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Abstract: Bounding box regression is a crucial step in object detection, directly affecting the localiza-
tion performance of the detected objects. Especially in small object detection, an excellent bounding
box regression loss can significantly alleviate the problem of missing small objects. However, there
are two major problems with the broad Intersection over Union (IoU) losses, also known as Broad
IoU losses (BIoU losses) in bounding box regression: (i) BIoU losses cannot provide more effective
fitting information for predicted boxes as they approach the target box, resulting in slow convergence
and inaccurate regression results; (ii) most localization loss functions do not fully utilize the spatial
information of the target, namely the target’s foreground area, during the fitting process. Therefore,
this paper proposes the Corner-point and Foreground-area IoU loss (CFIoU loss) function by delving
into the potential for bounding box regression losses to overcome these issues. First, we use the
normalized corner point distance between the two boxes instead of the normalized center-point
distance used in the BIoU losses, which effectively suppresses the problem of BIoU losses degrading
to IoU loss when the two boxes are close. Second, we add adaptive target information to the loss
function to provide richer target information to optimize the bounding box regression process, es-
pecially for small object detection. Finally, we conducted simulation experiments on bounding box
regression to validate our hypothesis. At the same time, we conducted quantitative comparisons
of the current mainstream BIoU losses and our proposed CFIoU loss on the small object public
datasets VisDrone2019 and SODA-D using the latest anchor-based YOLOv5 and anchor-free YOLOv8
object detection algorithms. The experimental results demonstrate that YOLOv5s (+3.12% Recall,
+2.73% mAP@0.5, and +1.91% mAP@0.5:0.95) and YOLOv8s (+1.72% Recall and +0.60% mAP@0.5),
both incorporating the CFIoU loss, achieved the highest performance improvement on the Vis-
Drone2019 test set. Similarly, YOLOv5s (+6% Recall, +13.08% mAP@0.5, and +14.29% mAP@0.5:0.95)
and YOLOv8s (+3.36% Recall, +3.66% mAP@0.5, and +4.05% mAP@0.5:0.95), both incorporating
the CFIoU loss, also achieved the highest performance improvement on the SODA-D test set. These
results indicate the effectiveness and superiority of the CFIoU loss in small object detection. Addition-
ally, we conducted comparative experiments by fusing the CFIoU loss and the BIoU loss with the SSD
algorithm, which is not proficient in small object detection. The experimental results demonstrate
that the SSD algorithm incorporating the CFIoU loss achieved the highest improvement in the AP
(+5.59%) and AP75 (+5.37%) metrics, indicating that the CFIoU loss can also improve the performance
of algorithms that are not proficient in small object detection.

Keywords: object detection; loss function; small object; bounding box regression

1. Introduction

Object detection is an important task in computer vision. Currently, object detection al-
gorithms can be mainly classified into two types: anchor-based object detection algorithms,
such as Faster R-CNN [1], SSD [2], and YOLOv5 [3], and anchor-free object detection
algorithms, such as CornerNet [4], FCOS [5], and YOLOv8 [6]. In these different object
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detection frameworks, bounding box regression is a crucial step in predicting rectangular
boxes for locating objects. Generally, the regression performance of bounding boxes reflects
the localization ability of the object detection algorithm. Therefore, a suitable loss function
plays a vital role in improving the performance of bounding box regression. Currently,
there are two types of loss functions for bounding box regression:

• Loss based on the
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( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
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n-norm loss only considers the difference between two boxes and ignores their
spatial relationship and containment relationship, thus proposing another loss based
on Intersection over Union (IoU) between two boxes to measure the actual regression
performance of the predicted box and the target box.

• Loss based on Broad IoU. The IoU loss function only considers the difference between
the predicted box and the target box, without taking into account the intersection and
anchor information between the two boxes. When the predicted box and the target box
do not overlap, IoU cannot reflect the distance between them, and its corresponding
loss function cannot calculate gradients, making it impossible to optimize the param-
eters of the predicted box in the next step. To address this issue, many researchers
have proposed IoU-based loss functions that incorporate spatial information errors
between the predicted box and the target box into the original IoU loss function, which
can better improve the accurate positioning ability of the predicted box. These loss
functions include the original IoU loss and various improved versions, which are
collectively referred to as broad IoU losses. Due to their excellent performance in
measuring the actual differences between two bounding boxes, BIoU losses have been
widely used in object detection algorithms. Currently, the mainstream BIoU losses
include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, the
BIoU losses can be defined as Equation (1)
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where B and Bgt represent the predicted box and the target box, respectively. R
(

B, Bgt)
represents the penalty term, which is mainly used to accelerate model convergence or to
better fit the predicted box to the target box.

