearing Fault Diagnosis Journal

74 Orru et al. (2020) [107] Machine learning approach using MLP and SVM algorithms for the fault prediction of a centrifugal pump in the oil and gas industry Journal

75 Min et al. (2019) [108] Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry Journal

76 Kovács and Ko et al. (2019) [109] Machine Learning Based Monitoring of the Pneumatic Actuators’ Behavior Through Signal Processing Using Real-World Data Set Conference

77 Lepenioti et al. (2020) [56] Machine Learning for Predictive and Prescriptive Analytics of Operational Data in Smart Manufacturing Workshop

78 Kovacs and Ko et al. (2020) [110] Monitoring Pneumatic Actuators’ Behavior Using Real-World Data Set Journal

79 Canizo et al. (2019) [21] Multi-head CNN–RNN for multi-time series anomaly detection: An industrial case study Journal

80 Hsu and Liu et al. (2021) [52] Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing Journal

81 Khodabakhsh et al. (2018) [111] Multivariate Sensor Data Analysis for Oil Refineries and Multi-mode Identification of System Behavior in Real-time Journal

82 Song and Baek et al. (2020) [112] New anomaly detection in semiconductor manufacturing process using oversampling method Conference

83 Ooi et al. (2019) [113] Operation status tracking for legacy manufacturing systems via vibration analysis Conference

84 Syafrudin et al. (2018) [114] Performance analysis of IoT-based sensor, big data processing, and machine learning model for real-time monitoring system in automotive manufacturing Journal

85 Sun et al. (2020) [115] PlanningVis: A Visual Analytics Approach to Production Planning in Smart Factories Journal

86 Kim et al. (2021) [28] Predicting workers’ inattentiveness to struck-by hazards by monitoring biosignals during a construction task: A virtual reality experiment Journal

87 Wahid et al. (2022) [37] Prediction of Machine Failure in Industry 4.0: A Hybrid CNN-LSTM Framework Journal

88 Sonthited et al. (2019) [116] Prediction of production performance for tapioca industry using LSTM neural network Conference

89 Ayvaz and Alpay et al. (2021) [117] Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time Journal

90 Quatrini et al. (2020) [118] Predictive model for the degradation state of a hydraulic system with dimensionality reduction Conference

91 Brzychczy and Trzcionkowska et al. (2019) [119] Process-Oriented Approach for Analysis of Sensor Data from Longwall Monitoring System Conference

92 Zhou et al. (2021) [120] SemML: Facilitating development of ML models for condition monitoring with semantics Journal

93 Baquerizo et al. (2022) [121] Siamese Neural Networks for Damage Detection and Diagnosis of Jacket-Type Offshore Wind Turbine Platforms Journal

94 Becher et al. (2022) [122] Situated Visual Analysis and Live Monitoring for Manufacturing Journal

95 sundaram and Zeid et al. (2021) [123] Smart Prognostics and Health Management (SPHM) in Smart Manufacturing: An Interoperable Framework Journal

96 Zhan et al. (2022) [38] Stgat-Mad : Spatial-Temporal Graph Attention Network For Multivariate Time Series Anomaly Detection Conference

97 Shrivastava et al. (2019) [57] ThunderML: A Toolkit for Enabling AI/ML Models on Cloud for Industry 4.0 Conference

98 Chen et al. (2020) [58] Time Series Data for Equipment Reliability Analysis with Deep Learning Journal

99 Jiang et al. (2020) [22] Time series multiple channel convolutional neural network with attention-based long short-term memory for predicting bearing remaining useful life Journal

100 Rehse et al. (2019) [124] Towards Explainable Process Predictions for Industry 4.0 in the DFKI-Smart-Lego-Factory Journal

101 Zhou et al. (2021) [59] Towards Ontology Reshaping for KG Generation with User-in-the-Loop: Applied to Bosch Welding Conference

102 Gras et al. (2019) [125] Unsupervised Anomaly Detection in Production Lines Conference

103 Stahl et al. (2019) [23] Using recurrent neural networks with attention for detecting problematic slab shapes in steel rolling Journal
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Appendix B. Methods

Table A2. Methods.

