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Abstract: This study tested the potential of parametric and nonparametric regression modeling
utilizing multispectral data from two different unoccupied aerial vehicles (UAVs) as a tool for the
prediction of and indirect selection of grain yield (GY) in barley breeding experiments. The coefficient
of determination (R2) of the nonparametric models for GY prediction ranged between 0.33 and 0.61
depending on the UAV and flight date, where the highest value was achieved with the DJI Phantom
4 Multispectral (P4M) image from 26 May (milk ripening). The parametric models performed worse
than the nonparametric ones for GY prediction. Independent of the retrieval method and UAV, GY
retrieval was more accurate in milk ripening than dough ripening. The leaf area index (LAI), fraction
of absorbed photosynthetically active radiation (fAPAR), fraction vegetation cover (fCover), and leaf
chlorophyll content (LCC) were modeled at milk ripening using nonparametric models with the
P4M images. A significant effect of the genotype was found for the estimated biophysical variables,
which was referred to as remotely sensed phenotypic traits (RSPTs). Measured GY heritability was
lower, with a few exceptions, compared to the RSPTs, indicating that GY was more environmentally
influenced than the RSPTs. The moderate to strong genetic correlation of the RSPTs to GY in the
present study indicated their potential utility as an indirect selection approach to identify high-yield
genotypes of winter barley.

Keywords: barley; grain yield prediction; heritability; multispectral images; phenotypic traits; UAV

1. Introduction

The development of new crop varieties, displaying greater yield potential and stress
tolerance, is critical for dealing with the expected increase in food demands of the global
population [1,2]. Phenotyping is a key methodological approach in the breeding process
for the selection of improved varieties [3]. Phenotyping is the process of characterizing
the phenotype where phenotype, as defined by Pieruschka and Poorter (2012) [4], is the
“combination of all the morphological, physiological, anatomical, chemical, developmental
and behavioural characteristics that, when put together, represent the individual organism”
(p. 1). In breeding practice, phenotyping includes measurement or visual evaluation by
experts of important performance- or quality-related plant traits such as height, biomass
or grain yield (GY), phenology, etc. Phenotyping is a time and labor-intensive process
when traditional and manual methods are used and it can be a significant challenge in the
current breeding programs, where it is not uncommon to have over a thousand breeding
lines with replications across multiple environments [5]. Low efficiency in collecting
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data to characterize the phenotype over such large populations is considered a major
barrier to future breeding advances [1,5]. Therefore, new approaches for high-throughput
phenotyping (HTP) have been proposed in recent years, which allow for the rapid, non-
destructive, and accurate measurement of traits using different proximal/remote sensors [6].
In addition, due to its ease and the reduced time for data collection, HTP allows for multiple
observations to be made during the growing season, thus tracking plant responses over
time [5]. HTP has been implemented in both laboratory environments (e.g., greenhouses or
growth chambers [7]) and the field.

Different platforms have been demonstrated useful for field-based HTP, including
tractors [5] and unmanned aerial vehicles (UAVs) [8,9]. The main advantage of UAVs
compared with tractor-based platforms is that all plots within a trial are measured almost
simultaneously [1]. UAVs can carry various sensors, such as LIDAR (light detection and
ranging) [10], thermals [11], and hyperspectral cameras [12], but low-cost red-green-blue
(RGB) and multispectral cameras are common alternatives (for a recent review of sensors
and applications of UAVs in HTP, see [13,14]). Depending on the type of images, different
information can be extracted. For example, high-resolution images from RGB cameras
can be used to reconstruct the 3D structure of the plant canopy and thus allow directly
measuring morphology traits, such as height [9]. Multispectral and hyperspectral cameras
collect spectral reflectance data at different wavelengths through the photosynthetically
active radiation (PAR, 400–700 nm), near-infrared radiation (NIR, 700–1300 nm), and short-
wave infrared (up to 3000 nm) regions of the electromagnetic spectrum [15]. Plant leaf
reflectance patterns are characteristics of each of these regions. Mathematical combinations
of reflectance values from different wavelength bands, i.e., vegetation indices (Vis) [16], can
provide specific information for plant characteristics and states, such as water content [17]
and chlorophyll [18]. The spectral reflectance and Vis can be regarded as “spectral traits”,
which provide an integrated measurement of canopy structure and photosynthetic activ-
ity [8]. However, they are usually used to predict other agronomic traits to which they
are well-correlated, e.g., yield, canopy cover, biomass, and leaf area index. Based on this
correlation, prediction models are developed for the traits of interest.

While Vis are useful indicators of crop growth and condition, they are more difficult
to interpret than biophysical variables such as the leaf area index (LAI), fraction of ab-
sorbed photosynthetically active radiation (fAPAR), fraction vegetation cover (fCover),
leaf chlorophyll content (LCC), etc., which are traditionally used in crop studies and have
well-understood relations with the physiological processes in plants, agronomic practices,
and the environment. Biophysical variables provide valuable information about different
aspects of crop state that can indicate productivity. For example, fAPAR has been used
for drought monitoring [19] and LCC can be directly related to plant stresses, senescence,
and nutritional state [20]. Previous studies have demonstrated that biophysical variables
such as the LAI, fAPAR, and fCover are related to grain yield and can be used for its
prediction [21–25].

Yield is a complex, quantitative trait that is under polygenic control [4]. It is known
to be subject to low heritability and high genotype-by-environment interaction [9,26].
Therefore, replicated yield trials in the field are essential when selecting the yield as they
allow for assessing plants in real-life conditions. The availability of an easy, rapid, and
inexpensive selection tool to screen large numbers of genotypes before initiating expensive
yield trials could reduce cost and time [27,28]. For this aim, indirect selection approaches are
sought, which are based on secondary traits, namely traits that exhibit strong correlations
with GY. Both aerial [8] and field-based [27] spectral measurements have been proved
useful for indirect selection for GY. In addition, Cabrera-Bosquet et al. (2012) [3] point out
that predictions of yield at early stages (e.g., before flowering) may speed up the design
of test crosses at anthesis, saving time and cost. Moreover, Araus et al. (2008) [2] suggest
that complementing traditional (i.e., direct selection for yield) with analytical (i.e., indirect
selection for secondary traits) selection methodologies may be required to further improve
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grain yields. The authors mentioned NDVI and digital images as inexpensive methods to
derive information for such traits, particularly those related to biomass.

