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Abstract: Intelligent telemedicine technology has been widely applied due to the quick development
of the Internet of Things (IoT). The edge-computing scheme can be regarded as a feasible solution
to reduce energy consumption and enhance the computing capabilities for the Wireless Body Area
Network (WBAN). For an edge-computing-assisted intelligent telemedicine system, a two-layer
network architecture composed of WBAN and Edge-Computing Network (ECN) was considered
in this paper. Moreover, the age of information (AoI) was adopted to describe the time cost for the
TDMA transmission mechanism in WBAN. According to the theoretical analysis, the strategy for
resource allocation and data offloading in edge-computing-assisted intelligent telemedicine systems
can be expressed as a system utility function optimizing problem. To maximize the system utility, an
incentive mechanism based on contract theory (CT) was considered to motivate edge servers (ESs) to
participate in system cooperation. To minimize the system cost, a cooperative game was developed
to address the slot allocation in WBAN, while a bilateral matching game was utilized to optimize the
data offloading problem in ECN. Simulation results have verified the effectiveness of the strategy
proposed in terms of the system utility.

Keywords: intelligent telemedicine; edge computing; resource allocation; data offloading

1. Introduction

The rapid popularization of IoT technology has accelerated the application over a
range of industries, allowing for the change from classical informatization to automation
and intelligence. Intelligent telemedicine as an IoT technology applied in the medical
field is dedicated to raising the level of medical care [1]. Conventional medical services
struggle to meet the demands of many patients due to resource limitations, complicated
procedures, and high expenses. For the elderly and chronic patients, inconvenient medical
consultations, health monitoring, and medical care result in opportunities for effective
treatment and disposal being missed [2]. It can enhance the transmission and processing
capabilities if IoT technology is applied in traditional medical services. Moreover, the
real-time monitoring of a patient’s health state can be achieved by deploying a variety of
heterogeneous medical sensors on patients.

Telemedicine technology can offer universal health monitoring services. However,
the increase in the number of patients can overrun the operation system of the medical
center (MC). Additionally, the delay-sensitive requirements of medical information analysis
cannot usually be met by local gateway user nodes (GUNs) with poor computing capability,
which restricts the advancement of the intelligent telemedicine system. As an emerging
distributed computing framework, edge computing can help decrease the local latency of
processing medical data packets and enhance energy efficiency by offloading data from the
GUNs to ESs and avoiding medical data transmission to the MC, which usually leads to a
larger latency for data processing [3]. Therefore, the edge computing utilized in intelligent
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telemedicine systems can effectively reduce the energy consumption of local medical data
analysis or the transmission delay from the GUNs to the MC. Furthermore, it can meet the
real-time analysis demand of emergency medical monitoring data and improve the quality
of service (QoS) for the intelligent telemedicine system.

In this paper, a resource allocation and data offloading strategy for edge-computing-
assisted intelligent telemedicine systems was considered. To maximize the system utility, a
contract mechanism was introduced to incentivize ESs to participate in system cooperation.
Moreover, the whole framework for medical monitoring data updates was separated into
two-layer networks: the WBAN and the ECN. For the WBAN, heterogeneous sensors
share the channel through TDMA technology, and the GUNs minimize the AoI of each
monitoring packet by slot allocation. For the ECN, the GUNs can choose the proper ESs for
access based on the corresponding load and network conditions.

The main contributions of this article are summarized as follows:

• An edge-computing-assisted intelligent telemedicine system was studied. Considering
the requirements of the patients and the utility of the MC, the system utility was
determined by the utility of the MC and the system cost;

• To increase the contributions of ESs to the system, an incentive mechanism based
on the contract theory was introduced to motivate ESs to provide communication
resources;

• A two-layer communication network, encompassing the WBAN and the ECN, was
used to describe the edge-computing-assisted intelligent telemedicine system. For the
WBAN, a cooperative game was proposed to optimize the allocation of time slots. For
the ECN, a bilateral matching game was introduced to address the data offloading
issue.

The remaining parts of this paper are as follows. The second section introduces recent
studies related to intelligent telemedicine technology. The third section introduces the
system model studied in this paper. The fourth section introduces the optimization strategy
to maximize system utility. In the fifth section, the performance of the strategy proposed is
verified by simulation experiments. Finally, the sixth section summarizes the work of this
paper.

