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Abstract: Reliable detection of COVID-19 from cough recordings is evaluated using bag-of-words
classifiers. The effect of using four distinct feature extraction procedures and four different encoding
strategies is evaluated in terms of the Area Under Curve (AUC), accuracy, sensitivity, and F1-score.
Additional studies include assessing the effect of both input and output fusion approaches and
a comparative analysis against 2D solutions using Convolutional Neural Networks. Extensive
experiments conducted on the COUGHVID and COVID-19 Sounds datasets indicate that sparse
encoding yields the best performances, showing robustness against various combinations of feature
type, encoding strategy, and codebook dimension parameters.

Keywords: COVID-19; cough; bag-of-words; sparse encoding

1. Introduction

There are rare situations in modern times that triggered a comparable research effort
as the recent COVID-19 pandemic. With more than 700 million confirmed cases [1] and
about 6 million reported death toll (excess deaths estimated as high as 18 million [2]), the
recent COVID-19 pandemic has severely affected all aspects of social life and still impacts
our daily routine. While obtaining efficient vaccines or alternative treatment schemes for
diminishing the effects of the disease has been the main target, the sudden outbreak of
the pandemic generated an unprecedented effort aiming at modeling the spread of the
disease, predicting the evolution of the number of cases, and offering reliable prognosis on
the health status of the people.

One significant pandemic effect is reflected in the explosion of publications related
to this subject. At the beginning of April 2023, the World Health Organization COVID-19
Research Database included more than 850,000 items (a small number of which were
preprints) [3]. According to a study conducted on the Scopus database, more than
210,000 COVID-related papers had been published until 1 August 2021 [4]. The stan-
dard publishing patterns of the journals have been “covidised”, generating enormous
pressure on the reviewers, editorial boards, and authors themselves. Fast-track mecha-
nisms for pandemic-related papers have been established, many of the datasets have been
made publicly available, and many journals experienced a massive increase in citations
and associated impact factors. Nevertheless, several authors took a critical perspective on
those effects, identifying the risk of “masking” the research efforts related to other health
topics and raising concerns about the actual practical value (in terms of reproducibility
and scalability) of the various approaches. As such, an evaluation conducted on 62 studies
(selected based on quality from an initial set of 415 papers) related to COVID-19 detection
from chest radiographs and CT scans concluded that “none of the models identified are of
potential clinical use due to methodological flaws and/or underlying biases” [5]. Moreover, a
recent study focusing on COVID-19 screening using audio-type data (cough, voice, breath)
indicates that AI-based solutions yield no clear diagnostic improvement over decisions
based on symptoms reported by the subjects under study [6].
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Obtaining reliable, minimally intrusive, and affordable means of identifying COVID-
19-infected people has been a significant objective hence a broad range of sensory data,
equipment, and analysis methods have been thoroughly investigated. RT-PCR (PCR
with reverse transcription) tests have been typically considered the principal means for
confirming the infection, while inexpensive, less invasive, and more accessible alternatives
have been actively searched for. Two lines of research have been mainly considered:
(a) radiation-based solutions such as chest radiographs (CXT) and computer tomography
(CT)—though proven effective, their frequent use is excluded for medical reasons, while
additionally implying high costs and/or limited availability; (b) audio-based approaches
using cough, speech, and breathing, or combinations of those. In both cases, several large,
representative, diverse datasets have been compiled, many of which were made public.

Systematic reviews of existing diagnostic approaches have been published [7], while
others have focused on assessing realistic performance evaluations when using specific sen-
sory data [5,6,8]. The methodological protocols consider criteria related to possible sources
of datasets bias, the use of external validation datasets, the type of calibration/validation
procedures, and the diversity of diagnostic models. The reviews also include useful
recommendations on data quality assessment, model evaluation, and reproducibility
of the results.

Chest CT and radiograph-based solutions have been thoroughly investigated in [5],
revealing that most papers use transfer learning from off-the-shelf convolutional neu-
ral architectures. At the same time, the actual number of outputs varies from simple
COVID/non-COVID discrimination to multiclass setups, including viral/bacterial pneu-
monia, interstitial lung disease, or lung opacity. Most models use 2D imaging inputs,
although some CT-oriented studies use 3D volume datasets. Several papers consider hand-
crafted features (sometimes complemented by clinical information) to be processed by
classical machine learning algorithms (logistic regression, random forest, Support Vector
Machines). Some contributions consider preliminary lung segmentation procedures prior
to the actual classification step.

The limitations, challenges, and opportunities of using audio-type data for reliable
COVID-19 detection have been the subject of many publications. The sensory information
includes cough, speech, breathing, or combinations of those. A number of crowd-sourced
publicly available datasets have been compiled, while simple binary discrimination between
healthy and infected people has been mainly targeted. An interesting paper systematically
investigates the effect of the various sources of bias [9], raising concerns about the over-
optimistic performances frequently reported in the literature.

The possibility of extracting relevant biomarkers from ECG recordings has also been
considered [10,11], given that clinical practice revealed that COVID-19 has a detrimental
effect on the cardiovascular system. Both hand-crafted and learned features, including
time series-to-image conversion techniques, have been typically used, while 1D and 2D
convolutional neural networks have shown the best performances.