Several studies in recent years have explored the association between spectral data/VIs
and GY in barley (Hordeum vulgare L.) in the context of HTP with tractors [29–31] and
UAVs [9,32,33]. The main questions in these studies concern the relative performance of
UAVs versus ground sensors (such as GreenSeeker, Trimble, Westminster, CO, USA), the
selection of an appropriate VI showing the highest correlation with GY, and the effect of
phenology on this relationship.

The utilization of certain variables derived from remotely sensed data enables the
forecasting of crop yields and retrieval of biophysical variables. This is possible because
of the underlying mechanisms of how light interacts with leaves and canopy characteris-
tics [34–37]. Consequently, diverse methods for yield estimation and biophysical variable
retrieval are delineated in the literature [38,39]. The most adopted methods are the statisti-
cal regression algorithms that are divided into parametric and nonparametric algorithms.
While parametric models are easy to calibrate, the nonparametric models are more flexible.

Broad-sense heritability (H2) is an important genetic parameter in crop breeding [40],
as it allows plant breeders to estimate the degree to which genetic factors are responsible
for variation in a particular trait. This information can then be used to make decisions
about which breeding strategies to use to improve the trait [41].

In crop breeding, broad-sense heritability is typically used to estimate the genetic
potential of a population for a given trait [42]. For example, if the H2 of a crop trait is
high, it suggests that the trait is strongly influenced by genetic factors, and, therefore,
breeding efforts should focus on identifying and selecting the individuals with the best
genetic potential for the trait. Conversely, if the H2 of a trait is low, it suggests that
the trait is strongly influenced by environmental factors, and breeding efforts should
focus on identifying and selecting individuals with the best environmental adaptation.
In remote sensing studies, remotely sensed traits are used to analyze the broad-sense
heritability [43–45]. Additionally, heritability is used as feature selection technics for grain
yield prediction [46,47].

The aim of the study is (1) to demonstrate the potential of using parametric and non-
parametric regression models with multispectral data from UAVs as an indirect selection
tool for grain yield in barley breeding experiments and (2) to estimate the proportion of
phenotypic variability that is due to genetic factors using modeled biophysical variables
and ground-measured NDVI.

2. Materials and Methods
2.1. Site (Field) and Experimental Design of the Study

The study was conducted during the 2020/2021 growing year in the experimental
fields of the Institute of Agriculture, Karnobat, Southeastern Bulgaria (Figure 1). The soil of
the experimental fields was slightly acidic (pH is 6.2) Pellic Vertisol.

Despite the total precipitation during the vegetation period (October 2020 to June 2021)
being 197.4 mm higher than the long-term average precipitation for the location (424.6 mm),
it was unevenly distributed throughout the growing season, as shown in Table 1. The
amount of precipitation for January was the highest, 142.8 mm, which was 291% more
compared to the long-term values for the location. The precipitation in April was 86 mm,
which was nearly double the long-term sum for that month, followed by a significantly
drier period in May. Except for March, April, and June, the monthly temperatures were
higher than the average long-term temperatures for all other months of the growing season.
Overall, the weather conditions enabled the distinguishing of productive abilities of tested
barley genotypes.
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Figure 1. Study area. (A) Location of the Institute of Agriculture, Karnobat, Bulgaria. (B) Location 
of the breeding experimental fields. (C) Orthophoto map of the competitive variety trial CVT 1, in 
which 25 winter barley genotypes were sown with 4 replicates. (D) Orthophoto map of the 
competitive variety trial CVT 2, in which 30 winter barley genotypes were sown with 4 replicates. 
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Figure 1. Study area. (A) Location of the Institute of Agriculture, Karnobat, Bulgaria. (B) Location of
the breeding experimental fields. (C) Orthophoto map of the competitive variety trial CVT 1, in which
25 winter barley genotypes were sown with 4 replicates. (D) Orthophoto map of the competitive
variety trial CVT 2, in which 30 winter barley genotypes were sown with 4 replicates.

Fifty-five genotypes of winter barley varieties and breeding lines were grown in
rainfed field conditions. The genotypes were sown in two competitive variety trials (CVTs):
CVT 1 and CVT 2. In CVT 1, 4 Bulgarian varieties (Emon, Obzor, Kaskadyor 3, and Dariya)
and 21 advanced breeding lines of 2-rowed barley developed at the Institute of Agriculture,
Karnobat were grown. CVT 2 included 30 genotypes: 1 Bulgarian 2-rowed variety (Emon),
1 Serbian 2-rowed variety (Sladoran), 4 Turkish 2-rowed varieties (Hasat, Harman, Bolayir,
and Burgaz), 15 advanced 2-rowed breeding lines (KT 337, A 9/14, 167Д-2/05, 176Д-1/05,
419Д-2/08, 419Д-5/08, 530Д-2/09, 671Д-3/10, 718Д-4/10, 639Д-3/10, 003Д-3/13, 939Д-
4/13, 194Д-1/15, 218Д-1/15, and WS270Д-1/15), 1 Italian 6-rowed variety (Futura), and 8
advanced 6-rowed breeding lines (KT 2207, KT 2213, KT 3040, KT 3041, KT 1706, KT 2199,
SUE I, SUE II).
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Table 1. Average air temperature, monthly sums of precipitation, and long-term average data in
Karnobat, Southeastern Bulgaria during barley vegetation. T—average air temperature; P—the sum
of precipitation; LT—long-term average air temperature and the sum of precipitation (1931–2022).