2. Related Studies

As an important component of smart wearable technology and Internet of Medical
Things (IoMT), WBAN technology is considered an important way to achieve intelligent
telemedicine. The WBAN is a special wireless sensor network (WSN) that surrounds the
human body and consists of GUN and micro-inertial sensors distributed on the surface
or inserted into the human body [4]. Numerous researchers have offered various low-
power short-range communication solutions based on the IEEE 802.15.6 standard [5].
Different channel access strategies based on TDMA technology have been introduced
in [6–9] to meet the requirements of the patients, which can improve energy efficiency
and enhance the utility of the WBAN system. A hybrid periodic protocol was designed
to achieve efficient resource allocation and emergency control in adaptive continuous
non-competitive periods in [6]. In [7], to improve the reliability of emergency data, an
adaptive channel access scheme based on a super-frame structure was designed. The energy
consumption of successfully transmitted data frames under this scheme was examined,
and an analytical model for calculating the average delay and reliability of emergency data
frames was suggested. Two technologies were introduced to improve the reliability and
energy efficiency of the WBAN in [8]. The first technology allowed nodes to adaptively
allocate sleep time during active periods based on channel state to avoid deep channel
fading. The second technology was dynamic slot allocation based on node requirements.
In [9], two new TDMA-based strategies were proposed to improve the reliability and
energy efficiency of the WBAN. All of them could adaptively synchronize the nodes
when processing the channel state of the nodes. Moreover, in [10], a channel periodicity-
based scheduling (CPBS) strategy was proposed to realize energy-efficient and reliable
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communication in dynamic WBANs. To improve the overall super-frame utilization by
assigning dynamic slots, a dynamic slot allocation (DSA) scheme based on non-overlapping
backoffs (NOBA) was utilized, which can reduce energy consumption [11]. In [12], a MAC
protocol based on dynamic super-frame (SF) structure and priority-based dedicated slot
allocation was proposed to enhance QoS and energy consumption.

The above studies can significantly improve the energy efficiency of the system with
sufficient slots. However, when the slots are insufficient to meet the requirements of all
sensors, the urgency of the packets should be seriously evaluated, otherwise resulting in
the poor overall performance of the system. Moreover, with the widespread application
of WBAN technology in medical health monitoring scenarios, many disadvantages have
emerged, such as insufficient computing resources, high energy consumption, and short
operational life. Edge computing is regarded as a feasible solution to solve these prob-
lems. In [13], latency and energy consumption were successfully decreased by transferring
intensive computing tasks to the ESs in order to expand the computing capability of the
WBNA system. To process large amounts of physiological data, an improved computation
architecture by combining the WBAN system with edge-computing technology was sug-
gested to obtain a shorter average service time and higher success rates for task execution
in [14]. In [15], an alternating direction method of the multipliers-based algorithm was
proposed to maximize the total payoffs of the ESs and the patients. In [16], a two-stage
potential game-based computation offloading strategy for WBANs assisted by edge com-
puting with consideration for the task and user priorities was proposed, which can meet the
requirements of low delay and low energy consumption in the WBANs scenario. For task
offloading and migration in WBAN systems, a collaborative optimization strategy based
on the asynchronous advantage actor-critic (A3C) algorithm was suggested to dramatically
enhance the QoS for the patients in [17]. Furthermore, to fully utilize the potential of
edge computing, reasonable resource allocation mechanisms should be taken into account.
In [18], two auction mechanisms for the blockchain network formed by edge computing
services and miners were proposed to maximize social welfare. In [19], a stacked task
sorting and ranking mechanism was proposed to improve resource allocation in each edge
device.

Most of the reported studies have assumed that the system cost is composed of the
data delay (generally including transmission delay and computation delay) and the energy
consumption for transferring and computing the medical monitoring data, and the system
utility is defined as the opposite of the system cost. In this paper, the utility of the MC is
considered in the system utility for the intelligent telemedicine system. Moreover, as the
generated packets usually experience a waiting delay before scheduled transmission in
TDMA, the AoI is also considered in the system cost, which is different from the reported
works. Additionally, a two-layer network architecture is proposed to describe the process
of medical data updates. An incentive mechanism based on contract theory is considered
to motivate the ESs to provide communication and computing resources to maximize the
system utility. Furthermore, a cooperative game is proposed to allocate the time slots in the
first layer network (the WBAN), and a bilateral matching game is adopted to solve the data
offloading problem in the second layer network (the ECN).