Additional approaches include lung ultrasound (LUS) or point-of-care ultrasound
(POCUS), which has advantages over CT/CXT given that it is free of ionizing radiation,
low-cost, and portable [8]. A special type of vertical artifact called the B-line has been
correlated with the presence of COVID-19 infection. Several publicly available datasets
have been compiled, including isolated frames and video sequences. Performant-trained
models include Support Vector Machines, CNNs, and hybrid CNN-LSTM architectures.

Most of the proposed solutions employ various data augmentation strategies to in-
crease the dimensionality of the training datasets. Preprocessing steps have also proven
efficient in eliminating various noise sources, artifacts, or enhancing the data quality. Gen-
eralization performances have been improved by optimal hyperparameters setting using
separate validation sets, using dropout during training, and considering regularization
strategies. Moreover, multi-modal approaches combining various types of input data and
augmenting the sensory input with clinical information have also proven effective.
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In the search for practical, reproducible, scalable solutions, a critical requirement
consists in avoiding the various types of data bias that may severely affect the reliability
of the reported results, yielding over-optimistic performances. Moreover, for audio-based
solutions, it is worth noting that the actual method used for gathering the original data
(crowd-sourced vs. within a medical facility) is of utmost importance for a realistic eval-
uation of the performances (reliable labeling of the recordings should be confirmed by
medical specialists since self-reported information can be misleading).

Two main approaches have been considered when using audio-type input data for
healthy/infected people discrimination. The first relies on hand-crafted feature extraction
to be further classified using a broad range of options, including random forests, multilayer
perceptrons, or support vector machines (SVM). The list of feature types reported in the lit-
erature includes low-level descriptors such as mel-frequency cepstrum coefficients or linear
predictive coefficients, along with statistical functionals associated with such descriptors
(e.g., means, moments, durations, extreme values) [12]. The second approach first trans-
forms the time series into 2D representations (typically based on mel-frequency cepstrum
coefficients (MFCC) spectrograms) and speculates the remarkable image classification
performances of convolutional neural networks (CNNs). Custom-designed architectures
may be considered, but pre-trained models have been mainly used, implementing the
well-known transfer learning approach (only part of the model parameters are subject to a
learning procedure, considering the specific dataset under study).

The present paper targets healthy vs. COVID-19-infected people supervised dis-
crimination using cough recordings and builds on the previous successful use of the
bag-of-words (BoW) classifier in biometric applications using ECG signals [13]. It evalu-
ates the efficiency of various experimental setups using distinct combinations of feature
extraction techniques and encoding procedures combined with a support vector machine
(SVM) classifier. The performance metrics include discrimination accuracy, sensitivity,
F1-score, and the area under curve (AUC). Extensive tests have been conducted using two
crowd-sourced datasets, namely COUGHVID (250 subjects/class) and COVID-19 Sounds
(acquired in a medical facility, 450 subjects/class). Specific preprocessing steps have been
applied to clean up the recordings based on their quality and select audio segments, includ-
ing only pure cough sounds. The paper extends preliminary results in [14] by including
additional feature extraction strategies and encoding procedures. New developments are
presented regarding the effect of both input and output fusion approaches on classification
performances. Moreover, a comparative analysis against 2D solutions using Convolutional
Neural Networks is also included.

2. Materials and Methods

Audio-based approaches to COVID-19 detection have typically considered voice,
cough, and breath recordings as the primary sensory source, while some papers have
also studied the effect of combining those following an input fusion approach. Many
feature extraction procedures, classifiers, or end-to-end solutions have been proposed and
tested on various datasets, exhibiting varied performances. Excessively optimistic ones are
typically considered prone to multiple sources of bias, the effects of which have also been
systematically addressed [9].

This section presents the basic principles behind the bag-of-words classifier described
in [13,14] and references therein, following a description of the preprocessing methods
employed for data preparation.

2.1. Overview of Bag-of-Words Models

Text documents analysis, more specifically, the analysis of the similarity between
texts, may be performed by comparing the histograms that would count the frequency of
appearance of words belonging to the same dictionary [15] without considering the order
of appearance or other grammar-specific information. This intuitive principle has primarily
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inspired the Bag-of-words (BoW) classifier model, which has subsequently been extended
to both time series and computer vision applications [16–18].

The standard BoW processing pipeline is described in Figure 1 and includes the
following modules (valid for both time series and image data):

(a) Preprocessing methods aiming at improving the quality of the data: noise/artifact
removal, amplitude/sampling frequency normalization;

(b) Computation of (hand-crafted/automatically generated) feature vectors from successive
temporal intervals or localized image patches from each time series/image in the original
dataset. The feature vectors are obtained through a similar procedure and using the
same setup parameters for the entire dataset under study. In addition, they may typically
undergo a subsequent data splitting step into specific (training/test) subsets;

(c) Generating a representative codebook based on the training set feature vectors, usually
employing a clustering algorithm. A powerful alternative rooted in redundant rep-
resentations theory [19] may consider learning a so-called (fixed or data-dependent)
dictionary, which is a matrix whose columns (termed atoms) may be used for parsi-
monious data representation. Online procedures for computing the codebook have
also been introduced, enabling continuous updating of the codewords according to
new data;