Months
2020/2021 LT

T, ◦C P, mm T, ◦C P, mm

X 15.8 70.7 12.5 44.3
XI 7.4 25.5 7.1 53.7
XII 6.6 94.5 2.6 51.2

I 3.7 142.8 0.6 36.5
II 4.9 22.1 2.2 35.8
III 4.9 47.4 5.3 34.1
IV 9.5 86 10.5 45.3
V 16.6 15.6 15.6 58.5
VI 19.3 117.4 19.6 65.2

T, ◦C 9.9 8.4
P, mm 622.0 424.6

The experiments were organized in a complete block design with 4 replications on
plots of 10 m2 with a sowing rate of 450 germinated seeds per m2. All genotypes included
in CVT 1 and CVT 2 were sown on 25 October 2020. The standard technology for growing
winter barley breeding materials at the Institute of Agriculture, Karnobat was applied. The
predecessor was a pea–sunflower mix. One-time nitrogen (N) fertilization with a fertilizer
rate of 30 kg/ha of active substance nitrogen in February 2021 was applied. The experiment
was treated against weeds with a herbicide combination of Biathlon and Scorpio. No
pesticides were used to control diseases or pests, as no pathogens and pests were observed
at densities above the economic threshold values during the winter barley growing season.

2.2. Data Acquisition
2.2.1. Measured Grain Yield (MGY)

All plants were harvested from each plot at maturity, threshed, and weighed to
calculate the grain yield (kg/ha), Table 2.

Table 2. Descriptive statistics for the measured grain yield (kg/ha) of winter barley per the competi-
tive variety trial (CVT) and combined.

CVT Number of
Measurements

Min.
Value

Max.
Value Mean Std. Dev. CV%

CVT 1 100 2860 11,460 5228 1432 27.39
CVT 2 120 4240 10,300 7155 1349 18.85
Total 220 2860 11,460 6279 1686 26.85

2.2.2. Field Measurements of Crop Biophysical Variables

A field campaign was conducted on 25 and 26 May 2021 to measure the crop’s bio-
physical variables (Table 3) with non-invasive methods. The leaf area index (LAI), fraction
of absorbed photosynthetically active radiation (fAPAR), and fraction vegetation cover
(fCover) were measured with an AccuPAR Ceptometer LP-80 (METER Group Inc., Pullman,
WA, USA). Ten measurements evenly distributed over each plot (replication) were made
and averaged, providing more representative vegetation canopy information.

Four representative plants were selected in the middle of each plot to measure leaf
chlorophyll content (LCC) with a CCM-300 instrument (OPTISCIENCES). Chlorophyll
content was measured in the middle of the flag leaf blade of these plants and averaged for
each respective plot. The biophysical variables were only measured on the first and the
second replication.
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Table 3. Descriptive statistics for the ground-measured biophysical variables of winter barley during
the field campaigns conducted on 25 and 26 May 2021. CVT = competitive variety trial. fAPAR
and fCover are expressed as unitless fractions. The values range from 0 to 1, where 0 represents
no vegetation cover or an absorption of radiation and 1 represents complete vegetation cover or an
absorption of all incident radiation.

Biophysical
Variables CVT Number of

Measurements
Min.

Value
Max.

Value Mean Std.
Dev. CV%

LAI [m2 m−2] CVT 1 50 2.55 6.87 3.65 0.80 21.92
fAPAR 50 0.71 0.92 0.82 0.05 6.10
fCover 50 0.67 0.96 0.79 0.07 8.86

LCC [mg m−2] 50 285.75 435.00 363.70 29.35 8.07

LAI [m2 m−2] CVT 2 58 2.05 6.65 3.92 1.10 28.06
fAPAR 58 0.71 0.93 0.86 0.04 4.65
fCover 58 0.66 0.97 0.85 0.07 8.24

LCC [mg m−2] 58 345.75 498.00 420.00 38.15 9.08

LAI [m2 m−2] Total 108 2.05 6.87 3.79 0.98 25.86
fAPAR 108 0.71 0.93 0.85 0.05 5.88
fCover 108 0.66 0.97 0.82 0.08 9.76

LCC [mg m−2] 108 285.75 498.00 393.93 44.33 11.25

2.2.3. Field Measurements of NDVI

Field measurements of NDVI (Table 4) were carried out during two field campaigns,
in May and June 2021. The device used was a GreenSeeker Handheld Crop Sensor, Model
HCS–100 [48]. During the calculation of NDVI, the red and NIR spectral bands with a
central wavelength of 660 nm (25 nm full width at half maximum (FWHM) and 780 nm
(25 nm FWHM) were used.

Table 4. Descriptive statistics for the ground-measured NDVI of winter barley. CVT = competitive
variety trial.

Date/Development
Stage Identifier CVT Number of

Measurements
Min.
Value

Max.
Value Mean Std. Dev. CV%

25 May 2021/Milk
ripening NDVI_1 CVT 1 100 0.53 0.77 0.68 0.05 7.35

CVT 2 120 0.58 0.81 0.71 0.04 5.63
Total 220 0.53 0.81 0.7 0.05 7.14

14 June 2021/Dough
ripening NDVI_2 CVT 1 100 0.1 0.25 0.17 0.03 17.65

CVT 2 120 0.1 0.59 0.31 0.1 32.26
Total 220 0.11 0.59 0.25 0.11 44

2.2.4. UAV Data Collection

Two UAV platforms were used to obtain the multispectral data for the studied CVTs.
These were a Sensefly eBee AG fixed-wing drone with a multispectral Parrot Sequoia
camera (designated as PS in the following) and a DJI Phantom 4 Multispectral quadcopter
(designated as P4M in the following). They were equipped with an integrated spectral
sunlight sensor, which measured the sky down-welling irradiance and was used to retrieve
the reflectance factors [49]. The cameras of both drones were provided with RGB and mul-
tispectral sensors. This study uses data from multispectral sensors. Both cameras featured
green, red, red-edge, and NIR spectral bands (Table 5), but with different bandwidths. In
addition, the P4M camera has a blue spectral band.
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Table 5. Bands’ spectral ranges (nm) of the used multispectral UAV sensors: PS (eBee AG/Sequoia)
and P4M (DJI Phantom 4 Multispectral).