3. System Model

In this paper, we considered an intelligent telemedicine scenario assisted by edge com-
puting. As depicted in Figure 1, the computation offloading framework in the intelligent
telemedicine system consists of four parts, i.e., medical sensors, GUNs, ESs, and the MC.
To relieve the high energy consumption of GUNs, the contract mechanism for incentivizing
ESs to participate in the cooperation was introduced in the MC. Thus, the whole system is
described as a two-layer network architecture: the WBAN and the ECN. A local GUN and
numerous sensors around the body make up a patient-centered WBAN. Each sensor in the
WBAN keeps records of medical monitoring data and sends it to the associated GUN. The
GUNs and the corresponding ESs make up the ECN. After gathering monitoring packets
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from the WBAN, the GUNs select the appropriate ES to transmit and analyze the medical
monitoring data.
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Figure 1. Edge-computing-assisted intelligent telemedicine system model. 
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Figure 1. Edge-computing-assisted intelligent telemedicine system model.

The assumption is that there are N patients and the number of patients is equal to
the number of WBANs or GUNs, denoted by N ={1, 2, . . . , N}. Each WBAN consists
of a GUN and S heterogeneous medical sensors deployed on the patient, denoted by
S ={1, 2, . . . , S}. The corresponding medical analytic functions are carried out on the ESs,
denoted by M ={1, 2, . . . , M}. Some parameters involved in this paper are listed in Table 1.

Table 1. Summary of key notations.

Notations Description

N The set of patients or WBANs or GUNs

M The set of ESs

S The set of sensors in each WBAN

K The set of the medical urgency levels

u Time slot allocation strategy

a Collected packet offloading strategy

θ Type of ESs

ξi Probability of θi

qi Communication resources contributed by ES i

πi Rewards for ES i

I The total types of ESs

Gij(t) Generation timestamp of the data packet of the sensor j in WBAN i

Aij(t) The AOI of the sensor j in WBAN i at slot t

T The scheduling period of the WBAN

δk The coefficient of medical urgency level k

Bi The medical urgency of the packet collected by GUN i

Fs Computing resources of the ESs

ui,j(t) Time slot allocation variable

xijk Medical urgency class variable

aim Collected packets offloading variable
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3.1. Interaction between MC and ESs

Considering that each ES has a different willingness to join the intelligent telemedicine
system to provide the communication resources for GUNs’ access, the MC provides the
contract composed of communication resources and rewards corresponding to the willing-
ness of ESs. ESs with different participation willingness provide different communication
resources and obtain corresponding rewards from the MC. θ is introduced to denote the
participation willingness of different ESs. Thus, we can classify the ESs based on their
participation willingness. If there are I types of participation willingness for the ESs, which
are denoted as [20]:

θ1 < θ2 < . . . < θI (1)

where a larger value of θ indicates a stronger desire for the ES to assist the intelligent
telemedicine system. It is assumed that the probability of the ES with participation will-
ingness θi is ξi, and ∑I

i=1 ξi = 1. In this paper, ES i belongs to type θi and type θi ES is ES
i, i.e., we assume that the types’ number equals the ESs’ number. The contract provided
by the MC for the ESs with participation willingness θi can be described as (qi(θi), πi(θi)),
where qi(θi) denotes the communication resources provided by the ESs with participation
willingness θi, and πi(θi) is the corresponding rewards. It is free for the ESs to accept
or decline the contract. If the ESs decline the contract, the contract will be expressed as
(qi(θi), πi(θi)) = (0, 0).

The utility of the MC: The ESs usually afford communication resources according to
their participation willingness for GUNs’ access, which can be regarded as an auxiliary
analysis to process the medical monitoring data. In order to enhance the contributions
of the ESs, the MC can return the corresponding rewards to the ESs if they provide the
appropriate communication resources. When the communication resource provided by the
ESs for GUNs is qi(θi), while the corresponding reward provided by the MC is πi(θi), the
utility function of the MC can be denoted as:

UMC(i) = αqi(θi)− πi(θi) (2)

where α is the unit revenue obtained by the MC from the communication resources provided
by ESs. Since there are I types of ESs with probability ξi, the expected utility of the MC is:

UMC =
I

∑
i=1

ξi[αqi(θi)− πi(θi)] (3)

The utility of the ES: The rewards obtained from the MC can compensate for the cost
of the ESs providing communication resources. Thus, the utility function of the ES with
participation willingness θi can be expressed as [21,22]:

UES(i) = θiv(πi(θi))− cqi(θi) (4)

where v(π) is the evaluation function corresponding to the reward π, and the coefficient c
represents the cost of providing unit communication resources. Without loss of generality,
the evaluation function can be defined as v(π) = ε ln(1 + π), and ε > 0 is a constant
coefficient [21].