(d) Once the codebook is available, a unique or, more general, a combination of specific
codewords is assigned to each training/test set feature vector, implementing an
encoding procedure (both training and test sets should use the same codebook);

(e) Given the encoding of the collection of feature vectors that define each training/test
time series or image, a compact representation of those is obtained through a his-
togram counting the frequency of codeword appearances. Since such a pooling strat-
egy may yield histograms with largely variable dynamic ranges, a scale-normalization
procedure is typically applied to enable fair comparison of the results;

(f) Finally, classification is performed based on the available histograms using specific dis-
tance measures, some of which are particularly useful when dealing with histogram-
type data [20]. Nearest-neighbor, multilayer perceptrons, or Support Vector Machines
(SVM) are typical classifier models considered in the literature.
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Figure 1. The block diagram of the COVID-19 classifier using the BoW approach.

2.2. Components of BoW Models

This section details each module of the general BoW model represented in Figure 1.
We describe the preprocessing steps and the actual feature types extracted from the audio
recordings. Then, we continue with the definitions and specific parameters of the various
codebook generation procedures, encoding strategies, and similarity measures. The text
follows the detailed presentation from [13] and references therein.

2.2.1. Cough Recordings Preprocessing

The performance of the infected vs. healthy people discrimination procedure critically
depends on the quality of the training data. As such, a preliminary quality check of the
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audio recordings is mandatory since often those are unclear, erroneously labeled as cough,
or include various sources of superimposed noise. In addition, since typically, the records
would consist of multiple cough episodes, the temporal localization of the actual cough
segments should be first reliably identified, and the corresponding regions should be
further concatenated.

Before performing any feature extraction procedure, the signals are first normalized
into the [−1, 1] range and resampled to a common 16 kHz sampling rate after preliminary
low-pass filtering using a Butterworth filter with an 8 kHz cut-off frequency.

We considered two distinct options to identify the audio segments that do contain
pure cough sounds. Following other studies, we first tested the efficiency of a YAMNet
deep convolutional neural architecture pre-trained on the AudioSet-YouTube corpus to
classify audio-type data into 521 different classes (including the “Cough” class) [21,22].
However, experiments using the pre-trained model available in MATLAB 2022a revealed
inconsistent conclusions, often interpreting actual cough segments as “Throat clearing”
or even “Speech”. As such, we switched to the method introduced in [23] that uses a
digital hysteresis for selecting regions exhibiting rapid signal power variations specific to
cough samples. The solution additionally enables the assessment of the audio quality by
computing the ratio between the signal powers in the cough regions and the rest of the
recordings, respectively (comparing this against a user-defined threshold value permits
the selection of only reliable, consistent audio samples). As such, we selected only audio
samples for which the previously defined signal-to-noise ratio exceeded 10 dB. Figure 2
presents a segmentation and labeling example.
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Figure 2. Audio record segmentation: (a) Cough segments erroneously classified as speech by
the pre-trained YAMNet model; (b) Masked regions (in red) selected as cough segments by the
hysteresis-based approach.

2.2.2. Feature Extraction

An extensive set of acoustic features have been considered in the literature, typically
complemented by various statistical functionals computed on those. A representative
example is the open-source openSMILE toolkit [12] that enables extracting several thousand
features, generally further reduced using principal components analysis (PCA).

In the present paper, we have considered four distinct feature types extracted from the
preprocessed segmented recordings, namely:

1. Classical mel-frequency cepstrum coefficients (MFCC) spectrograms, computed from
50% overlapping audio segments of 0.96 s. Distinct spectrograms were generated for
each segment with a window size of 25 ms, a window hop of 10 ms, and a periodic
Hanning window. 64 Mel bins covering the frequency range from 125 Hz to 7500 Hz
were used, and after converting the mel-spectrogram into a log scale, we obtained
log-mel images with 64 × 96 pixels per segment. Finally, the distinct spectrograms are
concatenated along the mel bands dimension to represent the entire audio sample;
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2. The following two feature types are obtained by applying the MFCC images described
above as inputs to a couple of pre-trained convolutional neural network models
extensively used in audio-oriented applications and reading the appropriate output
of specific inner layers. The YAMNet model (referenced in the previous section as
a means of detecting cough segments from audio recordings) may offer valuable
discriminative information by intercepting the output of the last layer placed before
the classification module (the layer is termed global_average_pooling2d in MATLAB
2022a). This yields a series of 1024-long feature vectors whose number of elements
depends on the length of the analyzed time series. The second choice considers a
VGGish model [18], where the EmbeddingBatch layer returns a set of 128-long feature
vectors, each corresponding to 0.975 s of audio data;

3. The fourth option is represented by the so-called x-vectors originating from (text-
independent) speaker verification applications using deep neural network embed-
dings [24]. Features are computed from successive 1 s audio segments and a window
hop of 0.1 s, extracted from the output of the first fully-connected layer of the pre-
trained model described in [24]. The resulting 512-long vectors are further reduced to
a 150-long common length by linear projection using a pre-trained linear discriminant
analysis matrix also available from [24].