Method Name

1D-CNN-LSTM One-dimensional convolutional neural network long short-term memory

1NN-DTW One-nearest-neighbor with dynamic time warping

2-DConvLSTMAE Deep convolutional LSTM stacked autoencoder for univariate, multistep machine speed forecasting

AAE Attentional autoencoder

AB AdaBoost

AE Autoencoder

AE-GRU Autoencoder gated recurrent unit

AEWGAN Autoencoder Wasserstein generative adversarial networks

AFDC-CNN Attention fault detection and classification convolutional neural network

AGRU Attention-based gated recurrent unit

AHC Agglomerative hierarchical clustering

ALSTM Attention-based long short-term memory

AML AutoML

ANFIS Adaptive neuro-fuzzy inference system

ANN Artificial neural network

AnoGAN Anomaly detection generative adversarial networks

ANOVA Analysis of variance

AOD Anomaly and outlier detector

AR Augmented reality

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

BDA Balanced distribution adaptation

BGM Bayesian Gaussian mixture

BGRU Bidirectional gated recurrent unit

BINN Bayesianly interpretable neural network

BLSTM Bidirectional long short-term memory

BNN Bayesian neural network

BPNN Back propagation neural network

BR Bayesian ridge/regularization

BRNN Bidirectional recurrent neural network

CART Classification and regression tree

CDSAE-AD Convolutional denoising sparse autoencoders anomaly detection

CDT Complex decision tree

CMD Central mean discrepancy

CNN Convolutional neural network

CNN-LSTM Convolutional neural network–long short-term memory

CNN-MMD Convolutional neural network maximum mean discrepancy

CRISP-DM Cross-industry standard process for data mining

CSAE-AD Convolutional sparse autoencoders anomaly detection

CST Combinatorial search of two

CxDBNet Contextual dynamic Bayesian network

DADA Discriminative adversarial domain adaptation

DANN Domain-adversarial training of neural networks

DBN Deep belief network

DBNet Dynamic Bayesian network

DBSCAN Density-based spatial clustering of applications with noise

DCTLN Deep convolutional transfer learning network

DeepLSTM Deep long short-term memory

DES Double exponential smoothing method

DF Decision forest

DNN Deep neural network

DPCA Dynamic principal component analysis

DT Decision tree

DWT Discrete wavelet transformation

EEMD-DL-LSTM Ensemble empirical mode decomposition and deep learning long short-term memory

EncDec-AD Encoder–decoder anomaly detection

FDC-CNN Fault detection and classification convolutional neural network
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Method Name