3.2. Communication Model for the WBAN

Since medical information monitored by body sensors is time sensitive, AoI is used to
describe the update speed of medical packets [23]. In this paper, TDMA technology was
utilized to share the channel within the WBAN. Thus, the medical sensors can transmit
the collected medical monitoring data according to the assigned time slots. To facilitate
calculation, all data packets are generated with a timestamp Gij(t), where i ∈ N and j ∈ S.
The AoI of each sensor is represented as the difference between the current time slot t and
the timestamp Gij(t) when the latest medical monitoring data packet was updated. Let
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Aij(t) represents the AoI of the sensor j in WBAN i at slot t, and the AoI update process
can be expressed as [24]:

Aij(t) =
{

Aij(t) + 1, otherwise
t− Gij(t), the timestamp is updated

(5)

The uplink data transmission rate for the sensor j in the WBAN i can be expressed as:

rSN
ij = w log2(1 +

pSN
ij hSN

ij

σ2 ) (6)

where w represents the bandwidth of the channel for the WBAN i, pSN
ij is the transmission

power of the sensor j in WBAN i, and hSN
ij is the channel gain between the sensor j and the

corresponding GUN i. σ2 is the noise power. Thus, the uplink transmission delay of the
sensor j in WBAN i can be described as:

TSN
ij =

dij
SN

rSN
ij

(7)

where dSN
ij depicts the size of the medical monitoring data packet generated by the sensor j

in WBAN i.
In this paper, it is assumed that the scheduling period of the WBAN is TWBAN,

which contains T data transmission time slots. The time slot set can be denoted by
T = {0, 1, . . . , T − 1}. Assuming that the length of each time slot is L, the size of the
slot block required for the sensor j in WBAN i to transmit its data packet is:

NSN
ij =

⌈
TSN

ij

L

⌉
(8)

The GUN i first gathers all medical packets in the WBAN i at the end of the schedul-
ing period and then selects the appropriate ES for data offloading. The vector u ={

ui,j(t)
∣∣i ∈ N, j ∈ S, t ∈ T

}
is used to represent the slot allocation, where ui,j(t) = 1 depicts

that the sensor j in WBAN i occupies the t-th slot. Therefore, the size of the collected packet
can be expressed as:

dGUN
i =

S

∑
j=1

Y(
T

∑
t=1

ui,j(t) > 0)dSN
ij (9)

where Y(·) is an indicator function, and Y(g) = 1 if g > 0; if otherwise, Y(g) = 0.
To monitor the health status of patients more comprehensively, multiple types of

sensors are utilized in the WBANs to evaluate various physiological indicators. For ex-
ample, electrocardiographic (ECG) sensors monitor heart rate and blood pressure, while
electroencephalographic (EEG) sensors monitor cortical activities [25]. To reflect the health
criticality of the patients from a medical perspective, the medical urgency of the packets
is also considered in this paper. It is assumed that all medical monitoring packets are
classified into K categories according to the medical urgency, denoted by K = {1, 2, . . . , K}.
Let xijk = 1 represent that the medical monitoring packet belongs to the k-th class generated
by the sensor j in WBAN i, and xijk = 0 represents other cases. Therefore, the medical
urgency of the medical packet collected by GUN i can be expressed as:

Bi =
S

∑
j=1

Y(
T

∑
t=1

ui,j(t) > 0)
K

∑
k=1

xijkδk (10)

where δk represents the coefficient of medical urgency. The higher value of the coefficient
represents a higher level of medical urgency.
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3.3. Communication Model for the ECN

The MC may be made aware of the precise participation willingness of each ES after
they have all signed the contracts. The MC will broadcast the contract information of all
ESs to the GUNs, and after that, ESs need to provide service according to the contracts they
signed.