One critical remark is worth mentioning: going back to the document analysis ap-
plication that may intuitively justify the bag-of-words model, it is easy to see that when
comparing two texts by counting the frequency of appearance of words from the same
dictionary, the corresponding histograms will have a similar number of bins, only their am-
plitude will vary, according to the length (and content) of the documents. In our case, much
similarly, since the various preprocessed, cough-segmented time series would typically
exhibit different durations, the number of the feature vectors generated with the procedures
above will vary. Since the collection of feature vectors is always encoded regarding the
same set of codewords, we conclude that the encodings can accommodate variable-length
recordings. The scale-normalization step described in the previous section compensates for
this variability source, enabling fair comparison between recordings.

2.2.3. Codebook Generation

When designing the codebook, the typical choice has been some clustering algorithm.
As a classic example, k-means is a well-known unsupervised clustering algorithm aiming
at identifying a set of prototype vectors (centroids) that compactly represent collections of
data points, such as the sum of distances from the data points to the nearest cluster centers
is minimized [25]. Furthermore, L1 distance can be alternatively used instead of the typical
L2 choice to provide enhanced robustness to outliers. Hierarchical or multiresolution
clustering approaches have also been proposed, mainly for dealing with image datasets.

Linear representations over redundant bases have gained much interest during the
last decades, mainly within the sparse coding framework [26,27], and proved a viable
alternative to clustering algorithms even for BoW models [13]. The method basically
enables the representation of multi-dimensional vectors as a linear combination of a few
columns of a dictionary matrix (those are called atoms), selected from a set of possible
candidates that is much larger than the dimensionality of the vector under study. The
dictionary may be chosen from a list of data-independent options well-known in the
literature or following a data-dependent learning procedure to select atoms better suited
to represent the signals of interest [28] parsimoniously. Similarly to [13], in the present
paper we used a computationally efficient online training algorithm [29] that updates the
dictionary as new data becomes available.

2.2.4. Encoding Procedure

The encoding procedure is critical for the success of the BoW approach, and a broad
set of solutions have been proposed. One key aspect differentiating the various options
refers to the actual assignment procedure, following which a given feature vector should be
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coded as a single codeword (hard assignment) or a combination of those (soft assignment).
In addition, as indicated in Figure 1, both training and test datasets should be subject to the
same encoding procedure based on a common codebook.

Following the same notation as in [12], let us consider a collection of M-dimensional
local feature descriptors X = [x1, x2, . . . xN ] ∈ <M×N and a codebook of K codewords
of the same dimensionality D = [d1, d2, . . . , dK] ∈ <M×K. To accommodate both single
and multiple codewords encoding, we define the actual code of an input vector xi as a
K-dimensional vector ui, where one or more entries are non-zero. We have considered to
following options:

A. Vector Quantization (VQ) [30]:

VQ is the classic example of the hard assignment approach and sets a reference baseline
against which other solutions are to be compared. VQ simply selects the nearest codeword
to the given xi vector, whereas the codebook is typically obtained by the k-means clustering
algorithm. If considering the Euclidean distance, the encoding is given by:

uij =

 1, i f j = arg min
j= 1...K

∥∥xi − dj
∥∥2

0 , otherwise
(1)

B. Soft Assignment using the k nearest codewords (SA-k) [31]:

Hard assignment solutions suffer from two drawbacks: (a) a given vector x could be
very close to more than a single codeword, but the algorithm should still pick only one
codeword anyway; (b) vector x could be very far from any component of the codebook,
but a codeword should still be selected for yielding an encoding. To cope with those
limitations, soft assignment solutions enable weighted combinations of (all or a limited
number of) codewords. Reference [31] demonstrates the advantages of using only a subset
of k nearest codewords to yield the corresponding encoding. The resulting SA-k algorithm is
given by [31]:

uij =
exp (−β

_
d (xi , dj))

K
∑

k=1
exp (−β

_
d (xi , dj))

_
d (xi, dj) =

{
d(xi, dj) , i f dj ∈ Nk(xi)
∞ , otherwise

(2)

where
_
d (xi, dj) is a localized version of the classical Euclidean distance that considers

only the k nearest neighbors of a data point (those define the neighborhood Nk(xi)). The
smoothing hyperparameter β is generally obtained by cross-validation. The detailed
analysis presented in [31] not only offers an interpretation of the encoding uij as a degree of
membership of vector xi to the (Gaussian-type cluster around) codeword dj, but additionally
elucidates the remarkable effect of the max-pooling strategy when coupled with the SA-k
method.

C. Locality-constrained Linear Coding (LLC) [32]:

The LLC algorithm, similar to the sparse coding procedure described in the next
paragraph, solves an optimization problem that looks for the best linear approximation of
a given vector xi by a limited number of codewords while imposing specific constraints.
LLC favors the locality of the encoding, meaning that similar feature vectors should admit
correlated, much similar encodings, according to [32]:

uij = arg min
j= 1...K

∥∥xi − Duj
∥∥2

+ λ
∥∥si ⊗ uj

∥∥
such that 1T · ui = 1 ,
where si = exp

(
dist (xi , D)

σ

) (3)
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where the symbol ⊗ denotes element-wise multiplication, and λ is a regularization coeffi-
cient. si defines a locality adaptor that weights the codewords according to their similarity
to the input feature vector, while the parameter σ adjusts the decay speed of the adaptor
and is typically optimized using cross-validation procedures.