These BIoU loss functions improve the localization ability of the predicted boxes by
considering the discrepancies between the center point distances, overlap areas, and width-
height information of both boxes. However, as the predicted box gradually approaches
the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the IoU loss.
This can be seen as the situation in Figure 1, where BIoU losses start to degrade to IoU
loss when the predicted box and target box geometric center points are close or overlap. It
should be noted that IoU loss cannot reflect the intersection and anchor box information
of the two boxes, so it cannot offer a more effective means of fitting for the predicted box.
On the other hand, in the process of gradually fitting the predicted box to the target box,
BIoU losses do not take into account the spatial information of the true target, which leads
to the localization loss function being unable to know the true fitting degree between the
predicted box and target box, and thus unable to provide more accurate information for
the next optimization of the predicted box. This can be seen as the situation in Figure 2,
where for the two different fitting situations (i.e., different relative positions and overlap
situations) of boxes A and B, BIoU losses yield identical values for both predicted boxes. In
actuality, the regression performance of the two predicted boxes is completely different,
and it can be considered that the regression situation of box A is better than that of box
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B, so box B should be punished more (i.e., loss value) to obtain a faster and better fitting
effect. In small object detection, this approach of disregarding real target information is
detrimental to the localization effect of small objects and can easily lead to the missed
detection of small objects.
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Figure 1. Three position relationships between the predicted box B and the target box GT during
the regression process, along with their corresponding loss values for bounding box regression.
(a–c) represent the three position relationships between the predicted box and the target box. The
red value represents the BIoU loss value degenerating to the IoU loss value when the predicted box
approaches the target box. The green value represents the CFIoU loss value. By comparing the results,
it can be seen that CFIoU loss does not suffer from the same degeneration issue as BIoU loss.
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Figure 2. Left: The relative positions of predicted boxes A and B with respect to the target box GT.
Right: The values of BIoU losses and CFIoU loss in cases (a,b). In (a), predicted box A is inside the
target box GT, while in (b), predicted box B is outside the target box GT. The fitting effect of predicted
box A is better than that of predicted box B. Therefore, the loss function should impose a greater
penalty on predicted box B to improve its regression performance. Unfortunately, BIoU losses cannot
distinguish the regression situation of the predicted boxes in (a,b), as their loss values are equal in
these two cases. In contrast, the CFIoU loss results in a larger loss value for predicted box B, which
is better.
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In this paper, we propose a corner-point and foreground-area IoU loss (CFIoU loss).
We add a penalty term for deviation in corner distances to IoU loss, which provides more
position parameter update information and solves the problem of BIoU losses degrading to
IoU loss when the predicted box and target box geometric center points are close or overlap.
In addition, we also use the spatial information of the target, i.e., the target foreground
region, as part of the loss function to provide more accurate fitting information to predicted
boxes with poorer regression effects, enabling them to fit better to the target box. This
design solves the problem of BIoU losses being unable to distinguish between predicted
boxes with different fitting situations during bounding box regression.

To evaluate the effectiveness of our proposed method, we conducted simulation
experiments on bounding box regression. In addition, to evaluate the performance of the
CFIoU loss, we integrated it into the latest anchor-based YOLOv5 and anchor-free YOLOv8
object detection algorithms, and quantitatively compared BIoU losses and CFIoU loss on
the VisDrone2019 [15] and SODA-D [16] small object public datasets.

The contributions of this paper are summarized as follows:

1. CFIoU loss is a loss function designed for bounding box regression, which provides
faster and better regression performance than BIoU losses.

2. To address the deficiency of BIoU losses when the predicted box approaches the target
box, we propose a loss term based on the corner point distance deviation.

3. To utilize target information in bounding box regression optimization, we propose
an adaptive loss term. This approach is particularly effective for small targets with
limited information.

4. Our proposed method can be easily integrated into existing anchor-based and anchor-
free object detection algorithms to achieve improved performance on small targets.

2. Related Works

This section provides a brief overview of the related work, which includes the problems
associated with BIoU losses and the strategies that utilize target foreground information.

2.1. BIoU Losses for Bounding Box Regression
2.1.1. Limitations of IoU Loss

IoU loss [11], which stands for Intersection over Union loss, was originally introduced
in face detection as a comprehensive measure that takes into account all relevant attributes.
Equation (3) defines this loss function:

Sensors 2023, 23, x FOR PEER REVIEW 2 of 18 
 

 

detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 

( ), 1gt
BIoU B B BIoU= −L . (1) 

BIoU can be defined by Equation (2): 

( ),
gt

gt
gt

B B
BIoU R B B

B B
= −




, (2) 

where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
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information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

IoU = 1− IoU. (3)

IoU can be unified as Equation (4):

IoU =

∣∣B ∩ Bgt
∣∣

|B ∪ Bgt|
, (4)

where B and Bgt represent the predicted box and the target box, respectively, and they can
be of arbitrary size. IoU is scale-invariant, meaning that the spatial scale of the predicted
box B and target box Bgt does not affect their similarity measurement. However, IoU loss
has two major drawbacks: (1) if two bounding boxes have no intersection, IoU loss will
always be 1, failing to reflect their actual distance; (2) IoU cannot distinguish between
different alignments of the two bounding boxes, making it impossible to identify the
better alignment.
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2.1.2. Limitations of Generalized IoU Loss (GIoU Loss)

The GIoU loss [12] was proposed to address the shortcomings of the original IoU loss.
Its definition is shown in Equation (5):
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|C| , (5)

where C represents the minimum closed bounding box that encompasses both B and Bgt.
Compared to the IoU loss, the GIoU loss has superior dynamic behavior and can reflect
the spatial position between two bounding boxes even when IoU = 0, as illustrated in
Figure 1a. However, the GIoU loss still has some limitations. For instance, when there is a
containment relationship between two bounding boxes, the GIoU loss will degenerate into
the IoU loss and cannot differentiate the relative position of the two boxes. Additionally,
when there is a significant vertical direction error between the two boxes, the GIoU loss
becomes unstable and can lead to difficulties in loss convergence.

2.1.3. Limitations of Distance IoU Loss (DIoU Loss)

DIoU loss [13] adds a penalty term for the distance between the centers of two boxes
based on IoU loss, accelerating the convergence process of the model. It can be defined by
Equation (6):
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(
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2 , (6)

where b and bgt represent the center points of the predicted box B and target box Bgt

respectively. ρ
(

b, bgt
)
=
∥∥∥b− bgt

∥∥∥
2

represents the Euclidean distance between the two

points, and lC represents the diagonal distance of the minimum closed bounding box C that
contains both B and Bgt. DIoU loss mitigates the slow convergence problem of GIoU loss
to some extent. However, DIoU loss still cannot describe the overlap information between
the two boxes well. Moreover, when the center points of the two boxes coincide completely,
both GIoU and DIoU losses will still degenerate into IoU loss, as shown in Figure 1b.

2.1.4. Limitations of Complete IoU Loss (CIoU Loss)

CIoU loss [13] is an improved version of DIoU loss that incorporates aspect ratio
information of two bounding boxes. It can better reflect the distance and alignment
between the two boxes, thus further improving the quality and speed of regression. It can
be defined by Equation (7):
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2 + αv, (7)

where v = 4
π2

(
arctan wgt

hgt − arctan w
h

)2
and α = v

(1−IoU)+v are used to represent the differ-
ences in aspect ratios between the two boxes. However, the aspect ratios used in CIoU loss
are relative values, which have a certain degree of uncertainty. When the two boxes are
aligned in the diagonal direction, as shown in Figure 1c, the GIoU, DIoU, and CIoU losses
degenerate directly into the IoU loss.