Band PS P4M

Blue (B) - 434–466
Green (G) 530–570 544–576
Red (R) 640–680 634–666
Red-edge (RE) 730–740 714–746
Near-infrared (NIR) 770–810 814–866

A total of four flight missions were carried out over the two CVTs (Table 6) during 2021.
The flight missions were carried out within the period between 11:00 a.m. and 02:00 p.m.
local time while observing the same parameters. The height was 100 m for PS and 50 m for
P4M. The spectral images obtained by the PS featured a spatial resolution of 5 cm/pixel
and those obtained by P4M were 2.5 cm/pixel. Both UAVs were equipped with a GPS,
whereas the DJI Phantom 4 featured built-in real-time kinematic positioning (RTK). This
provided a horizontal accuracy of ~5 m for the Sensefly eBee AG and 10–15 cm for DJI
Phantom 4, respectively.

Table 6. UAV flight missions’ dates, corresponding development stages of the studied genotypes of
winter barley, and weather conditions during the flight.

Flight Mission/ID UAV/Camera Flight Date Development Stage Weather Condition

Mission1/M1 eBee Ag/Sequoia 26 May 2021 BBCH 73, BBCH 75,
BBCH 77, BBCH 81

Clear sky
Mission2/M2 DJI Phantom 4/Multispectral
Mission3/M3 eBee Ag/Sequoia

15 June 2021

BBCH 75, BBCH 77,
BBCH 81, BBCH 83,
BBCH 85, BBCH 87

Clear skyMission4/M4 DJI Phantom 4/Multispectral

During the flight missions, the development stage was recorded (Table 6) using BBCH
identification keys [50].

The small size of the plots (8 m × 1.25 m) requires achieving maximally high accuracy
during the orthorectification of the UAV images. For this purpose, prior to the first flight
mission, easily discernible objects were fixed, which were used as ground control points
(GCPs). They were positioned at the four corners at CVT 1 and CVT 2, they were made of
white material, and they constituted a square sized 20 m × 20 cm. They were fixed firmly
on the terrain and were used during all flight missions. The geographical coordinates of
the GCPs were measured with an accuracy of 1–3 cm by the GNSS equipment Leica GS08
and the RTK regime.

2.3. Image Processing and Data Extraction

The raw UAV images were processed using the photogrammetric software Pix4Dmapper
(https://pix4d.com, accessed on 27 April 2023) to generate an orthophoto mosaic for every
flight mission. The Pix4Dmapper software provides pre-defined camera models for both
PS and P4M. It applies radiometric corrections to the images utilizing the spectral sunlight
sensor’s data, which are recorded within the TIFF file header. The output represents the
calculated reflectance and was provided as separate files for each spectral band. ENVI soft-
ware was used to stack the bands into a multispectral image file; no additional adjustment
was needed during the stacking because individual bands were aligned to each other by
Pix4Dmapper. All mosaics were in the coordinate system UTM zone 35, datum WGS 1984.
The multispectral mosaics were additionally geo-referenced in ArcGIS utilizing GCPs to
achieve greater absolute geolocation precision and the correct overlapping of individual
mosaics. A polygon layer with the boundaries of the plots was generated in ArcGIS by
manually vectorizing them on an RGB image composite (from the first field campaign) used
as a reference. The boundary of each plot was then subjected to a 10 cm inward buffering

https://pix4d.com
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to avoid mixed pixels during data extraction. The buffered boundaries layer was used
to extract the per plot-averaged reflectance for each spectral band, sensor, and date. The
genotype name, replication number, and code of the plot were included in the attributive
table for each polygon. In addition, spectral data were extracted from several bare soil
areas, which were manually selected and vectorized in every mosaic.

2.4. Modeling and Statistical Analysis

The modeling process and statistical analysis are summarized in Figure 2.
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Figure 2. Workflow diagram of phenotypic traits estimation and preliminary yield assessment in the
barley breeding experiment. The results of the study are in bold.

The modeling process had two objectives: first, to retrieve GY from UAV multispectral
data, and second, to retrieve the LAI, fAPAR, fCover, and LCC for the four replications for
heritability analysis.

We trained parametric and nonparametric regression models using in situ and UAV
multispectral data to retrieve GY at two development stages, milk ripening and dough
ripening. The best GY model was applied to present a high-resolution map of the estimated
GY. With the in situ measurements of the LAI, fAPAR, fCover, and LCC from only two
replications, we trained nonparametric models for each biophysical variable retrieval. The
best model for the LAI, fAPAR, fCover, and LCC was applied to the four replications plot
for each genotype and used as remotely sensed phenotypic traits (RSPTs) for heritability
analysis in crop selection.

The regression modeling was carried out with the ARTMO toolbox [51,52] (https:
//artmotoolbox.com/, accessed on 27 April 2023), version 3.29. Previous studies have
shown that incorporating bare soil samples enhances the predictive power of models [53,54];
therefore, bare soil samples were included in the training data. The models were trained
with training data, representing 2/3 of all the available data, and were optimized with

https://artmotoolbox.com/
https://artmotoolbox.com/
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tenfold cross-validation. The trained models were validated with validation data, repre-
senting 1/3 of all the available data, and were not used for training. The best-performing
cross-validation models were selected according to the normalized root-mean-square-error
(nRMSE). The selected metrics for the validation models are coefficients of determination
(R2), root-mean-square-error (RMSE), nRMSE, relative RMSE (rRMSE), and Nash–Sutcliffe
efficiency (NSE). The equations for these metrics are described in [55]. The goodness-of-fit
metrics for the cross-validation were calculated by the ARTMO toolbox and the validation
dataset in Python. Additionally, for GY retrieval, the Akaike information criterion (AIC)
was calculated for each validation model as an additional tool for a comparison of the
models [56].