Due to the limitations of GUNs’ computing resources and energy consumption, as
well as the integrity of medical monitoring data, partial data offloading was not considered
in this article. To enhance spectrum efficiency, the NOMA technology is adopted for data
transmission in the ECN. The data offloading rate between the GUN i and the ES m can be
expressed as [26]:

rGUN
im = qm log2(1 +

pGUN
i hGUN

im

∑k∈N\{i}:akm=1 pGUN
k hGUN

km + σ2
) (11)

where pGUN
i represents the transmission power of GUN i, and hGUN

im represents the channel
gain between the GUN i and the ES m.

According to Equations (9) and (11), the delay and energy consumption for the GUN i
transmitting medical monitoring packets to the ES m can be written, respectively, as:

Ttran
im =

dGUN
i

rGUN
im

(12)

Etran
im = pGUN

i Ttran
im (13)

After ESs receive the collected packets, the computing resources are allocated accord-
ing to the level of medical urgency. The computing resources allocated to the packets
provided by the GUN i can be expressed as:

Fim = Fs ∗
Bi

N
∑

k=1
akmBk

(14)

where Fs represents the total computing resources of ESs. a = {aim|i ∈ N, m ∈ M} is the
offloading strategy of all GUNs, where aim = 1 represents the GUN i selecting the ES m to
offload medical data packets. The computing delay of the packets from the GUN i is:

Tcom
im =

fidGUN
i

Fim
(15)

where fi represents the computation workload/intensity (in CPU cycles per bit), i.e., the
number of CPU cycles for ES i to process 1 bit data.

3.4. System Utility

The quality of experience (QoE) can be described by the timeliness of the medical
data for updates and the energy consumption in the intelligent telemedicine system. Thus,
the cost of monitoring data for patient i can be described as the weighted sum of the
AoI, transmission time, computing time at the ES, and energy consumption, which can be
expressed as:

Cdata
i = βT

M

∑
m=1

aim(
S

∑
j=1

Aij(t) + Ttran
im + Tcom

im ) + βE
M

∑
m′=1

aim′(Etran
im′ ) (16)

where βT and βE are the weight factors for the time parameters and energy consumption,
and βT + βE = 1. As each sensor in the WBANs uses TDMA technology to access the
channel and the wireless resource is shared by all sensors, the data transmission for each
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sensor would lead to relatively fixed energy consumption. Thus, the transmission energy
consumption of all sensors within the WBAN is not considered in Equation (16). Theo-
retically, the time for the monitoring data to be transmitted to the MC should include the
scheduling period of the WBAN, the transmission delay of the medical packets offloaded to
the ESs, the processing delay of the packets for the ESs, and the time for the ESs to upload
the processing results to the MC. Since the size of packets after being processed by the ESs
is usually small enough, the time for the ESs to upload analysis results to the MC is ignored
in this paper.

In order to enhance the utility of the MC while meeting the needs of the patients, the
system utility can be defined as the difference between the utility of the MC and the system
cost:

W = UMC −
N

∑
i=1

Cdata
i (17)

4. Resource Allocation and Data Offloading Based on Optimal Contracts

Our goal is to maximize the system utility in an intelligent telemedicine system, and
the optimization problem can be modeled as follows:

max
(q,π),u,a

W = UMC −
N

∑
i=1
{βT

M

∑
m=1

aim(
S

∑
j=1

Aij(t) + Ttran
im + Tcom

im ) + βE
M

∑
m′=1

aim′(Etran
im′ )

}
(18)

Subject to the following constraints:

aim ∈ {0, 1}, ∀i ∈ N, m ∈ M (19)

ui,j(t) ∈ {0, 1}, ∀i ∈ N, j ∈ S, t ∈ T (20)

S

∑
j=1

NSN
ij ≤ T, ∀i ∈ N (21)

M

∑
m=1

aim = 1, ∀i ∈ N (22)