2.1.5. Limitations of Efficient IoU Loss (EIoU Loss)

EIoU loss [14] is an improvement over CIoU loss. It uses the difference in width and
height between the target and predicted bounding boxes instead of aspect ratio information.
This approach enables more direct minimization of the distance between the target and
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predicted boxes, improving the convergence speed and accuracy of object localization.
EIoU loss can be defined using Equation (8):
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where wC and hC represent the width and height of the minimum closed bounding box C
that contains both B and Bgt. Although the EIoU loss function performs better than the
previous IoU loss function, neither the EIoU nor the IoU loss utilizes the foreground region
information of the true object, making it difficult to determine the relative position and
matching degree of the predicted and target boxes. Therefore, models trained using BIoU
losses may perform poorly in detecting small objects.

2.2. Strategies for Utilizing Object Foreground Information

Class imbalance is a classic problem in object detection tasks, and the imbalance
between foreground and background samples is a subproblem. Anchor-based object
detection algorithms have a significant impact on addressing the foreground–background
sample imbalance problem. However, due to the sparsity of object boxes and the IoU
(Intersection over Union) matching strategy between boxes, negative samples have a larger
contribution than positive samples in minimizing the loss, leading to a bias toward the
negative sample class in model performance.

Therefore, various methods for enhancing foreground information utilization have
been proposed at different stages of object detection. For example, the spatial attention
module (SAM) [17] enhances features of the foreground region from the feature map
obtained from the region proposal network (RPN) [1]. PISA (Prime Sample Attention) [18]
proposes an importance-based sample selection method, IoU-HLR (Hierarchical Local
Rank), which weights predicted boxes based on the IoU value between the predicted box
and the ground truth box. Predicted boxes with richer foreground information are assigned
greater weight. Another method proposed in the literature [19] is an IoU-balanced sampling
technique to extract more training samples from challenging cases. VarifocalNet [20]
uses ATSS (Adaptive Training Sample Selection) [21] to define foreground points in a
framework without anchors. Designing a balanced foreground–background loss function
in the classification stage is also a common method. For instance, AP loss (Average Precision
loss) [22] reweights examples, DR loss (Distributional Ranking loss) [23] reweights the
distribution of background examples based on the distribution of foreground examples, and
focal loss [24] recalibrates the weight distribution between positive and negative examples.
It is worth noting that the utilization of target foreground region information is relatively
low in the box regression stage compared to other stages.

In conclusion, this article proposes the following hypotheses. First, using a border
distance metric as a replacement for the traditional geometric center distance in object
detection can effectively avoid the problem of the BIoU losses degenerating into the IoU
loss when the distance between two bounding boxes is close. This results in an acceleration
of the model’s convergence speed and an improvement in its fitting performance. Second,
adding a penalty term aimed at the foreground region of the object to the bounding box
regression loss function can enable the localization loss function to fully consider the
relative position and overlap information of two bounding boxes. This, in turn, enables the
correction of poorly regressed prediction boxes by imposing a stronger penalty, thereby
enhancing the model’s ability to locate small objects.
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3. Methods

Based on the above conjecture, we have designed a new loss function for bounding
box regression. In this section, we introduce the methodology of this loss function and its
corresponding advantages. Generally, the IoU-based loss can be defined as Equation (9),
which is derived from Equations (1) and (2):
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=1− IoU + R
(

B, Bgt), (9)

where R
(

B, Bgt) represents the penalty term between the predicted box B and the target
box Bgt. To resolve the aforementioned issue, we designed a suitable penalty term, which
can be defined as Equation (10):

R
(

B, Bgt) = RCor
(

B, Bgt)+ RFore
(

B, Bgt). (10)

3.1. Penalty Term RCor
(

B, Bgt) Based on Corner Point Distance

RCor
(

B, Bgt) represents the penalty term for the distance between the corresponding
corners of two bounding boxes, which can be defined as Equation (11):

RCor
(

B, Bgt) =
4
∑

i=1
ρ2
(

xi, xgt
i

)
4× (lC)

2 (11)

where ρ
(

xi, xgt
i

)
denotes the Euclidean distance between the i− th(i = 1, 2, 3, 4) pair of corners

of the predicted box B and the target box Bgt. RCor
(

B, Bgt) can effectively avoid the degradation
of BIoU loss to IoU loss when the distance between two boxes is close (as shown in Figure 1).
According to theoretical derivation, when the center points of the predicted and target boxes
coincide, the loss term based on center point distance cannot provide further optimization
help. However, the loss function based on the corner point distance can continue to work effec-

tively until the predicted and target boxes completely overlap, assuming P1 =
4
∑

i=1
ρ2
(

xi, xgt
i

)
,

P2 = ρ2
(

b, bgt
)

. The gradient of P1 with respect to the center point and scale parameters
(x, y, w, h) of the predicted box is defined by Equation (11a).

∂P1
∂x = 8×

(
x− xgt),

∂P1
∂y = 8×

(
y− ygt),

∂P1
∂w = 2×

(
w− wgt),

∂P1
∂h = 2×

(
h− hgt).

, (11a)

where
(

xgt, ygt, wgt, hgt) represent the center point and scale parameters of the target box.
The gradient of P2 with respect to the predicted box parameters (x, y, w, h) is defined by
Equation (11b).

∂P2
∂x = 2×

(
x− xgt),

∂P2
∂y = 2×

(
y− ygt),

∂P2
∂w = 0,
∂P2
∂h = 0.