Four widely used machine learning regression methods, partial least square regression
(PLSR), random forest regression (RFR), kernel ridge regression (KRR), and Gaussian
processes regression (GPR), and several generic types of vegetation indices (Table 7) and
parametric functions, such as linear, exponential, logarithmic, power, and polynomial, were
tested in this study.

Table 7. List of the generic types of vegetation indices selected for testing in the study.

Name Formula 1 Related to Reference

R Ra Chl [57]
SR Ra/Rb Chl, Chl, LAI, GY [57–60]
DVI Ra − Rb Chl [57]
ND (Ra − Rb)/(Ra + Rb) GY, fAPAR, fCover [58–60]
mSR (Ra − Rc)/(Rb − Rc) Chl [57,58]
mSR2 (Ra/Rb) − 1 GY, Chl [59,61]
mND (Ra − Rb)/(Ra + Rb – 2 × Rc) Chl, LAI [57]
3SBI-Verrelst (Ra − Rc)/(Rb + Rc) LAI [52]
3SBI-Tian (Ra − Rb − Rc)/(Ra + Rb + Rc) LAI [62]
3SBI-Wang (Ra − Rb + 2 × Rc)/(Ra + Rb – 2 × Rc) Chl, LAI [63]
3SBI-Dash (Ra − Rb)/(Rb − Rc) Chl [64]
4SBI ((Ra − Rb)/(Ra + Rb))/((Rc − Rd)/(Rc + Rd)) Above ground dry biomass [58]
EVI-like 2.5 × ((Rb − Rc)/(Rb + 6 × Rc + 7.5 × Ra + 1)) Chl, LAI, fCover, GY [65,66]
EVI2-like 2.5 ×((Ra − Rb)/(Ra + 2 × Rb + 1)) GY [67]

1 Ra, Rb, Rc, and Rd represent reflectance at different wavelengths.

PLSR [68] is a statistical technique used to identify the linear combinations of predictor
variables that are highly correlated with a response variable. PLSR is especially useful
in cases of noisy data and is computationally efficient; however, it is sensitive to outliers.
RFR [69] is an ensemble machine learning method for regression problems. It combines
multiple decision trees to produce a more accurate and stable prediction compared to
a single decision tree. RFR can model both linear and non-linear relationships between
the predictors and response variable; it is resistant to overfitting and robust to outliers.
KRR [70] and GPR [71] are kernel-based methods. The kernel function used in our study
was the radial basis function (RBF). The KRR model includes a regularization term (ridge
regression) to prevent overfitting and a kernel function to transform the features into
a higher-dimensional space. The kernel function maps the original features into a new
space where the linear regression model can fit the data better and make more accurate
predictions. The advantages of KRR include its ability to handle non-linear relationships
between the predictors and response variables, its robustness to noisy data, and its ability
to perform well on small datasets. GPR is a Bayesian machine learning technique. It models
the target function as a Gaussian process, which is a collection of random variables of
any finite number that have a joint Gaussian distribution. The advantages of GPR include
its ability to make predictions with uncertainty estimates, its ability to handle non-linear
relationships between the predictors and response variables, and its ability to adapt to
changes in the underlying function as more data becomes available.

The phenotypic variance, including remotely sensed parameters, MGY, and ground-
measured NDVI, was analyzed using a mixed linear model implemented in the R package
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“metan” that uses REML/BLUP (restricted maximum likelihood/best linear unbiased
prediction) to estimate the variance components.

The function for analyzing single experiments (one-way experiments) using a mixed-
effect model based on the following equation was used:

yij = µ + αi + τj + εij (1)

where yij is the value observed for the ith genotype in the jth replicate (i = 1, 2, . . . , g;
j = 1, 2, . . . , r); g and r being the number of genotypes and replicates, respectively; αi is the
random effect of the ith genotype; τj is the fixed effect of the jth replicate; and εij is the
random error associated to yij.

Broad-sense heritability (H2) for each trait was calculated as the proportion of pheno-
typic variance explained by genetic variance [72].

Genotypic correlation (rG) among trait values was as follows:

rG =
COVGxy√
σ2Gx·σ2Gy

(2)

where COVGxy is the genotypic covariance of trait x and yield and σ2Gx and σ2Gy are the
genotypic variances of trait x and yield, respectively.

Response to selection (R) of the RSPTs and grain yield and correlated response (CR)
for grain yield by using RSPTs were calculated as:

R = hx·σx (3)

where hx is the square root of heritability and σx is the genotypic standard deviation:

CR = hx·rg·σy (4)

where hx is the square root of heritability of trait x (RSPTs), rg is the genetic correlation
between the trait x (RSPTs) and y (MGY), and σy is the genotypic standard deviation of trait
y (MGY) [72]. The relative selection efficiency was calculated as the ratio of CR of grain
yield for a specific RSPT and R of MGY [72].

3. Results
3.1. GY Retrieval

We trained models with the data using four replications per genotype from the four
UAV missions independently to compare which development stage and camera were better
suited for GY retrieval. The models were evaluated according to both cross-validation
and validation metrics. The same (random) allocation of replicates among training and
validation sets was used for all models.

The best-performing nonparametric model (Table 8 and Figure 3) was GPR with data
from the May 2021 campaign and DJI Phantom 4/P4M (Mission2), with an R2 validation of
0.61, as shown in Figure 4. This model had, with the validation dataset, the lowest RMSE
(1034.85 kg/ha) and good rRMSE (16.01%) and NSE (0.60) [55]. It was followed by FRF
with data from the May 2021 campaign and eBee Ag/PS (Mission1), with an R2 validation
of 0.45. The models with data from the June 2021 campaign performed poorly with the
validation data, with an R2 validation of 0.33 for eBee Ag/PS (Mission3) and 0.36 for DJI
Phantom 4/P4M (Mission4).
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development stage. The GY was estimated with the GPR model and data from Mission2.