The constraint 1T · ui = 1 originates from the shift-invariant requirements of the LLC
code. An additional advantage of the algorithm is that the optimization problem above
admits an analytical solution that eliminates the need to use computationally intensive
optimization techniques [32].

D. Sparse Coding (SC) [27]:

The method aims at identifying the sparsest linear combination of codewords from the
codebook (dictionary) that exactly represent vector x. As such, the following optimization
problem should be solved [27] (the L0-norm counts the non-zero elements of x):

min
u
‖u‖0 such that x = Du (4)

This problem is computationally intractable; hence more convenient convex alterna-
tives have typically been considered by replacing the L0-norm with the L1-norm. A convex
Lagrangian reformulation is the following, where the second (regularization) term reflects
a priori knowledge about the solution (the λ parameter is set according to the noise power
and the cardinality of the dictionary) [33]:

min
u
{ ‖x − Du‖2 + λ‖u‖1 } (5)

As opposed to LLC, that favors locality instead of the sparsity of the solution, SC
may yield quite different encodings for similar feature vectors. Moreover, the optimization
problem in Equation (5) does not admit an analytical solution, although many efficient algo-
rithms have been proposed, including online methods that may cope with the continuous
availability of new data [29].

2.2.5. Similarity Measures

A Support Vector Machine (SVM) type classifier has been used in the experiments
to discriminate between healthy and COVID-19-infected people. An RBF kernel of the

form K(x, x′) = e−γ‖x− x′‖2
(where γ is a positive scalar parameter) has been chosen to

implement the well-known kernel trick that would implicitly map generally non-linearly
separable data from the original space into linearly separable one in a transformed higher-
dimensional space. While the distance metric exponent measuring the similarity between
a pair of vectors is typically chosen as the Euclidean distance, additional classification
performances may be gained when dealing with histogram-type data if particular metrics
are used instead. Two typical choices are represented by the histogram intersection (HI)
and chi-squared distances (χ2), respectively, defined as [12,20]:

Dχ2(p, q) = ∑
k

‖p[k]−q[k] ‖2

p[k] +q[k] + ε
(Chi− square)

DHI(p, q) = 1 − ∑
k

max (p[k], q[k]) (Histogram intersection)
(6)

3. Results

This section details the results of an ablation study aiming at identifying the effect of
the various setup parameters and algorithmic solutions that define the BoW processing
pipeline. After introducing the datasets used in the experiments, we distinctly analyze
the role of the feature extraction procedure, encoding strategy, and codebook dimension.
A particular target focuses on the efficiency of both input and output fusion strategies.
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Finally, a comparative analysis is performed against 2D approaches involving convolutional
neural networks.

The discrimination procedure is based on SVM classifiers trained with the LIBSVM
MATLAB toolbox [34]. The tool enables setting the optimal values of the corresponding
hyperparameters based on a grid-search procedure and provides probability estimates for
the classification decision.

The performance metrics include the Area Under Curve (AUC), classification accuracy,
sensitivity, and F1-score. The evaluation methods include both the classical k-fold cross-
validation procedure and external dataset validation. It is important to note that the
different folds include distinct subsets of human subjects. Moreover, to realistically evaluate
the classification performances on the test set, we compute 95% confidence intervals around
average values using bootstrap resampling (we used 1000 samples with replacement) [35].

3.1. Cough Recording Datasets

Several cough recording datasets have been compiled after the pandemic outbreak
that broadly differ by the number of audio files, the acquisition strategy (crowd-sourced
vs. medically validated), or the nature of the sounds (cough, speech, breathing). The
experiments to be reported have been conducted on two of the most frequently used
datasets, namely COUGHVID (freely publicly available) [23] and COVID-19 Sounds [36]
(an agreement needs to be signed prior to granting data access).

The Coughvid dataset was compiled at the Embedded Systems Laboratory (ESL)
at EPFL (Switzerland) from 1 April 2020 to 1 December 2020 through a web application
and considered a broad demographic and geographic variability. It includes more than
25,000 crowd-sourced recordings (more than 1100 from people self-declared as infected),
2800 of which have been labeled by four experienced physicians but not validated by
the result of an RT-PCR test. It is worth noting that the project’s homepage includes
code support for identifying pure cough intervals within a given audio recording using
an eXtreme Gradient Boosting classifier and a collection of audio features. Moreover,
to select relevant, consistent data, the authors provide support for assessing the quality
of the recording: a signal-to-noise ratio is computed by comparing the signal power of
concatenated cough segments and the power of the remaining background noise and
further compared to a user-defined threshold value. Nevertheless, since little agreement
was found between the decisions of the four specialists, the same authors released a second
study using a semi-supervised learning algorithm to improve the consistency of this crowd-
sourced dataset [37]. A set of 450 samples has been used in the experiments, equally
balanced between the two classes. All signals were converted into a common .wav format,
the original sampling frequency of 48 kHz was reduced at 16 kHz, and only recordings
exhibiting a signal-to-noise ratio higher than 10 dB were selected for the experiments.

The COVID-19 Sounds dataset has been compiled by the University of Cambridge.
It includes cough, breathing, and voice recordings from more than 36,000 participants
covering a broad range of demographics, ages, and health conditions. The data were
converted to a common .wav format with a 16 kHz sampling frequency, eliminating
noisy/inconsistent recordings. A set of 900 samples has been used in the experiments,
equally balanced between the two classes.