, (11b)

By Equations (11a) and (11b), it can be observed that during gradient updating of the
predicted box parameters (x, y, w, h), the distance information P1 of the four corner points
can provide gradient information for both the center point parameter (x, y) and the scale
parameter (w, h) of the predicted box. However, the distance information P2 between the
center points can only provide gradient information for the center point parameter (x, y) of
the predicted box.
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3.2. Penalty Term RFore
(

B, Bgt) Based on Target Foreground Information

To address the issue of BIoU losses lacking the utilization of target foreground in-
formation, we propose a penalty term RFore

(
B, Bgt) to represent the target foreground

information. We believe that an ideal loss function for bounding box localization should be
able to fully utilize the foreground information of the actual target. Specifically, for small
objects, as they contain less information, they are more likely to be missed. RFore

(
B, Bgt)

can be defined by Equation (12):

RFore
(

B, Bgt) = (1− µ)

∣∣B− Bgt
∣∣2

|C|2
+ µ

∣∣C− Bgt
∣∣2

|C|2
, µ =

0 i f ρ
(

b, bgt
)
6= 0

1 i f ρ
(

b, bgt
)
= 0

. (12)

Here, µ is used to determine whether the geometric centers of the predicted box and
the target box coincide.

• When the geometric centers of the predicted and target bounding boxes do not coincide,
we use the method of directly minimizing the size difference between the predicted
box and the real target foreground to speed up the regression of the predicted box.

• When the geometric centers of the predicted and target bounding boxes coincide,
we use the difference between the minimum enclosing region C and the real target
foreground region to distinguish the contributions of the foreground and background
regions in the penalty function. If the proportion of the foreground region in the
minimum enclosing region C of the predicted and target bounding boxes is small
(the proportion of the background region is large), it indicates that the regression
effect of the current predicted box is not good, so the predicted box needs to be
punished more severely. In particular, for small objects, which have limited foreground
information and are prone to be missed, using the foreground information in the
minimum enclosing region C can help their bounding boxes obtain more advantageous
gradient information for regression.

3.3. Corner-Point and Foreground-Area IoU Loss

Based on Equations (11) and (12), a novel bounding box loss function, namely the
CFIoU loss, can be defined by Equation (13):
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 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CFIoU = 1− IoU + R
(

B, Bgt) = 1− IoU +

4
∑

i=1
ρ2
(

xi , xgt
i

)
4× (lC)

2 +

[
(1− µ)

∣∣B− Bgt
∣∣2

|C|2
+ µ

∣∣C− Bgt
∣∣2

|C|2

]
, µ =

0 i f ρ
(

b, bgt
)
6= 0

1 i f ρ
(

b, bgt
)
= 0

(13)

The specific definitions of the parameters and their variables are referenced in Figure 3.
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We compare the CFIoU loss with the BIoU losses and draw the following conclusions:

• The proposed CFIoU loss inherits some properties of the BIoU loss:

(1) The CFIoU loss is still scale-invariant for regression problems.
(2) The CFIoU loss can provide the direction of movement for the predicted box when

it does not overlap with the target box. Additionally, it still follows the characteristics of
DIoU, CIoU, and EIoU losses based on the normalized distance between two bounding
boxes to accelerate the regression of the predicted box.

(3) When the predicted box completely matches the target box,
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information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
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proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

EIoU = 0. When the distance between the two boxes is far
apart,
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

EIoU → 2 .

• The CFIoU loss has the following advantages over the BIoU losses:

(1) The CFIoU loss can effectively solve the problem of the BIoU losses degenerating
into the IoU loss when the predicted box overlaps with or approximates the geometric
center of the target box;

(2) The CFIoU loss makes full use of the foreground area information of the target box,
allowing it to differentiate between predicted boxes with different regression effects and to
give greater penalties to boxes with poorer regression effects, helping them to better fit the
target box. This is lacking in the BIoU losses.

• To better illustrate the superiority of the CFIoU loss over BIoU losses, we designed
a visualization process for bounding box regression based on the positions of the
predicted and target boxes in Figures 1 and 2.

(1) We start with the predicted and target box positions in Figure 1a,b, and use BIoU
and CFIoU losses as regression losses for the predicted box. We minimize this loss using
gradient descent over 200 iterations to obtain the final regression results, as shown in
Figure 4. We observed that the CIoU, DIoU, and GIoU losses degrade to the IoU loss,
causing the predicted box to fail to fit the target box completely. In contrast, the EIoU and
CFIoU losses avoid this degradation issue and enable the predicted box to fit the target box
completely. Among these two loss functions, the CFIoU loss converges much faster than
the EIoU loss due to its richer gradient information. Additionally, the simulation results
in Figure 4b are similar to those in Figure 4a, indicating that the CFIoU loss can avoid the
degradation issue and achieve faster convergence and better fitting performance for the
predicted box.

(2) We conducted regression based on the predicted and target box positions in
Figure 2a,b, using the BIoU and CFIoU losses as regression losses. We minimized the
losses using gradient descent and obtained the final regression results after 200 iterations.
Specifically, we visualized the process of minimizing various loss functions during the pre-
dicted box fitting to the target box in Figure 5. Through the visualization results in Figure 5,
we found that for the two different regression results of the predicted boxes in Figure 2a,b,
the BIoU loss values were equal:
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

EIoU(b) = 1.25.
This suggests that both the poorly and well-regressed predicted boxes received the same
penalty, which caused the poorly regressed predicted boxes to lack additional gradient
information to better or more quickly fit. In the IoU loss, GIoU loss, DIoU loss, and CIoU
loss graphs in Figure 5, we found that the poorly regressed predicted box in Figure 2b
could not fit the target box, while in the EIoU loss graph, although the poorly regressed
predicted box in Figure 2b could eventually fit the target box, it did so much slower than
the well-regressed predicted box in Figure 2a. In the CFIoU loss graph, the poorly regressed
predicted box in Figure 2b and the well-regressed predicted box in Figure 2a received
different penalties:
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to IoU loss when the predicted box and target box geometric center points are close or 
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These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CFIoU(b) = 1.375. Clearly, the poorly regressed
predicted box in Figure 2b received more penalties than the well-regressed predicted box
in Figure 2a, which is due to the addition of information about the target foreground area
in the CFIoU loss. From the CFIoU loss graph, it can be seen that the poorly regressed
predicted box in Figure 2b achieved faster fitting speed (the losses of the predicted box and
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the target box started to converge after 40 iterations) while maintaining a good fitting effect.
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Figure 5. The process of minimizing various losses during the fitting of the two types of predicted
boxes in Figure 2a,b to the target box.

