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Supplementary Materials: RAIM and Failure Mode Slope: 
Effects of Increased Number of Measurements and Number of 
Faults

This document contains mathematical proofs and derivations as supplementary mate-
rials to an article1 submitted Sensors Journal.

S1. SVD Interpretations of Various Quantities.

This appendix uses the SVD to represent various useful quantities.

Measurement Effects. It is useful to consider the physical meaning of the SVD in this applica-
tion. The measurement model of eqn. (1), where the SVD of H is given in eqn. (4), can be
rewritten as:

y = [U1, U2]

[(
Σ

0

)]
V⊤ x + η+ f (S1)

=
4

∑
i=1

ui
1 αi (vi)⊤ x + η+ f (S2)

=
4

∑
i=1

ui
1 αi ci + η+ f (S3)

where for i = 1, . . . , n,

U1 =
[
u1

1, . . . , un
1
]

for ui
1 ∈ Rm×1;

V =
[
v1, . . . , vn] for vi ∈ Rn×1; and ,

ci = (vi)⊤ x for i = 1, . . . , n.

Note that U2 as an orthogonal basis for the complement of the range space of H plays no
role in determining the value of y. The quantities ci are the coordinates for the vector x with
respect to the orthogonal basis for Rn defined by the columns of V. Because V is unitary,
∥x∥ = ∥c∥. Consider the following:

• The vector v1 defines the direction of x ∈ Rn that affects y the most. A unit change of
x in the direction of v1 causes a change in y of magnitude α1 in the direction u1

1.
• The vector v4 defines the direction of x ∈ Rn that affects y the least. A unit change of

x in the direction of v4 causes a change in y of magnitude α4 in the direction u4
1.

Similar discussion holds for v2 and v3.

Representations of Useful Quantities. Using the SVD decomposition of (4), we have

(H⊤H)−1 =

(
V
[
Σ 0

]
U⊤U

[
Σ

0

]
V⊤

)−1

=

(
V
[
Σ 0

][Σ

0

]
V⊤

)−1

=
(

VΣ2V⊤
)−1

= VΣ−2V⊤. (S4)

1 Equations and other quantities from the main article may be referenced within this document without being
explicitly restated.
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Then,

H∗ = (H⊤H)−1H⊤

= VΣ−2V⊤V
[
Σ 0

]
U⊤

= V
[
Σ−1 0

]
U⊤

= VΣ−1U⊤
1 , (S5)

which leads to

(H∗)⊤(H∗) = U1Σ−1V⊤VΣ−1U⊤

= U1Σ−1 In Σ−1U⊤

= U1Σ−2U⊤
1 . (S6)

The matrix (H∗)⊤(H∗) ∈ Rm×m is positive semi-definite and symmetric.

Worst-Case Faults. Using the properties of the matrices in the SVD, eqn. (7) can be expressed
as

x̂ =
4

∑
i=1

vi α−1
i (ui

1)
⊤ y. (S7)

Because α4 is smaller than the other αi’s, the output direction u4
1 has the greatest impact on

the estimate. In the case of a worst-case fault, whose direction is u4
1 and magnitude is µ,

eqn. (7) becomes

x̂f =
4

∑
i=1

vi α−1
i (ui

1)
⊤
(

y + µu4
1

)
(S8)

=
4

∑
i=1

(
vi α−1

i (ui
1)

⊤ y
)
+ µ

4

∑
i=1

(
vi α−1

i (ui
1)

⊤ u4
1

)
(S9)

= x̂ + µ v4 α−1
4 (S10)

= x̂ + ξ f , (S11)

where y ≜ H x + η is the fault-free measurement vector. Thus, the maximum added fault
error magnitude is

∥ξ f ∥ = ∥x̂f − x̂∥ = µ α−1
4 .

Projection Matrices.

Lemma S1. For the matrix P defined relative to eqn. (19): rank(P) = trace(P) = n.

Proof: Substituting the SVD of H into the definition of P and simplifying yields:

P = H
(

V Σ2 V⊤
)−1

H⊤

= U
[

Σ

0

]
V⊤

(
V Σ2 V⊤

)−1
V
[
Σ 0

]
U⊤

= U
[

In 0
0 0m−n

]
U⊤ (S12)

= U1 U⊤
1 . (S13)
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The right-hand side of eqn. (S12) provides an eigendecomposition of P. The columns of
U1 are eigenvectors corresponding to eigenvalues equal to one. The columns of U2 are
eigenvectors corresponding to eigenvalues equal to zero. Therefore,

trace(P) = rank(P) = n.

■  

Lemma S2. For the matrix Q defined relative to eqn. (20): rank(Q) = trace(Q) = (m − n).