FFNN Feed-forward neural network

FFT Fast Fourier transformation

FFT-MLP Fast Fourier transform based multilayer perceptron

FFT-SVM Fast Fourier transform based support vector machines

GA Genetic algorithm

GAF Gramian angular field

GBDT Gradient boosting decision tree

GBM Gradient boosting machine

GBT Gradient-boosted tree

GDN Graph deviation network

GEC Gross error classification

GFK Geodesic flow kernel

GHMM Gaussian hidden Markov models

GLM Generalized linear model

GMM Gaussian mixture models

GR Gaussian regression

GRU Gated recurrent unit

GST Grey systems theory

HCA Hierarchical clustering algorithm/analysis

HDBSCAN Hierarchical density-based spatial clustering of applications with noise

HMM Hidden Markov models

I-Forest Isolation forest

IDEAaS Interactive data exploration as-a-service

iForest Isolation forest

JDA Joint distribution adaptation

KM K-means

KNN K-nearest neighbors

KNNC K-nearest-neighbor classification

LDA Linear discriminant analysis

LGBM LightGBM

LMS logMelSpectrogram

LOF Local outlier factor

LR Logistic regression

LRM Linear regression model

LSTM Long short-term memory

LSTM-AD Long short-term memory anomaly detection

LSTM-NDT LSTM with nonparametric dynamic thresholding

LSTM-VAE Long short-term memory variational autoencoder

LSTMAE LSTM-Autoencoder

MAD Mean absolute deviation

MC-DCNN Multichannel deep convolutional neural networks

MCOD Streaming distance-based outlier detection algorithm

MCU Minimum covariance determinant

MDDAN Multiscale deep domain-adaptive network

MDIAN Multiscale deep intraclass adaptive network

MDP Markov decision process

Methontology Methontology

MLCAE Multilayer convolutional autoencoder

MLCAE-KNN Multilayer convolutional autoencoder K-nearest neighbors

MLP Multilayer perceptron

MORL Multiobjective reinforcement learning

MP Matrix profile

MTAD-GAT Multivariate time-series anomaly detection via graph attention network

MTS-CNN Multiple time-series convolution neural network

MV Majority voting

NB Naive Bayes

NHPP Nonhomogeneous Poisson process

NLT Neural linear transformation

NN Neural network
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OCSVM One-class SVM

Ontology Ontology

OntoLSTM Ontology-based LSTM neural network

PCA Principal component analysis

PersistenceModel Operates on the assumption that the predicted value remains unchanged from the previous time lag

Prophet Prophet

RBF Radial basis function

ResNet Residual neural networks

RF Random forest

RMS Root mean square

RNN Recurrent neural network

RNN-WDCNN Recurrent neural network with a wide first kernel and deep convolutional neural network

RSNet Residual-squeeze net

SAX-VSM Symbolic aggregate approximation and vector space model

SBA Syntetos–Boylan Approximation

SDM Seismic detection method

SF Shapelet forests

SGB Stochastic gradient boosting

SMOTE Synthetic minority oversampling technique

SN SeriesNet

SNN Siamese neural networks

SOM Self-organizing maps

SPIRIT Streaming pattern discovery on multiple time series

SRDCNN Stacked residual dilated convolutional neural network

SSA-BLSTM Singular spectrum analysis bidirectional long short-term memory

STFT Short-term Fourier transform

STGAT-MAD Spatial–temporal graph attention network for multivariate time series anomaly detection

SVC Support vector classification

SVM Support vector machine

SVR Support vector regression

t-SNE t-Distributed stochastic neighbor embedding

TCA Transfer component analysis

TCN Temporal convolutional network

Tikhonov Tikhonov

TNN Transformer neural network

TSMC-CNN Time-series multiple-channel convolutional neural network

TSO Tournament search optimization

UKF Unscented Kalman filter

USAD Unsupervised anomaly detection for multivariate time series

A Visual analytics

VGG Visual geometry group

VQS Visual query system

VR Virtual reality

Ward Wards method

WDCNN Wide-first kernel and deep convolutional neural network

Weibull Weibull Model

WGAN Wasserstein generative adversarial networks

WN WaveNet

WPD Wavelet packet decomposition

WSM Weighted sum model

XGB XGBoost

ZO Zero order
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Appendix C. Tools

Table A3. Tools.

Tool Name

AngularJS AngularJS

AnoML-IoT AnoML-IoT

AquaONT AquaONT

ARHoloLens AR HoloLens

AZAP Software suite

Azure Database

AzureML Azure Machine Learning Studio

BURLAP Brown-UMBC Reinforcement Learning and Planning library

C# Programming language

C++ Programming language

Cassandra Database

ChartJS ChartJS

Colab Google Colaboratory Platform

CouchDB Amazon CouchDB

D3JS D3JS

Direct3D Direct3D

Docker Docker

doParallel R library for parallel execution

Elasticsearch Distributed RESTful search engine built for the cloud

ERP Enterprise resource planning system

ExtruOnt ExtruOnt

EYE Data storage and analysis system

fastcluster R library for clustering

Flask Flask

Flatform Big data platform

foreach R library for parallel execution

freqdom R package freqdom

Fuseki Apache Jena Fuseki (SPARQL server)