4. Experiments and Discussion
4.1. Datasets and Evaluation Metrics

We conducted experiments on both synthetic and real datasets. To investigate the
advantages of the CFIoU loss, we designed a simulation experiment covering various
aspects of small object bounding boxes, such as distance, scale, and aspect ratio. Specifically,
we selected five target boxes with different aspect ratios (i.e., 1:2, 2:3, 1:1, 3:2, and 2:1) as the
ground truth boxes, all with an area of four. We fixed the center points of these five boxes
at coordinates (10, 10) and randomly placed 500 anchor boxes at each point in a rectangular
region with a length and width of 4. These anchor boxes include cases with and without
overlap with the ground truth boxes. At each point, we set five different scales (i.e., 1, 4,
8, 12, and 16) and five aspect ratios (i.e., 1:2, 2:3, 1:1, 3:2, and 2:1), resulting in a total of
12,500 = 500 × 5 × 5 anchor boxes, as shown in Figure 6a. All of these anchor boxes should
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perfectly fit the five ground truth boxes of different sizes. Therefore, we obtained a total of
62,500 = 5 × 5 × 5 × 500 regression cases.
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Figure 6. Simulation experiment for bounding box regression: (a) 62,500 regression cases were used
by considering different distances, scales and aspect ratios; (b) total regression error.

Regarding the real datasets, we chose the VisDrone2019 and SODA-D datasets for
small object detection and tracking experiments. We used the VisDrone2019-DET-train
and SODA-D train datasets to train the model and the VisDrone2019-DET-val and SODA-
D val datasets to supervise the training process to avoid overfitting. Finally, we tested
the model’s performance on the VisDrone2019-DET-test and SODA-D test datasets and
reported our ablation study on the VisDrone2019-DET-test dataset. We selected the YOLO
format evaluation metrics, mean average precision (mAP) and recall (R), as the main
evaluation metrics. It is worth noting that all our experiments were conducted on the
following hardware devices: (1) Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz; (2) NVIDIA
GeForce RTX 3090 and NVIDIA GeForce RTX 1080Ti.

4.2. Simulation Experiment

To validate the effectiveness of the CFIoU loss on a large number of anchor box
regressions, we designed a simulation experiment using a synthetic dataset (Figure 6a) to
simulate the regression of bounding boxes. By specifying a loss function
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, we can simulate
the regression process of the bounding box under each situation using the gradient descent
method. The current prediction for the predicted box Bn,s after t iterations can be obtained
using Equation (14):

Bt
n,s = Bt−1

n,s + η∇Bt−1
n,s , (14)

where Bt
n,s is the predicted box after t iterations, ∇Bt−1

n,s represents the gradient of loss
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evaluate the performance of bounding box regression. For each loss function (BIoU losses
and CFIoU loss), the simulation experiment terminates when the iteration reaches T = 200.
The error curves in Figure 6b show that among 62,500 regression cases, the CFIoU loss
is more effective than the BIoU losses in providing richer gradient information for the
predicted box, leading to faster convergence of the loss between the predicted and target
boxes, and allowing the predicted box to fit the target box completely (Algorithm 1).

4.3. Ablation Study

We performed an ablation study on the VisDrone2019-DET-test dataset using the
YOLOv5s model to evaluate the advantages of different penalty terms in our proposed
CFIoU loss function. Our results, shown in Table 1, demonstrate that the penalty term
based on corner point distance performs better than the penalty term based on centroid
distance (+1.1 Recall, +0.4 mAP@0.5, +0.1 mAP@0.5:0.95, (a) and (b)), and outperforms the
IoU loss without any penalty term (+0.2 Recall, +0.1 mAP@0.5, +0.1 mAP@0.5:0.95, (b) and
(c)). Additionally, the penalty term based on foreground information achieves superior
performance over the IoU loss without any penalty term (+0.6 Recall, +0.6 mAP@0.5, +0.3
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mAP@0.5:0.95, (c) and (d)). Finally, compared to the IoU loss with any penalty term, our
proposed CFIoU loss function achieves the best performance (+1.9 Recall, +1.2 mAP@0.5,
and +0.3 mAP@0.5:0.95).

Algorithm 1 Simulation Experiment

Input: {{Bn,s}S
s=1}

N
n=1 denotes all the anchors at N = 500 points, where S = 5× 5 is the number

of combinations of different areas and aspect ratios. {Bgt
i }

5
i=1 is the set of target boxes that are

fixed at (10, 10) with area 4, and have five aspect ratios.
Output: Regression error E
1: (E, T)← (0, 200)
2: Do bounding box regression:
3: for t = 1 to T do
4: for n = 1 to N do
5: for s = 1 to S do
6: if t ≤ 0.8T then η= 0.1
7: else if t ≤ 0.9T then η= 0.01
8: else η= 0.001
9: end if
10: ∇Bt−1

n,s = ∂L
(

Bt−1
n,s , Bgt

i

)
/∂Bt−1

n,s

11: Bt
n,s = Bt−1

n,s + η∇Bt−1
n,s

12: E(t) = E(t) +
∣∣∣Bt

n,s − Bgt
i

∣∣∣
13: end for
14: end for
15: end for
16: Return E

Table 1. Ablation study of each loss term.

Loss IoU Centroids Corner Points Foreground Areas Recall mAP@0.5 mAP@0.5:0.95

(a)
√ √

31.2 28.9 15.7
(b)

√ √
32.3 (↑3.53%) 29.3 (↑1.38%) 15.8 (↑0.64%)

(c)
√

32.1 29.2 15.7
(d)

√ √
32.7 29.8 16.0

(e)
√ √ √

33.1 30.1 16.0

4.4. Quantitative Results

Our experiment aims to verify the performance improvement effect of the CFIoU loss
on object detection algorithms. To this end, we used advanced mainstream anchor-based
YOLOv5 and anchor-free YOLOv8 object detection algorithms on two small object public
datasets, VisDrone2019 and SODA-D, and compared the CFIoU loss with other BIoU losses.
For the same dataset, YOLOv5 and YOLOv8 both used the same hyperparameter settings.
Meanwhile, to demonstrate the superiority of our proposed loss function over traditional
object detection algorithms, we conducted additional evaluation experiments using SSD,
another popular one-stage method implemented in PyTorch.