3.2. Effect of the Feature Extraction Procedure

Figure 3 presents comparative AUC and F1 scores for the four feature extraction
methods described in the previous section. All experiments considered the sparse encoding
procedure based on the online algorithm introduced in [29], with a varying number of
codewords. A five-fold cross-validation was performed, and each experiment was repeated
ten times to compensate for possible bias in the data-splitting procedure. Performance
metrics are reported regarding average values ± standard deviation across all experiments.



Sensors 2023, 23, 4996 10 of 18

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

signal-to-noise ratio is computed by comparing the signal power of concatenated cough 
segments and the power of the remaining background noise and further compared to a 
user-defined threshold value. Nevertheless, since little agreement was found between the 
decisions of the four specialists, the same authors released a second study using a semi-
supervised learning algorithm to improve the consistency of this crowd-sourced dataset 
[37]. A set of 450 samples has been used in the experiments, equally balanced between the 
two classes. All signals were converted into a common .wav format, the original sampling 
frequency of 48 kHz was reduced at 16 kHz, and only recordings exhibiting a signal-to-
noise ratio higher than 10 dB were selected for the experiments. 

The COVID-19 Sounds dataset has been compiled by the University of Cambridge. It 
includes cough, breathing, and voice recordings from more than 36,000 participants cov-
ering a broad range of demographics, ages, and health conditions. The data were con-
verted to a common .wav format with a 16 kHz sampling frequency, eliminating noisy/in-
consistent recordings. A set of 900 samples has been used in the experiments, equally bal-
anced between the two classes. 

3.2. Effect of the Feature Extraction Procedure 
Figure 3 presents comparative AUC and F1 scores for the four feature extraction 

methods described in the previous section. All experiments considered the sparse encod-
ing procedure based on the online algorithm introduced in [29], with a varying number 
of codewords. A five-fold cross-validation was performed, and each experiment was re-
peated ten times to compensate for possible bias in the data-splitting procedure. Perfor-
mance metrics are reported regarding average values ± standard deviation across all ex-
periments. 

 
(a) 

Sensors 2023, 23, x FOR PEER REVIEW 11 of 20 
 

 

 
(b) 

 
(c) 

Figure 3. Cont.



Sensors 2023, 23, 4996 11 of 18

Sensors 2023, 23, x FOR PEER REVIEW 12 of 20 
 

 

 
(d) 

Figure 3. Performance metrics for various feature extraction procedures: (a) F1-score, COUGHVID 
dataset; (b) AUC values, COUGHVID dataset; (c) F1-score, COVID-19 Sounds dataset; (d) AUC val-
ues, COVID-19 Sounds dataset. 

In the case of the COUGHVID dataset, the best F1-scores (72.25% ± 1.5) are yielded 
by the MFCC features, while x-vectors perform second best (71.45% ± 0.9). Only slight 
variations according to the codebook dimension are visible for all features. The AUC val-
ues show the same ordering in terms of performance, with MFCC as the top performer 
(78.57% ± 1), followed by x-vecs (75.57% ± 3.7), while no clear trend is visible according to 
the codebook dimension. 

The conclusions are almost similar for the COVID-19 Sounds dataset, with global 
performances lower than those reported for the COUGHVID data. More specifically, 
MFCC and x-vecs still perform best in terms of the F1 score, with a marginal gain of the 
latter (61.27% ± 2.4 vs. 60.64 ± 1.3). AUC values exceed 60% only for MFCC (63.51% ± 1.2) 
and x-vecs (62.76 ± 2). The results show a relatively low variation due to the codebook 
dimension. 

3.3. Effect of the Fusion Strategies 
The effect of input and output fusion strategies has also been evaluated. In the former 

case, the distinct encodings corresponding to the four feature extraction procedures have 
been concatenated as a single vector to be applied as the input to the SVM classifier. In the 
case of the latter, we first obtain the probabilities corresponding to the classification deci-
sions of the individual classifiers that operate on each feature type and then perform a 
linear weighted combination of those to provide the final discrimination decision of the 
output fusion approach. The weights are obtained by normalizing the individual accuracy 
scores according to: 

( ) ( ) , 1: 4i
j

w Acc i Acc j i= =  (7)

Performances reported in Figure 3 indicate the advantages of both fusion strategies. 
For the COUGHVID dataset, F1-scores and AUC values reach (75.62% ± 0.8) and (82.62% 
± 1) respectively, for input fusion using sparse encoding. For output fusion, (75.41% ± 1.8) 

Figure 3. Performance metrics for various feature extraction procedures: (a) F1-score, COUGHVID
dataset; (b) AUC values, COUGHVID dataset; (c) F1-score, COVID-19 Sounds dataset; (d) AUC
values, COVID-19 Sounds dataset.

In the case of the COUGHVID dataset, the best F1-scores (72.25% ± 1.5) are yielded
by the MFCC features, while x-vectors perform second best (71.45% ± 0.9). Only slight
variations according to the codebook dimension are visible for all features. The AUC
values show the same ordering in terms of performance, with MFCC as the top performer
(78.57% ± 1), followed by x-vecs (75.57% ± 3.7), while no clear trend is visible according to
the codebook dimension.