The best-performing parametrical model (Table 9) was with two spectral bands index,
EVI2-like with Ra = 730 and Rb = 840, linear function and data from the May 2021 campaign
and DJI Phantom 4/P4M (Mission2). The model achieved an R2 validation of 0.45, which
was closely followed by the model with May 2021 campaign with eBee Ag/PS (Mission1),
with an R2 validation of 0.44. However, both models had the same value as AIC, which
indicates the ability to fit the data while avoiding overfitting. Therefore, we can consider
both models equal in performance for the validation dataset.
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Table 8. Results of GY retrieval with PS (eBee Ag/Sequoia) and P4M (DJI Phantom 4 Multispectral) data with best nonparametric models. n_training = 207,
n_validation = 73.

Date/Sensor Flight Mission Model

Cross-Validation Validation

R2 RMSE
(kg/ha)

nRMSE
(%)

rRMSE
(%) NSE R2 RMSE

(kg/ha)
nRMSE

(%)
rRMSE

(%) NSE AIC

26 May 2021/PS Mission1 RFR 0.88 1086 9.48 24.73 0.88 0.45 1209.66 17.16 18.72 0.44 1044
26 May 2021/P4M Mission2 GPR 0.90 995 8.68 22.64 0.90 0.61 1034.85 14.68 16.01 0.60 1024
15 June 2021/PS Mission3 GPR 0.85 1232 10.75 28.03 0.85 0.33 1348.02 19.12 20.86 0.31 1060

15 June 2021/P4M Mission4 PLSR 0.86 1188 10.37 27.04 0.86 0.36 1305.67 18.52 20.20 0.35 1057

Table 9. Results of GY retrieval with PS (eBee Ag/Sequoia) and P4M (DJI Phantom 4 Multispectral) data with best parametric models. n_training = 207,
n_validation = 73.

Date/Sensor Flight
Mission

VI (Bands)/Function

Cross-Validation Validation

R2 RMSE
(kg/ha)

nRMSE
(%)

rRMSE
(%) NSE R2 RMSE

(kg/ha)
nRMSE

(%)
rRMSE

(%) NSE AIC

26 May 2021/PS Mission1 DVI (550,790)/Polynomial 0.88 1102 9.62 25.09 0.88 0.44 1224.79 17.37 18.95 0.43 1046
26 May 2021/P4M Mission2 EVI2-like (730,840)/Linear 0.86 1171 10.22 26.65 0.86 0.45 1207.79 17.13 18.95 0.44 1046
15 June 2021/PS Mission3 R (790)/Linear 0.84 1273 11.11 28.98 0.84 0.31 1372.61 19.47 21.24 0.28 1063

15 June 2021/P4M Mission4 EVI-like (730,840,450)/Linear 0.85 1239 10.81 28.20 0.85 0.26 1409.59 19.99 21.81 0.24 1069
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The nonparametric models performed better than the parametric models indepen-
dently of the retrieval method and camera used, the milk ripening development stage, or
May campaign, which were better suited for GY retrieval (Tables 7 and 9) than the dough
ripening or June campaign. This was clear from the AIC values of the parametric models
in Mission1 and Mission2, which were higher than the AIC values of the nonparametric
models in Mission3 and Mission4.

3.2. Biophysical Variable Retrieval

We trained nonparametric models using data from two replications per genotype and
data from a UAV mission that produced the best GY estimation results, specifically milk
ripening during Mission2 (DJI Phantom 4/P4M). The models were evaluated using both
cross-validation and validation metrics. The best results from the LAI, fAPAR, fCover, and
LCC retrieval are presented in Table 10 and Figure 5.

The evaluation of models is complicated task because the variables being analyzed
may have differences in magnitude, range, mean, and variance [55].

The LAI retrieval model had the highest performance, with a validation R2 of 0.71.
The validation RMSE of 0.56 m2 m−2 was also close to the recommended excellent result for
the LAI [55], and the rRMSE and NSE values were good. The fAPAR and fCover retrieval
models had validations R2 of 0.52 and 0.48, respectively. The LLC retrieval model, on the
other hand, only obtained a validation R2 of 0.44.

The best model for fAPAR and fCover was GPR, which provides uncertainty estimates.
Therefore, an uncertainty estimation was generated by each GPR model. The uncertainty
for the validation dataset for fAPAR was under 5% and for fCover, it was under 6%.

The best-performing model per biophysical variable, as shown in Table 10, was then
used to retrieve four replications per genotype for the LAI, fAPAR, fCover, and LCC
(Figure 6). The modeled biophysical variables are used as RSPTs for the analysis of broad-
sense heritability.
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Table 10. Results of best models for biophysical variable retrieval with P4M (DJI Phantom 4 Multispectral) data of 26 May 2021. n_training = 102, n_validation = 36.

Date/Sensor Flight
Mission

Biophysical Variable Model

Cross-Validation Validation

R2 RMSE nRMSE
(%)

rRMSE
(%) NSE R2 RMSE nRMSE

(%)
rRMSE

(%) NSE

26 May 2021/P4M Mission2

LAI RFR 0.95 0.42 6.09 15.53 0.95 0.71 0.56 13.29 14.96 0.69
fAPAR GPR 0.99 0.03 3.32 5.12 0.99 0.52 0.04 19.61 4.27 0.35
fCover GPR 0.99 0.04 4.14 6.79 0.99 0.48 0.04 20.4 6.97 0.41
LCC KRR 0.98 27.74 5.57 9.82 0.98 0.44 33.66 16.50 8.82 0.38
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the milk ripening (May 2021) development stage. The LAI was estimated with the RFR model. The
fAPAR and fCover were estimated with the GPR model. LCC was estimated with the KRR model.

3.3. Broad-Sense Heritability

A significant effect on the genotype for all evaluated traits according to likelihood ratio
validation (Table 11), indicating genetic variability between barley genotypes, was found.