4.4.1. YOLOv5 and YOLOv8 on VisDrone2019

The VisDrone2019 dataset is an important benchmark dataset for studying unmanned
aerial vehicle (UAV) object detection algorithms, contains 10 categories of objects, and is
particularly suitable for small object detection tasks. In this dataset, we used the YOLOv5
object detection algorithm trained with the CFIoU loss and compared it with the BIoU (IoU,
GIoU, DIoU, CIoU, and EIoU) loss functions. The training set consists of VisDrone2019-DET-
train and VisDrone2019-DET-val, totaling 7019 images. The test set is the VisDrone2019-
DET-test-dev dataset, which contains 1610 images.

According to the results in Table 2, the CFIoU loss plays an important role in improving
the performance of both anchor-based YOLOv5s and anchor-free YOLOv8s object detection
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algorithms, demonstrating the strong compatibility of this loss function. In the test results,
the YOLOv5s model with the integrated CFIoU loss showed the largest improvement,
with a 3.12% increase in recall rate, a 2.73% increase in mAP@0.5, and a 1.91% increase
in mAP@0.5:0.95. Meanwhile, compared to the baseline model, the YOLOv5s model
with integrated GIoU, DIoU, and CIoU losses experienced a performance decline, largely
due to the degradation of these loss functions during training. However, the EIoU loss,
which splits the aspect ratio on top of the CIoU loss, did bring improvement, with a 1.56%
increase in recall rate, a 2.05% increase in mAP@0.5, and a 1.91% increase in mAP@0.5:0.95.
Compared to the EIoU loss, the CFIoU loss solved the degradation problem of BIoU
losses and placed greater emphasis on utilizing target foreground information, resulting
in a higher performance improvement. It is noteworthy that the YOLOv8s model with
the integrated CFIoU loss achieved the best performance on the same metrics. We used
YOLOv5 trained on the VisDrone2019 dataset to detect a subset of examples from the
VisDrone2019-DET-test-challenge. We compared the EIoU loss, which performed better
among the BIoU losses, with our proposed CFIoU loss. As shown in Figure 7, the model
fused with the CFIoU loss performed better at finding targets than the model fused with
the EIoU loss. Additionally, we compared the IoU loss with the CFIoU loss and presented
some examples in Figure 8. From the inference results, it can be seen that the YOLOv5
model fused with the CFIoU loss has a significant effect in capturing small targets.

Table 2. Quantitative comparison of YOLOv5s and YOLOv8s trained using
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loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CFIoU , respectively. The reported results are on the test set of Vis-
Drone2019.

Loss/Evaluation
YOLOv5s YOLOv8s

Recall mAP@0.5 mAP@0.5:0.95 Recall mAP@0.5 mAP@0.5:0.95
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

IoU 32.1 29.3 15.7 34.9 33.4 19.3
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

GIoU 31.7 29.1 15.7 34.1 32.5 18.7
R I.% 1 −1.25% −0.68% - −2.29% −2.69% −3.11%
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

DIoU 31.2 28.9 15.7 35.2 33.5 19.1
R I.% 1 −2.80% −1.37% - +0.86% +0.30% −1.04%
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CIoU 31.5 29.2 15.7 35.0 33.2 19.0
R I.% 1 −1.87% −0.34% - −0.29% −0.60% −1.55%
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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BIoU can be defined by Equation (2): 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

EIoU 32.6 29.9 16.0 35.2 33.1 19.0
R I.% 1 +1.56% +2.05% +1.91% +0.86% −0.90% −1.55%
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CFIoU 33.1 30.1 16.0 35.5 33.6 19.3
R I.% 1 +3.12% +2.73% +1.91% +1.72% +0.60% -

1 R I.% = Relative improv. %.
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some examples in Figure 8. From the inference results, it can be seen that the YOLOv5 
model fused with the CFIoU loss has a significant effect in capturing small targets. 

Table 2. Quantitative comparison of YOLOv5s and YOLOv8s trained using ( )baselineIoUL , GIoUL

, DIoUL , CIoUL , EIoUL , and CFIoUL , respectively. The reported results are on the test set of Vis-
Drone2019. 
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ion 
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IoUL  32.1 29.3 15.7 34.9 33.4 19.3 
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R I.% 1 −1.87% −0.34% - −0.29% −0.60% −1.55% 
EIoUL  32.6 29.9 16.0 35.2 33.1 19.0 

R I.% 1 +1.56% +2.05% +1.91% +0.86% −0.90% −1.55% 
CFIoUL  33.1 30.1 16.0 35.5 33.6 19.3 

R I.% 1 +3.12% +2.73% +1.91% +1.72% +0.60% - 
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(a) (b) 

Figure 7. Detection examples using YOLOv5s trained on the VisDrone2019 dataset. Visualization 

samples are chosen from VisDrone2019-DET-test-challenge. (a,b): Left: EIoUL , right: CFIoUL . 

  
(a) (b) 

Figure 8. Detection examples using YOLOv5s trained on the VisDrone2019 dataset. Visualization 

samples are chosen from VisDrone2019-DET-test-challenge. (a,b): Left: IoUL , right: CFIoUL . 

4.4.2. YOLOv5 and YOLOv8 on SODA-D 
The SODA-D dataset exhibits rich diversity in terms of location, weather, period, 

scene, and shooting angle. Moreover, SODA-D boasts very high-resolution and high-qual-
ity images and contains nine categories of objects, making it ideal for small object detec-
tion tasks. The training set contains 12,383 images, the validation set contains 5017 images, 
and the test set contains 7528 images. It should be noted that the training and testing of 
YOLOv5s and YOLOv8s on the SODA-D dataset are consistent with those on the Vis-
Drone2019 dataset. As shown in Table 3, the performance of YOLOv5s and YOLOv8s with 
the fusion of CFIoU loss on the SODA-D test set is the best and significantly improved, 
which is consistent with the results on the VisDrone2019 dataset. This fully demonstrates 
that the CFIoU loss has superior and effective performance compared to BIoU losses. 