N

∑
i=1

aim ≤ NSL (23)

where (q, π) is the set of the optimal contracts provided by the MC for all types of ESs.
u and a represent the slot allocation strategy for the WBAN and the data offloading strategy
for the ECN, respectively. Constraint Equations (19) and (20) indicate that the slot allocation
variable and the offloading strategy variable are binary variables. Constraint Equation (21)
guarantees that the allocated slots cannot exceed the threshold T. Constraint Equation (22)
shows that each GUN can only choose one ES. The constraint of the service limitation of
ESs is shown in Equation (23). Based on Equation (11), we can observe that when a GUN’s
collected medical monitoring packet is offloaded to the ES, its cost depends both on the
offloading strategies of other GUNs and its own. Moreover, if too many GUNs choose the
same ES for auxiliary computing, the communication resources provided by the ES need to
be shared by multiple GUNs. These GUNs will suffer from severe transmission interference
to the extent that the data offloading rate is affected, which eventually generates a large
system cost. In addition, too many GUNs accessing the same ES will bring additional
equipment access costs and affect the willingness of the ES to participate in the cooperation.
In this case, it is necessary to limit the number of GUNs for ES services.
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Since the constraints and optimization variables in the optimization problem Equa-
tion (18) are interdependent, we can rewrite it in the following form to decouple them:

max
(q,π),u,a

W = UMC −
N

∑
i=1

Cdata
i = UMC − CWBAN − CECN (24)

where:

CWBAN = βT
N

∑
i=1

S

∑
j=1

Aij(t) (25)

CECN =
N

∑
i=1
{βT

M

∑
m=1

aim(Ttran
im + Tcom

im ) + βE
M

∑
m′=1

aim′(Etran
im′ )

}
(26)

Based on Equation (24), the goal of maximizing the system utility can be achieved by
maximizing the MC utility and minimizing the system cost, which consists of the cost for
the WBAN CWBAN and the cost for the ECN CECN. Specifically, maximizing the utility of
the MC corresponds to the optimal contract formulation problem between the MC and the
ESs, minimizing the cost for the WBAN corresponds to the slot allocation problem, and
minimizing the cost for the ECN corresponds to the data offloading problem.

4.1. Optimal Contract Formulation between MC and ESs

Taking the first term in Equation (24) as the objective function, the maximization
problem of the MC’s utility can be written as:

max
(q,π)

UMC =
I

∑
i=1

ξi[αqi(θi)− πi(θi)] (27)

Subject to the following constraints:

UES(i) = θiv(πi(θi))− cqi(θi) ≥ 0, ∀i ∈ I (28)

θiv(πi(θi))− cqi(θi) ≥ θiv(πj(θj))− cqj(θj), ∀i, j ∈ I, i 6= j (29)

where Equations (28) and (29) are the individual rationality (IR) conditions and incentive
compatibility (IC) conditions for the feasible contracts based on contract theory [27]. For
the IR condition, it ensures that ESs select contracts that maintain the non-negativity of
their own utility. The IC condition ensures that the maximum benefit is obtained if and
only if the ESs select a contract that matches their participation willingness.

Since the participation willingness of ESs is unknown to the MC, there are total I IR
constraints and I(I − 1) IC constraints in the optimization problem Equation (27). In order
to facilitate the solution, we first simplify these constraints.

Lemma 1. For any feasible contract (qi(θi), πi(θi)), there is πi(θi) > πj(θj) if and only if θi > θj.

Proof of Lemma 1. See Appendix A. �

Lemma 2. The feasible contract (qi(θi), πi(θi)) satisfies πi(θi) > πj(θj) if and only if qi(θi) >
qj(θj).

Proof of Lemma 2. See Appendix B. �

Corollary 1. The feasible contract (qi(θi), πi(θi)) satisfies πi(θi) = πj(θj) if and only if qi(θi) =
qj(θj).
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Based on Lemma 1, Lemma 2, and the Corollary 1, to make the optimal contract
satisfy the condition that ESs with higher participation willingness will provide more
communication resources while obtaining higher rewards from the MC, the following
constraint can be obtained:

0 ≤ π1 ≤ . . . ≤ πI (30)

Lemma 3. If the ESs with participation willingness θ1 satisfies the IR condition, all ESs will
automatically meet the IR condition.

Proof of Lemma 3. See Appendix C. �

Based on Lemma 3, I IR conditions for a feasible contract can be simplified to a single
IR condition as follows:

θ1v(π1(θ1))− cq1(θ1) ≥ 0 (31)

To simplify the IC constraints in Equation (27), we first define that the downward
IC (DIC) condition is between the ES with participation willingness θi+1 and the ES with
participation willingness θi′(i′ ∈ {1, . . . , i}) while the upward IC (UIC) condition is between
the ES with participation willingness θi and the ES with participation willingness θi′(i′ ∈
{i + 1, . . . , I}) [28]. The local DIC (LDIC) condition is a special case of the DIC condition, i.e.,
the condition between the ES with participation willingness θi and the ES with participation
willingness θi−1. The local UIC condition is a special case of the UIC condition, i.e., the
condition between the ES with participation willingness θi and the ES with participation
willingness θi+1.