Table 11. The likelihood ratio test for grain yield and different remotely sensed phenotypic traits in
two CVTs of winter barley genotypes.

CVT MGY NDVI_1 NDVI_2 LAI fAPAR fCover LCC

CVT1 12.03 * 34.02 * 15.51 * 97.16 * 137.43 * 117.95 * 105.85 *
CVT2 70.01 * 51.65 * 64.45 * 72.48 * 139.48 * 83.75 * 121.16 *

* All variables with a significant (p < 0.05) genotype effect.
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High heritability estimates were found for MGY and RSPTs in CVT2 and pooled
data (Table 12). CVT1, MGY, NDVI_1, and NDVI_2 had moderate heritability values,
while RSPTs had high heritability. MGY heritability was lower, with a few exceptions
compared to RSPTs, indicating that MGY was more environmentally influenced than RSPTs.
Considerably higher heritability estimates were found for the LAI, fAPAR, fCover, and
LCC than ground-measured NDVI.

Table 12. Broad-sense heritability (H2) of grain yield and different remotely sensed phenotypic traits
in two CVTs of winter barley genotypes.

CVT MGY NDVI_1 NDVI_2 LAI fAPAR fCover LCC

CVT1 0.33 0.55 0.33 0.83 0.92 0.88 0.85
CVT2 0.69 0.63 0.67 0.70 0.83 0.75 0.84
Pooled 0.63 0.61 0.66 0.80 0.86 0.80 0.87

3.3.1. Genetic Correlation

The studied RSPTs showed statistically significant genetic correlations with MGY in
CVT2 on the basis of all tested genotypes (pooled data) (Table 13). Insignificant correlations
of MGY with NDVI_2 and LCC were found in CTV1. The estimated correlation coefficients
for CVT2 were higher compared to those of CVT1 and varied from r = 0.459 for the LAI to
r = 0.686 for NDVI_1.

Table 13. Genotypic correlation between grain yield and different remotely sensed phenotypic traits
in two CVTs of winter barley genotypes.

CVT NDVI_1 NDVI_2 LAI fAPAR fCover LCC

CVT1 0.437 * −0.223 ns 0.404 * 0.432 * 0.468 * 0.127 ns
CVT2 0.686 ** 0.560 ** 0.459 * 0.582 ** 0.491 ** 0.663 **
Pooled 0.689 ** 0.761 ** 0.408 ** 0.620 ** 0.468 ** 0.556 **

* Significant at the 0.05 probability level. ** Significant at the 0.01 probability level. ns: non-significant.

3.3.2. Correlated Response of Grain Yield and Efficiency of Indirect Selection

MGY showed the highest response to direct selection (Table 14). Overall, in pooled
data, the LAI had the highest correlated response, resulting in the highest indirect selection
efficiency for MGY. NDVI_2 gave the lowest correlated response for MGY.

Table 14. Selection response (R) for MGY and remotely sensed phenotypic traits, correlated response
(CR) for grain yield using remotely sensed phenotypic traits, and relative selection efficiency (CR/R)
of the remotely sensed phenotypic traits for grain yield in the pooled data from two CVTs of winter
barley genotypes.

Parameters MGY NDVI_1 NDVI_2 LAI fAPAR fCover LCC

R 1020.15 0.03 0.48 0.09 0.04 0.05 27.29
CR 548.30 338.73 693.82 587.78 427.03 527.74
CR/R 0.54 0.33 0.68 0.58 0.42 0.52

4. Discussion
4.1. Grain Yield and Biophysical Variable Modeling

This study investigated the potential of two consumer-grad multispectral UAV sensors,
PS and P4M, for predicting GY and retrieving four biophysical variables (LAI, fAPAR,
fCover, and LCC) in winter barley trails. Both sensors have been previously tested for GY
assessment in different crops, providing reasonable results [73–76].

Previous studies observed large fluctuations in the prediction power for remote
sensing-based GY models obtained at different time points of the vegetation period. For
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example, Elsayed et al. [29] utilized PLSR to predict GY achieving R2 between 0.11 and
0.52. The predictors were a set of spectral indices calculated from hyperspectral sensor data.
The different models were calibrated with data collected at growth stages BBCH 55 and
60 and under mild and severe drought stress conditions. In two related studies (using the
same hyperspectral sensor and PLSR), Rischbeck et al. [30] achieved an R2 of up to 0.65
for a model calibrated at growth stage BBCH 59, while Barmeier et al. [31] achieved an
R2 varying between 0.71 and 0.95 for a model at anthesis. A tendency for increasing the
accuracy of prediction with the advance of crop development is usually reported in the
literature [9,27]. Yield modeling in this study was performed at two relatively late time
points, at the milk ripening and dough ripening stages, respectively. We observed that GY
was predicted with better accuracy in the milk ripening stage. The dough ripening, on
the other hand, appeared to be too late for accurate prediction, probably because spectral
differences between genotypes became less pronounced with the senescence. The retrieval
of agronomic parameters through remote sensing usually requires high variability in the
modeling calibration dataset for optimal results [76]. Moreover, we used data from a single
field campaign for the models. Combining data from several time points, or different
treatments, during the vegetation period may improve modeling results [75,76].

The nonparametric models performed better than the parametric ones in predicting
GY. This result was in agreement with other studies, which have shown the superior-
ity of machine learning algorithms over VI-based regression models for predicting crop
traits [77,78].

During the field campaigns, we collected image data from both UAV sensors on the
same day and under similar illumination conditions (clear sky) to facilitate their comparison.
Based on the results of the present study, we can conclude that the P4M sensor was better
suited for assessing GY with nonparametric models (Table 8). However, when using
parametric models (Table 9), no conclusion can be drawn about the relative advantages
of the sensors in assessing GY. Nevertheless, the most accurate model of GY in this study
was based on P4M data. It should be noted that the nonparametric models utilized the full
spectral information from a sensor (all bands), whereas the parametric ones usually relied
on three-band and two-band VIs, or even single-band reflectance. Therefore, results from
the nonparametric modeling may provide a more integrated assessment of the full potential
of the sensor. The main differences between the sensors with respect to spectral bands
consist of the lack of a blue band in PS and the different width and central wavelength of
the red-edge and near-infrared bands (Table 5).