Figure 7. Detection examples using YOLOv5s trained on the VisDrone2019 dataset. Visualization
samples are chosen from VisDrone2019-DET-test-challenge. (a,b): Left:
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

EIoU , right:
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CFIoU .
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4.4.2. YOLOv5 and YOLOv8 on SODA-D 
The SODA-D dataset exhibits rich diversity in terms of location, weather, period, 

scene, and shooting angle. Moreover, SODA-D boasts very high-resolution and high-qual-
ity images and contains nine categories of objects, making it ideal for small object detec-
tion tasks. The training set contains 12,383 images, the validation set contains 5017 images, 
and the test set contains 7528 images. It should be noted that the training and testing of 
YOLOv5s and YOLOv8s on the SODA-D dataset are consistent with those on the Vis-
Drone2019 dataset. As shown in Table 3, the performance of YOLOv5s and YOLOv8s with 
the fusion of CFIoU loss on the SODA-D test set is the best and significantly improved, 
which is consistent with the results on the VisDrone2019 dataset. This fully demonstrates 
that the CFIoU loss has superior and effective performance compared to BIoU losses. 
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
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rently, there are two types of loss functions for bounding box regression: 
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box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

IoU , right:
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gence or to better fit the predicted box to the target box. 
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predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
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4.4.2. YOLOv5 and YOLOv8 on SODA-D

The SODA-D dataset exhibits rich diversity in terms of location, weather, period, scene,
and shooting angle. Moreover, SODA-D boasts very high-resolution and high-quality
images and contains nine categories of objects, making it ideal for small object detection
tasks. The training set contains 12,383 images, the validation set contains 5017 images,
and the test set contains 7528 images. It should be noted that the training and testing
of YOLOv5s and YOLOv8s on the SODA-D dataset are consistent with those on the
VisDrone2019 dataset. As shown in Table 3, the performance of YOLOv5s and YOLOv8s
with the fusion of CFIoU loss on the SODA-D test set is the best and significantly improved,
which is consistent with the results on the VisDrone2019 dataset. This fully demonstrates
that the CFIoU loss has superior and effective performance compared to BIoU losses.

Table 3. Quantitative comparison of YOLOv5s and YOLOv8s trained using
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which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

IoU(baseline),
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box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

GIoU ,
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
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rently, there are two types of loss functions for bounding box regression: 
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• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

DIoU ,
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between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CIoU ,
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

EIoU , and
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CFIoU , respectively. The reported results are on the test set of SODA-D.
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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BIoU can be defined by Equation (2): 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

IoU 15.00 10.70 3.64 11.90 8.46 3.21
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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BIoU can be defined by Equation (2): 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

GIoU 13.10 9.56 3.33 11.80 8.48 3.27
R I.% 1 −12.67% −10.65% −8.52% −8.40% +0.24% +1.87%
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 

( ), 1gt
BIoU B B BIoU= −L . (1) 

BIoU can be defined by Equation (2): 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

DIoU 13.80 10.00 3.40 11.90 8.53 3.24
R I.% 1 −8.00% −6.54% −6.59% - +0.83% +0.93%
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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BIoU can be defined by Equation (2): 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CIoU 14.10 10.30 3.33 11.80 8.52 3.25
R I.% 1 −6.00% −3.74% −8.52% −8.40% +0.71% +1.25%
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 
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BIoU can be defined by Equation (2): 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

EIoU 15.6 11.6 3.91 12.1 8.62 3.29
R I.% 1 +4.00% +8.41% +7.42% +1.68% +1.89% +2.49%
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detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
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CFIoU 15.9 12.1 4.16 12.3 8.77 3.34
R I.% 1 +6.00% +13.08% +14.29% +3.36% +3.66% +4.05%

1 R I.% = Relative improv. %.

As shown in Table 3, consistent with the performance on the VisDrone2019 dataset,
YOLOv5s and YOLOv8s fused with the CFIoU loss achieve the best results on the SODA-D
test set with a significant performance improvement. The consistent performance on both
the VisDrone2019 and SODA-D datasets demonstrates the superiority and effectiveness of
the CFIoU loss over the BIoU losses.

4.4.3. SSD on VisDrone2019

Both YOLOv5 and YOLOv8 exhibit excellent performance in detecting small objects,
and the proposed CFIoU loss function can further enhance their detection capabilities. To
demonstrate the superiority of our proposed loss function over traditional object detection
algorithms, we conducted additional evaluation experiments using SSD, another popular
one-stage method implemented in PyTorch. We adopted the same training and testing
setup as YOLOv5 and YOLOv8 on the VisDrone2019 dataset and set the iteration number
to 32,400 based on experimental results and data fitting performance. Performance metrics
for each type of loss were reported in Table 4, with AP (the average of 10 mAPs at different
IoU thresholds, mAP@0.5:0.95) = (AP50 + AP55 + . . . + AP95)/10 and AP75 (mAP@0.75)
used as evaluation metrics.

It is evident that the SSD object detection algorithm does not perform well in detecting
small objects. As shown in Table 4, SSD models trained with GIoU, DIoU, CIoU, and EIoU
losses all showed performance degradation in AP metrics compared to the baseline model.
In addition, except for a slight increase with GIoU loss, all other losses resulted in decreased
performance in AP75 metrics. This indicates that BIoU losses perform poorly in algorithms
that are not good at detecting small objects, such as SSD. However, the SSD algorithm
with CFIoU loss showed a remarkable improvement of 5.59% and 5.37% in AP and AP75
metrics, respectively, demonstrating the advantage of CFIoU loss in small object detection.
This also indicates that even for object detection algorithms with poor performance in
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detecting small objects, the use of CFIoU loss in training can still lead to improved small
object detection performance.