GADPL generic anomaly detection for production lines

GAI Google AI Platform

GPyOpt Python open-source library for Bayesian Optimization

Hadoop Framework for processing of large data sets

HealthMon HealthMon

Hermit Hermit

Imblearn Python imbalanced-learn API

InfluxDB Database

iSTEP Integrated self-tuning engine for predictive maintenance

JavaScript Programming language

Jupyter Open-source web application for Python language to create and share documents

Kafka Streaming platform

KafkaStreams Kafka Streams

Keras Neural Network library for Python

Kibana Browser-based analytics and search dashboard for Elasticsearch

Knime Data analytics, reporting, and integration platform

kohonen R package Kohonen self-organizing maps (KSOM)

MATLAB Programming platform

MES Manufacturing execution systems

MLlib Machine learning library

MongoDB Database

MSSQL Microsoft SQL

MUVTIME Desktop application designed to assist in the process of multivariate time series data visual analysis

MySQL MySQL

Neo4j NoSQL graph database

NiFi System to process and distribute data

NodeJS NodeJS

OpenCV Open-Source Computer Vision Library

OWL OWL
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Tool Name

Pallet Pallet

Pandas Pandas

Parquet Machine-readable columnar storage format available in the Spark+Hadoop ecosystem

PlanningVis Visual analytics system

Protege Protégé

PyOD Python toolbox

Python Programming language

PyTorch PyTorch

PyWavelets PyWavelets

QlikSense QlikSense

QlikView QlikView

R Programming language

RAMI4.0 Reference architecture model

RDFox RDFox

RPropMLP Knime Node

rpud R library for the dissimilarity matrix calculation

Ruptures Python library for offline change point detection

SCADA Supervisory control and data acquisition

SemML SemML

SKLEARN Scikit-learn: Machine Learning in Python

Spark Unified analytics engine

SPARQL SPARQL

SPHM Smart prognostics and health management

SQL Query language for relational databases

SSDT SQL Server Data Tools

SSIS SQL Server Integration Services

Stardog Stardog

Storm Real-time computation system

SWRL Semantic Web Rule Language

t-SNE T-distributed stochastic neighbor embedding

Tensorflow Machine learning platform

Theano Python library for mathematical expressions

ThunderML Machine learning toolkit

UPTIME Unified predictive maintenance platform

Virtuoso Virtuoso

Weka Graphical user interface for machine learning

XGBoost R package XGBoost

Zeppelin Web-based notebook that enables data-driven, interactive data analytics and collaborative documents
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models on identification of minimum signal length for precise classification of conveyor rubber belt loads. Adv. Mech. Eng. 2022,
14, 168781322211027. [CrossRef]

37. Wahid, A.; Breslin, J.G.; Intizar, M.A. Prediction of Machine Failure in Industry 4.0: A Hybrid CNN-LSTM Framework. Appl. Sci.
2022, 12, 4221. [CrossRef]

38. Zhan, J.; Wang, S.; Ma, X.; Wu, C.; Yang, C.; Zeng, D.; Wang, S. Stgat-Mad : Spatial-Temporal Graph Attention Network For
Multivariate Time Series Anomaly Detection. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 3568–3572. [CrossRef]

39. Esteve-Gonzalez, P.; Dutton, W.H.; Creese, S.; Agrafiotis, I. Cybersecurity Implications of Changing Patterns of Office, Home, and
Hybrid Work: An Exploratory Global Survey; University of Oxford: Oxford, UK, 2023.

40. Piccialli, F.; Cuomo, S.; Bessis, N.; Yoshimura, Y. Data Science for the Internet of Things. IEEE Internet Things J. 2020, 7, 4342–4346.
[CrossRef]

41. Sousa Lima, W.; De Souza Bragança, H.L.; Montero Quispe, K.G.; Pereira Souto, E.J. Human Activity Recognition Based on
Symbolic Representation Algorithms for Inertial Sensors. Sensors 2018, 18, 4045. [CrossRef]

42. Schröer, C.; Kruse, F.; Gómez, J.M. A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Comput. Sci.
2021, 181, 526–534.