The retrieval accuracy varied considerably between the biophysical variables. The
prediction was the most successful for the LAI, while LCC was the most challenging to
estimate using UAV data. The trial in this study was conducted in rainfed conditions and
there were no treatments of varying agronomic management (fertilization, irrigation, etc.).
The lack of variation in growing conditions was expected to result in lower variation in GY
and biophysical variables among genotypes and, therefore, lower correlations, as discussed
earlier. In particular, the lower coefficients of determination for fAPAR, fCover, and LCC
models, compared to the LAI, could be partially attributed to the low variability of these
variables (Table 3). The LAI was modeled with good accuracy in this study (R2 = 0.71;
nRMSE = 13%). Moreover, the reported accuracy was in the validation dataset and was
not included in the training, whereas in other studies [79], the reported accuracy was only
in the cross-validation dataset. Furthermore, the accuracy could be improved by adding
canopy surface height [80,81] and texture variables [80] as predictors.

4.2. Broad-Sense Heritability and the Application of Remotely Sensed Traits for Breeders

The genetic correlation describes the genetic relationship between two traits and
provides a measure of the rate at which traits respond to indirect selection. The presence of a
sufficiently high level of genetic diversity is a necessary condition for an accurate estimation
of this association. Accordingly, the included CVTs in our experiment represented the
winter barley varieties with different origins and the most advanced breeding lines from
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the breeding program at the Institute of Agriculture, Karnobat. Furthermore, a significant
genotypic effect was found for all studied RSPTs and measured grain yield. The genetic
correlations between grain yield and most of the RSPTs were consistently significant across
two sets of tested genotypes, demonstrating the reliability of these estimates.

The moderate to strong genetic correlation of RSPTs to grain yield in the present
study indicated the potential use of RSPTs as an indirect selection approach to identify
high-yield genotypes of winter barley. The improvement of grain yield is a primary goal for
most barley breeding programs, but the complex nature of this trait complicates breeding
and the selection of lines with high yield potential. The effectiveness of indirect selection
depends on using secondary traits that have a genetic correlation with grain yield and
higher heritability than yield. Spectral reflectance indices have been utilized as such traits
for the indirect selection of wheat lines with high yield potential [8,43,44,82–84].

The studied RSPTs had generally higher heritability than grain yield. Despite that,
all RSPTs had lower efficiency of indirect over the direct selection for grain yield. Gizaw
et al., 2016 [44] point out that spectral reflectance can be used in plant breeding, not
just as a standalone indirect selection criterion, but also as a component of an integrated
selection approach. According to these authors, integrated selection of grain yield and
spectral reflectance indices increased the repeatability of genotypic performance across
multiple trials.

Moreover, in addition to genetic gain, factors such as phenotyping speed and cost are
important for selection efficiency [85]. The remotely sensed phenotyping allows screening
of a larger set of germplasm than yield-based selection. Manneveux and Ribaut 2006 [85]
proposed using lower selection intensity for selection based on spectral reflectance indices
so that most superior genotypes could be advanced through yield-based selection, which
increased the indirect selection efficiency substantially.

4.3. Limitations, Challenges, and Future Opportunities

This research demonstrated a possible use of remote sensing techniques and data in
plant breeding experiments through the successful use of both parametric and nonpara-
metric regression models to retrieve yield and remotely sensed phenotypic traits in winter
barley. However, there are some limitations and challenges that are outlined below, along
with suggested solutions.

(1) Remotely sensed phenotypic traits are part of the next-generation physiological breed-
ing research [86]. However, the appropriate range of goodness-of-fit metrics for
biophysical variables models to be utilized as RSPTs is yet to be established. Ad-
ditionally, conducting an uncertainty analysis on the RSPTs used as input data in
plant breeding analysis is a critical aspect that should be routinely implemented.
Propagating uncertainty from the acquisition of in situ and remotely sensed data to
the modeling stage will enable plant breeders to gain a comprehensive understanding
of the precision and accuracy of the proposed RSPTs.

(2) In our current study, we analyzed UAV imagery with four and five spectral bands.
Our findings indicate that the five-band imagery resulted in better models, suggesting
that further testing of multispectral and hyperspectral UAV imagery is needed to
obtain the optimal number and type of bands that may yield improved retrieval
models [87].

(3) The current models have been trained and evaluated using data from one growing
year, specifically from the breeding lines of the Institute of Agriculture, Karnobat
breeding program. While they have shown promising results, the robustness of these
models throughout multiple growing seasons still needs to be evaluated.

(4) The selection environment is crucial to assessing the genetic gain and efficiency of
alternative selection approaches [85]. Therefore, for the complete assessment of the
efficiency of RSPTs for the indirect selection of high-yielding barley lines, additional
studies under different environments (growing years and locations) are needed.
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5. Conclusions

The primary goal of a breeding program is to develop cultivars with high yields and
superior quality that can be released to farmers. To achieve this objective, it is essential
(1) to estimate GY as soon as possible during the growing season and (2) to identify
remotely sensed traits that could have a role in the broad-sense heritability analysis. Data
from DJI Phantom 4 Multispectral at the milk ripening stage predicted barley GY most
accurately. Biophysical variables, the LAI, fAPAR, fCover, and LCC have been retrieved
with data from DJI Phantom 4 Multispectral at the milk ripening stage and are used as
RSPTs for broad band heritability. They had generally higher heritability than grain yield
but lower efficiency over the direct selection for grain yield. However, the acceptable range
of goodness-of-fit metrics for biophysical variables models to be used as RSPTs is still to
be determined.

We are of the opinion that these initial findings have the potential to accelerate crop
improvement programs. However, further robust interdisciplinary research [88] is still
required to strengthen these results.
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