Proof: Following analysis similar to that leading to eqn. (S12) yields

Q = U
[

0n 0
0 Im−n

]
U⊤ (S14)

= U2 U⊤
2 . (S15)

The right-hand side of eqn. (S14) provides an eigendecomposition of Q. Each column of U1
is an eigenvector of Q with eigenvalue equal to zero. Each column of U2 is an eigenvector
of Q with eigenvalue equal to one. Therefore,

trace(Q) = rank(Q) = (m − n).

■  

S2. Derivation of the Estimation MSE

The goal of this appendix is to derive the expressions in eqns. (14) and (15). Starting
from eqn. (10), the MSE of δx can be express as

E⟨(δx)⊤(δx)⟩ = E⟨(δxη + δxf)
⊤(δxη + δxf)⟩

= E⟨(δxf)
⊤(δxf)⟩+ E⟨(δxη)

⊤(δxη)⟩
= ∥δxf∥2 + ∥δxη∥2

M

∥δx∥2
M = ∥δxf∥2 + κ1 (S16)

where κ1
.
= ∥δxη∥2

M = E⟨(δxη)⊤(δxη)⟩. This expression simplifies as follows:

κ1 = E⟨(δxη)
⊤(δxη)⟩

= E
〈

tr
(

η⊤ U1 Σ−1V⊤V Σ−1 U⊤
1 η

)〉
= tr

(
Σ−2 U⊤

1 E
〈

ηη⊤
〉

U1

)
= σ2

η tr
(

Σ−2
)

(S17)

From (12), Cx = σ2
η VΣ−2V⊤, so that

tr(Cx) = σ2
η tr

(
VΣ−2V⊤

)
= σ2

η tr
(

Σ−2V⊤V
)

= σ2
η tr

(
Σ−2

)
.

Therefore, κ1 = tr(Cx).
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S3. Derivation of the MSE of the Residual r

Starting from eqn. (20), the correlation matrix for r is

E⟨rr⊤⟩ = E⟨Q(f + η)(f + η)⊤Q⊤⟩
= E⟨Q f f⊤Q⊤⟩+ E⟨Q f ⊤Q⊤⟩

+ E⟨Q η f⊤Q⊤⟩+ E⟨Q ⊤Q⊤⟩
= Q f f⊤Q⊤ + Q σ2

η ImQ⊤

= Q f f⊤Q⊤ + œ2Q. (S18)

The MSE for the residual r is:

E⟨r⊤r⟩ = E⟨tr
(

r⊤ r
)
⟩ = E⟨tr

(
rr⊤

)
⟩

= E
〈

tr
(
Q(η+ f)(η+ f)⊤Q⊤)〉

= tr
(

Q f f⊤Q⊤ + σ2
η (Q ImQ⊤)

)
= tr(Q f f⊤Q⊤) + σ2

η tr(Q⊤Q)

= f⊤Q⊤Q f + σ2
η tr(Q)

∥r∥2
M = ∥U⊤

2 f∥2 + σ2
η (m − n) (S19)

S4. Invertibility Conditions

This section provides the conditions on the number of faults such that the matrix ∆π

in (50) will be non-invertible, i.e. singular. Recall that

∆π = D⊤
π Q Dπ ,

where ∆π ∈ Rh×h, Q ∈ Rm×m with orthonormal columns, and Dπ ∈ Rm×h is a binary
matrix with exactly one non-zero element per column. The rank of matrices Dπ and Q are:

rank(Dπ) = h

rank(Q) = m − n.

Claim: The matrix ∆π is not invertible if h > m − n.
Proof: The invertible matrix theorem[1] states that ∆π ∈ Rh×h is invertible if and only if it
has full rank; which would require rank(∆π) = h.

Because

Q⊤Q = Q Q = Q,

rank(A⊤A) = rank(A) = rank(A⊤), and

rank(A B) ≤ min(rank(A), rank(B)) (S20)

it is true that

rank(∆π) = rank
(

D⊤
π Q Dπ

)
= rank

(
D⊤

π Q⊤ Q Dπ

)
= rank

(
(Q Dπ)

⊤(Q Dπ)
)

= rank(Q Dπ)

≤ min(rank(Q), rank(Dπ))

rank(∆π) ≤ min(m − n, h)
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Therefore, ∆π is not invertible when h > (m − n). ■

The interpretation of this result is as follows. As stated in Section 6, any fault in
span(U1) is not detectable from the residual. When h > (m − n), it is guaranteed that there
exists a fault f in the n-dimensional span(U1) will be in the h-dimensional span(Dπ).

Note that even when h ≤ (m − n) it is possible for ∆π to be singular. An example is
when any column of Dπ is in span(U1).

1. Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press, 1985.
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