43. Ordonez, C. A Comparison of Data Science Systems. In Proceedings of the Big Data Analytics; Bellatreche, L., Goyal, V., Fujita, H.,
Mondal, A., Reddy, P.K., Eds.; Springer: Cham, Switzerland, 2020; pp. 3–11.

44. Barlas, P.; Lanning, I.; Heavey, C. A survey of open source data science tools. Int. J. Intell. Comput. Cybern. 2015, 8, 232–261.
[CrossRef]

45. Essien, A.; Giannetti, C. A Deep Learning Model for Smart Manufacturing Using Convolutional LSTM Neural Network
Autoencoders. IEEE Trans. Ind. Inform. 2020, 16, 6069–6078. [CrossRef]

46. Mahmood, J.; Luo, M.; Rehman, M. An accurate detection of tool wear type in drilling process by applying PCA and one-hot
encoding to SSA-BLSTM model. Int. J. Adv. Manuf. Technol. 2022, 118, 3897–3916. [CrossRef]

47. Bampoula, X.; Siaterlis, G.; Nikolakis, N.; Alexopoulos, K. A Deep Learning Model for Predictive Maintenance in Cyber-Physical
Production Systems Using LSTM Autoencoders. Sensors 2021, 21, 972. [CrossRef]

48. Tchatchoua, P.; Graton, G.; Ouladsine, M.; Juge, M. A Comparative Evaluation of Deep Learning Anomaly Detection Techniques
on Semiconductor Multivariate Time Series Data. In Proceedings of the 2021 IEEE 17th International Conference on Automation
Science and Engineering (CASE), Lyon, France, 23–27 August 2021; pp. 1613–1620. [CrossRef]

49. Huang, X.; Zanni-Merk, C.; Crémilleux, B. Enhancing deep learning with semantics: An application to manufacturing time series
analysis. Procedia Comput. Sci. 2019, 159, 437–446. [CrossRef]

50. Carletti, M.; Masiero, C.; Beghi, A.; Susto, G. A deep learning approach for anomaly detection with industrial time series data: A
refrigerators manufacturing case study. Procedia Manuf. 2019, 38, 233–240. [CrossRef]

51. Vries, D.; Van Den Akker, B.; Vonk, E.; De Jong, W.; Van Summeren, J. Application of machine learning techniques to predict
anomalies in water supply networks. Water Sci. Technol. Water Supply 2016, 16, 1528–1535. [CrossRef]

52. Hsu, C.Y.; Liu, W.C. Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in
semiconductor manufacturing. J. Intell. Manuf. 2021, 32, 823–836. [CrossRef]

53. Van Herreweghe, M.; Verbeke, M.; Meert, W.; Jacobs, T. A Machine Learning-Based Approach for Predicting Tool Wear in
Industrial Milling Processes. In Proceedings of the Machine Learning and Knowledge Discovery in Databases; Communications in
Computer and Information Science; Cellier, P., Driessens, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 414–425. [CrossRef]

54. Villalobos, K.; Suykens, J.; Illarramendi, A. A flexible alarm prediction system for smart manufacturing scenarios following a
forecaster–analyzer approach. J. Intell. Manuf. 2020, 32, 1323–1344. [CrossRef]

55. Jang, G.B.; Cho, S.B. Feature Space Transformation for Fault Diagnosis of Rotating Machinery under Different Working Conditions.
Sensors 2021, 21, 1417. [CrossRef] [PubMed]

56. Lepenioti, K.; Pertselakis, M.; Bousdekis, A.; Louca, A.; Lampathaki, F.; Apostolou, D.; Mentzas, G.; Anastasiou, S. Machine
Learning for Predictive and Prescriptive Analytics of Operational Data in Smart Manufacturing. In Proceedings of the Advanced
Information Systems Engineering Workshops; Lecture Notes in Business Information Processing; Dupuy-Chessa, S., Proper, H.A.,
Eds.; Springer: Cham, Switzerland, 2020; pp. 5–16. [CrossRef]

57. Shrivastava, S.; Patel, D.; Gifford, W.M.; Siegel, S.; Kalagnanam, J. ThunderML: A Toolkit for Enabling AI/ML Models on Cloud
for Industry 4.0. In Proceedings of the Web Services—ICWS 2019; Lecture Notes in Computer Science; Miller, J., Stroulia, E., Lee, K.,
Zhang, L.J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 163–180.