Table 4. Quantitative comparison of SSD trained using
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information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
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gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
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information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
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 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CIoU ,

Sensors 2023, 23, x FOR PEER REVIEW 2 of 18 
 

 

detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
rameters of the predicted box in the next step. To address this issue, many researchers 
have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
been widely used in object detection algorithms. Currently, the mainstream BIoU 
losses include GIoU loss [12], DIoU and CIoU loss [13], and EIoU loss [14]. Therefore, 
the BIoU losses can be defined as Equation (1) 

( ), 1gt
BIoU B B BIoU= −L . (1) 

BIoU can be defined by Equation (2): 

( ),
gt

gt
gt

B B
BIoU R B B

B B
= −




, (2) 

where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 
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 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

IoU(baseline) 7.382 7.453

Sensors 2023, 23, x FOR PEER REVIEW 2 of 18 
 

 

detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
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have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

GIoU 7.247 7.519
Relative improv. % −1.83% +0.89%

Sensors 2023, 23, x FOR PEER REVIEW 2 of 18 
 

 

detection frameworks, bounding box regression is a crucial step in predicting rectangular 
boxes for locating objects. Generally, the regression performance of bounding boxes re-
flects the localization ability of the object detection algorithm. Therefore, a suitable loss 
function plays a vital role in improving the performance of bounding box regression. Cur-
rently, there are two types of loss functions for bounding box regression: 
• Loss based on the n -norm. The literature [1,7–10] calculates the n -norm distance 

between the corresponding coordinate points of two boxes to measure the distance 
between the predicted box and the target box. However, the literature [11] argues 
that the n -norm loss only considers the difference between two boxes and ignores 
their spatial relationship and containment relationship, thus proposing another loss 
based on Intersection over Union (IoU) between two boxes to measure the actual re-
gression performance of the predicted box and the target box. 

• Loss based on Broad IoU. The IoU loss function only considers the difference between 
the predicted box and the target box, without taking into account the intersection and 
anchor information between the two boxes. When the predicted box and the target 
box do not overlap, IoU cannot reflect the distance between them, and its correspond-
ing loss function cannot calculate gradients, making it impossible to optimize the pa-
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between the predicted box and the target box into the original IoU loss function, 
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loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
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been widely used in object detection algorithms. Currently, the mainstream BIoU 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

DIoU 7.214 7.331
Relative improv. % −2.28% −1.64%
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are collectively referred to as broad IoU losses. Due to their excellent performance in 
measuring the actual differences between two bounding boxes, BIoU losses have 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

CIoU 7.155 7.095
Relative improv. % −3.08% −4.80%
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ing loss function cannot calculate gradients, making it impossible to optimize the pa-
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have proposed IoU-based loss functions that incorporate spatial information errors 
between the predicted box and the target box into the original IoU loss function, 
which can better improve the accurate positioning ability of the predicted box. These 
loss functions include the original IoU loss and various improved versions, which 
are collectively referred to as broad IoU losses. Due to their excellent performance in 
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where B  and gtB  represent the predicted box and the target box, respectively. 
( ), gtR B B

 represents the penalty term, which is mainly used to accelerate model conver-
gence or to better fit the predicted box to the target box. 

These BIoU loss functions improve the localization ability of the predicted boxes by 
considering the discrepancies between the center point distances, overlap areas, and 
width-height information of both boxes. However, as the predicted box gradually ap-
proaches the target box, the GIoU loss, DIoU loss, and CIoU loss directly degrade to the 
IoU loss. This can be seen as the situation in Figure 1, where BIoU losses start to degrade 
to IoU loss when the predicted box and target box geometric center points are close or 
overlap. It should be noted that IoU loss cannot reflect the intersection and anchor box 
information of the two boxes, so it cannot offer a more effective means of fitting for the 
predicted box. On the other hand, in the process of gradually fitting the predicted box to 
the target box, BIoU losses do not take into account the spatial information of the true 
target, which leads to the localization loss function being unable to know the true fitting 
degree between the predicted box and target box, and thus unable to provide more accu-
rate information for the next optimization of the predicted box. This can be seen as the 
situation in Figure 2, where for the two different fitting situations (i.e., different relative 
positions and overlap situations) of boxes A and B, BIoU losses yield identical values for 

EIoU 7.340 7.037
Relative improv. % −0.57% −5.58%
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CFIoU 7.795 7.853
Relative improv. % +5.59% +5.37%

4.5. Discussion

The results from Tables 2 and 3 demonstrate that the CFIoU loss is compatible with
both anchor-based YOLOv5 and anchor-free YOLOv8, leading to improved model training
and performance. However, the CFIoU loss is more adaptable to anchor-based object
detection algorithms than anchor-free algorithms in terms of performance improvement.
This is because, in anchor-based object detection algorithms, the predefined prior boxes
facilitate the accurate matching of the size and shape of target objects and guide bounding
box regression using the IoU loss function. Moreover, the information from prior boxes can
be utilized to constrain the regression range, reducing the difficulty of regression. On the
other hand, anchor-free object detection algorithms lack prior box information and require
determining the position and size of the true bounding boxes using other means to guide
regression. Although this approach is more flexible, it is also more challenging due to the
absence of constraints on the regression range, making it difficult to achieve the same level
of performance as anchor-based algorithms. Nevertheless, the CFIoU loss remains effective
for anchor-free algorithms.

4.6. Further Work

CFIoU is a variant of IoU. In the original Non-Maximum Suppression (NMS), IoU is
used to suppress redundant detection boxes, where the overlapping area is the only factor
considered. This often leads to erroneous suppression in the presence of occlusion. In our
future work, we will further investigate CFIoU-NMS, which takes into account the distance
between the four corners of the two boxes in CFIoU as well as the foreground information
of the target box in the suppression criterion. This may bring significant benefits to dense
object detection or object detection in the presence of occlusion.

5. Conclusions

In this paper, we propose a novel loss function, namely, the CFIoU loss, to guide bound-
ing box regression. We address the issue of BIoU loss degradation to IoU loss during model
training by designing a penalty term that normalizes the distance between corresponding
corner points of the bounding boxes. Additionally, we introduce a foreground-target-based
penalty term to better emphasize the spatial information between the predicted and ground
truth bounding boxes. This penalty gives a larger punishment to predicted bounding boxes
with poor regression performance, facilitating better fitting to the ground truth bounding
boxes. Finally, we demonstrate the superior performance of the CFIoU loss in both anchor-
based and anchor-free object detection algorithms, as well as its effectiveness in improving
small object detection through extensive experiments.
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