The conclusions are almost similar for the COVID-19 Sounds dataset, with global
performances lower than those reported for the COUGHVID data. More specifically,
MFCC and x-vecs still perform best in terms of the F1 score, with a marginal gain of
the latter (61.27% ± 2.4 vs. 60.64 ± 1.3). AUC values exceed 60% only for MFCC
(63.51% ± 1.2) and x-vecs (62.76± 2). The results show a relatively low variation due to the
codebook dimension.

3.3. Effect of the Fusion Strategies

The effect of input and output fusion strategies has also been evaluated. In the former
case, the distinct encodings corresponding to the four feature extraction procedures have
been concatenated as a single vector to be applied as the input to the SVM classifier. In
the case of the latter, we first obtain the probabilities corresponding to the classification
decisions of the individual classifiers that operate on each feature type and then perform a
linear weighted combination of those to provide the final discrimination decision of the
output fusion approach. The weights are obtained by normalizing the individual accuracy
scores according to:

wi = Acc(i) /∑
j

Acc(j) , i = 1 : 4 (7)

Performances reported in Figure 3 indicate the advantages of both fusion strate-
gies. For the COUGHVID dataset, F1-scores and AUC values reach (75.62% ± 0.8) and
(82.62% ± 1) respectively, for input fusion using sparse encoding. For output fusion,
(75.41% ± 1.8) and (82.23% ± 0.9) values are obtained for the F1-score and AUC, respec-
tively, using the same encoding procedure.

The improvement is also visible for the COVID-19 Sounds dataset, mainly regarding
AUC performances, although not so significant as for the first dataset. For sparse encoding,
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F1-scores up to (61.73% ± 2.1) and (62.46% ± 1.8) are obtained for input and output fusion,
respectively, while AUC fits the ranges (65.05% ± 1.9) and (68.61% ± 2.4).

3.4. Effect of the Encoding Procedures

Given that the fusion approach yields superior performances when compared with the
individual feature types, we decided to study the effect of the encoding procedure using
data obtained by the input fusion approach. Figure 4 presents experimental results on the
two datasets, indicating sparse and LLC encodings as top performers with comparable
performances. For the COUGHVID dataset, F1-score and AUC values reach (75.62% ± 0.8)
and (82.62% ± 1), respectively, while for COVID-19 Sounds data, we get (62.0% ± 2) and
(65.05% ± 1.9), respectively.

Table 1 presents the top-3 performers for both training datasets in terms of F1-score
and AUC values for specific combinations of setup parameters.

Table 1. Best classification performances of BoW models.

Dataset Model Codewords Accuracy
(%)

Sensitivity
(%)

F1
(%)

AUC
(%)

COUGHVID

input fusion,
sparse

encoding
300 72.7 ± 1.3 61.8 ± 1.1 75.4 ± 1.3 82.6 ± 1

output fusion,
sparse

encoding
100 74.3 ± 2 70.2 ± 4.3 75.4 ± 1.8 82.2 ± 0.9

output fusion,
LLC encoding 300 74.1 ± 1.9 71.4 ± 2 74.8 ± 1.8 81.4 ± 1.6

COVID-19
Sounds

output fusion,
sparse

encoding
400 63.2 ± 1.5 65.3 ± 1.1 62.4 ± 1.7 68.6 ± 2.4

input fusion,
sparse

encoding
400 60.3 ± 1.8 56.8 ± 3.7 61.4 ± 1.3 65 ± 1.9

input fusion,
LLC encoding 600 58.7 ± 1.7 49.4 ± 2.2 62 ± 2 64 ± 1.3

3.5. External Test Set Performance Evaluation

While many papers report performance metrics using only the k-fold cross-validation
procedure, evaluating the quality of a given classifier model using an external test set
is always informative. Figure 5 presents two such scenarios in the case of the COVID-
19 Sounds dataset. The first uses the same nonoverlapping train/validation/test split
used in [35], where all data is extracted from the same pool of audio recordings, and
demographic characteristics are balanced to avoid bias. The second experiment assesses
the generalization ability of the BoW model when trained with COVID-19 Sounds data and
tested on the COUGHVID dataset.
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The resulting AUC values are reported for both input and output fusion strategies,
using the top performers LLC and sparse encoding procedures and 400 codewords. The
performances align with those obtained by the k-fold cross-validation method, around 61%
in both scenarios, which confirms the robustness of the model.

3.6. Comparison with CNN Classifiers

We compare the performances of the BoW classifier with those of convolutional neural
networks (CNN) models using MFCC images as inputs. As described in Section 2.2.2,
classical MFCC spectrograms are computed from 50% overlapping audio segments of 0.96
s, yielding sets of log-mel images with 64 × 96 pixels per segment. However, distinct audio
recordings would typically have different durations; hence we considered three different
approaches to define the train and test datasets to be further applied as inputs to the various
CNN models: (a) keep all MFCC images corresponding to a given recording and compute
the classification decision using a majority vote: (b) randomly select a single image per
audio recording; (c) the pictures generated from a given recording are averaged out to
finally yield a single image per recording.