58. Chen, B.; Liu, Y.; Zhang, C.; Wang, Z. Time Series Data for Equipment Reliability Analysis with Deep Learning. IEEE Access 2020,
8, 105484–105493. [CrossRef]

59. Zhou, D.; Zhou, B.; Chen, J.; Cheng, G.; Kostylev, E.; Kharlamov, E. Towards Ontology Reshaping for KG Generation with
User-in-the-Loop: Applied to Bosch Welding. In Proceedings of the The 10th International Joint Conference on Knowledge
Graphs, Virtual Event Thailand, 6–8 December 2021; pp. 145–150. [CrossRef]

60. Toma, R.N.; Piltan, F.; Im, K.; Shon, D.; Yoon, T.H.; Yoo, D.S.; Kim, J.M. A Bearing Fault Classification Framework Based on
Image Encoding Techniques and a Convolutional Neural Network under Different Operating Conditions. Sensors 2022, 22, 4881.
[CrossRef]

http://dx.doi.org/10.1177/16878132221102776
http://dx.doi.org/10.3390/app12094221
http://dx.doi.org/10.1109/ICASSP43922.2022.9747274
http://dx.doi.org/10.1109/JIOT.2020.2985598
http://dx.doi.org/10.3390/s18114045
http://dx.doi.org/10.1108/IJICC-07-2014-0031
http://dx.doi.org/10.1109/TII.2020.2967556
http://dx.doi.org/10.1007/s00170-021-08200-1
http://dx.doi.org/10.3390/s21030972
http://dx.doi.org/10.1109/CASE49439.2021.9551541
http://dx.doi.org/10.1016/j.procs.2019.09.198
http://dx.doi.org/10.1016/j.promfg.2020.01.031
http://dx.doi.org/10.2166/ws.2016.062
http://dx.doi.org/10.1007/s10845-020-01591-0
http://dx.doi.org/10.1007/978-3-030-43887-6_34
http://dx.doi.org/10.1007/s10845-020-01614-w
http://dx.doi.org/10.3390/s21041417
http://www.ncbi.nlm.nih.gov/pubmed/33670547
http://dx.doi.org/10.1007/978-3-030-49165-9_1
http://dx.doi.org/10.1109/ACCESS.2020.3000006
http://dx.doi.org/10.1145/3502223.3502243
http://dx.doi.org/10.3390/s22134881


Sensors 2023, 23, 5010 35 of 37

61. Onus, U.; Marr, S.; Uziel, S.; Krug, S. A Case Study on Challenges of Applying Machine Learning for Predictive Drill Bit Sharpness
Estimation. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT),
Rome, Italy, 7–9 June 2021; pp. 275–280. [CrossRef]

62. Rezende, J.; Cosgrove, J.; Carvalho, S.; Doyle, F. A Case Study on the Analysis of an Injection Moulding Machine Energy Data Sets for
Improving Energy and Production Management; European Council for an Energy-Efficient Economy: Stockholm, Sweden, 2018;
pp. 231–238.

63. Soltanali, H.; Rohani, A.; Abbaspour-Fard, M.; Farinha, J. A comparative study of statistical and soft computing techniques for
reliability prediction of automotive manufacturing. Appl. Soft Comput. 2021, 98, 106738. [CrossRef]

64. Ribeiro, D.; Matos, L.M.; Cortez, P.; Moreira, G.; Pilastri, A. A Comparison of Anomaly Detection Methods for Industrial Screw
Tightening. In Proceedings of the Computational Science and Its Applications–ICCSA 2021; Lecture Notes in Computer Science;
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