We tested three distinct CNN architectures, namely Resnet-50, MobileNet.v2, and
EfficientNet-B0, that are available as pre-trained models in MATLAB 2022a. The classical
transfer learning approach has been used, enabling fine-tuning of about 70% of the total
number of parameters of the models. To improve the generalization capacity of the classi-
fiers, augmentation techniques were employed by considering ±2% scale variation, ±5◦

rotation, and ±5 pixels horizontal and vertical translations. 5-fold cross-validation was
performed, and each experiment was repeated ten times.

Results in Table 2 reveal up to 5% lower performances than the BoW model, especially
for the F1-score, compared to the performances reported in Figure 3 for MFCC features.
Computing the classification decision using majority voting on all images from a given
recording yields the best results, while the Resnet-50 and EfficientNet-B0 architectures
perform marginally better than the MobileNet.v2 option.

Table 2. Classification performances of CNN models.

Dataset Model Accuracy
(%)

Sensitivity
(%)

F1
(%)

AUC
(%)

COUGHVID

All frames
Resnet-50 68.81 66.27 69.29 74.72

MobileNet.v2 67.12 63.05 68.36 71.88
EfficientNet-B0 69.06 68.13 68.35 76.08

Random frame
Resnet-50 68.91 58.09 64.92 76.89

MobileNet.v2 66.09 63.09 64.10 73.06
EfficientNet-B0 67.36 61.91 65.04 73.65

Average frame
Resnet-50 66.95 65.45 66.23 72.96

MobileNet.v2 65.41 60.55 66.88 71.82
EfficientNet-B0 68.27 67.09 67.76 75.25
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Table 2. Cont.

Dataset Model Accuracy
(%)

Sensitivity
(%)

F1
(%)

AUC
(%)

COVID-19 Sounds

All frames
Resnet-50 53.53 53.43 53.38 55.53

MobileNet.v2 53.50 48.13 50.83 55.65
EfficientNet-B0 52.47 50.06 51.31 54.01

Random frame
Resnet-50 55.71 52.89 53.86 58.64

MobileNet.v2 54.33 55.11 54.43 56.93
EfficientNet-B0 55.56 51.19 53.28 58.17

Average frame
Resnet-50 57.93 51.55 54.87 62.39

MobileNet.v2 54.14 48.95 50.81 56.04
EfficientNet-B0 56.07 44.41 50.07 58.43

4. Discussion and Conclusions

The present paper evaluated the performances of the classical bag-of-words classifier
and the role of the various design parameters on COVID-19 detection from crowd-sourced
cough recordings.

It is difficult to appropriately compare the classification performances of the proposed
BoW model against existing results since the experimental setup, especially the actual
definition of the training/test datasets, varies to a large extent. Sources of variability include
quality evaluation methods and associated threshold values for enrolling audio recordings,
preprocessing and cough segmentation procedures and solutions for accommodating the
variable duration of the files. Moreover, the dimensions of the training/test subsets, the
possible class imbalance, or the use of augmentation techniques increase the difficulty of a
relevant comparison between various proposed approaches. Finally, a significant source
of concern is related to the many sources of bias that may falsely drive the results into
an over-optimistic range of performance metrics. At the same time, even those are not
systematically reported in a unified manner.

Comparing the results presented in Table 1 and Figures 3–5 with references that
consider hand-crafted features extracted from the audio recordings or similar types of
features derived from CNN models [32,34,35] typically combined with SVM classifiers, we
may conclude that the BoW model offers comparable or better performances in terms of F1-
score and AUC values. As such, for the COUGHVID dataset, AUC values typically less than
65% are obtained. For the COVID-19 Sounds dataset, the previous references report AUC
values in the 62–66% range, with only the OpenL3 + SVM model reaching 70% [38]. On
the other hand, significantly better results are obtained using more sophisticated classifier
models such as the Bayesian Neural Network or the Self-Supervised Audio Spectrogram
Transformer [39]. Nevertheless, the same study reveals no improvement over performances
based solely on user-reported symptoms, hence calling for a careful analysis of various
confounders in AI-based diagnostic tools.

It is worth noting that input/output fusion techniques increase performance metrics
for both datasets. For example, Figure 2 indicates up to 2.5% improvement of F1-scores
and up to 5% for the AUC values compared to MFCC features, that act as second best.

While more refined architectures or fusing multiple types of audio data (cough, speech,
breathing) may prove superior, the proposed approach is attractive in terms of simplicity,
the ability to cope with variable duration recordings, and the possibility to adapt to newly
available data if online encoding algorithms are used.

The present paper extends preliminary results [14] by considering an extended range of
setup parameters for the BoW classification model. The positive effect of the input/output
fusion strategies is also revealed, while the comparison with CNN-based approaches
complements the analysis framework.
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The experimental results show that the BoW approach is competitive against existing
solutions exhibiting comparable complexity, and further work may reveal improved perfor-
mances. We intend to consider appropriate augmentation techniques, enlarged datasets,
and a broader range of feature extraction procedures. An interesting idea worth testing
concerns the inclusion of the BoW classifier into an end-to-end learning model that would
automatically compute relevant, discriminative features.

Further study of image-based classifiers, including optimized architectures using
AutoML techniques, is also necessary. Moreover, the bag-of-visual words model is also
worth considering for further work.
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