Lemma 4. The IC conditions can be simplified to LDIC conditions and LUIC conditions, i.e.,

θiv(πi(θi))− cqi(θi) ≥ θiv(πi−1(θi−1))− cqi−1(θi−1), ∀i ∈ {2, 3, . . . , I} (32)

θiv(πi(θi))− cqi(θi) ≥ θiv(πi+1(θi+1))− cqi+1(θi+1), ∀i ∈ {1, 2, . . . , I − 1} (33)

Proof of Lemma 4. See Appendix D. �

Thus, the optimization problem in Equation (27) can be simplified as:

max
(q,π)

UMC =
I

∑
i=1

ξi[αqi(θi)− πi(θi)] (34)

Subject to the following constraints:

θ1v(π1(θ1))− cq1(θ1) ≥ 0 (35)

θiv(πi(θi))− cqi(θi) ≥ θiv(πi−1(θi−1))− cqi−1(θi−1) (36)

0 ≤ π1 ≤ . . . ≤ πI (37)

The difficulty of solving the optimization problem after simplifying the redundant
constraints is significantly reduced. Iterating over the constraint Equations (35) and (36),
there will be:

qi =
1
c

{
θiv(πi(θi)) +

i

∑
j=2

(θj−1 − θj)v(πj−1(θj−1))

}
(38)
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By substituting Equation (38) into Equation (34), the objective function can be ex-
pressed as:

max
π

UMC =
I

∑
i=1

ξi

{
α

c

[
θiv(πi(θi)) +

i

∑
j=2

(θj−1 − θj)v(πj−1(θj−1))

]
− πi(θi)

}
(39)

The optimal values π∗ can be obtained by solving the problem Equation (39). Then,
the optimal values q∗ will be achieved by substituting π∗ into Equation (34). The formula-
tion of the optimal contract based on contract theory (CT) is shown in Algorithm 1.

Algorithm 1 The formulation of the optimal contract based on contract theory

1: Obtain the constraints of the feasible contract based on IR condition and IC condition
2: Obtain the constraint Equation (30) based on Lemma1, Lemma 2, and the corollary
3: Simplify the I IR conditions based on Lemma 3
4: Simplify the I(I − 1) IC conditions based on Lemma 4
5: Obtain the simplified optimization problem (34)
6: Obtain the optimal values π∗ based on (39)
7: Obtain the optimal values q∗ based on π∗ by solving the (34)
Output:
8: The optimal contract (q, π)

4.2. Slot Allocation for the WBAN Based on Cooperative Game

Taking the second term in Equation (24) as the objective function, the slot allocation
problem for the WBAN can be written as:

min
u

CWBAN =
N

∑
i=1

S

∑
j=1

Aij(t) (40)

Subject to the following constraints:

ui,j(t) ∈ {0, 1}, ∀i ∈ N, j ∈ S, t ∈ T (41)

S

∑
j=1

NSN
ij ≤ T, ∀i ∈ N (42)

The weight factor βT is a constant that is not considered in the optimization problem
(40). Thus, the minimization of the cost for the WBAN is equivalent to the AoI minimization
problem for each sensor. The cost of the sensor j in the WBAN i can be expressed as:

CSN
ij = Aij(t) (43)

Moreover, to facilitate the analysis, the opposite of the cost is used as the utility
function of the sensors and the WBAN:

USN
ij = −CSN

ij (44)

UWBAN
i = −

S

∑
j=1

CSN
ij (45)

where USN
ij is the utility of the sensor j in WBAN i, while UWBAN

i is the utility of WBAN i.
All sensors in the WBAN serve collaboratively, and any data obsolescence can cause a

dramatic increase in the cost of the WBAN. Therefore, sensors are motivated to cooperate
to ensure the overall utility of the WBAN. We describe the slot allocation problem for the
WBAN as a cooperative game problem. In the cooperative game, each sensor competes for
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channel resources by adjusting its slot occupation, but each sensor aims to maximize the
utility of the corresponding WBAN on the basis of ensuring its own utility.

The cooperative game problem for WBAN can be formulated as:

ΩWBAN
0 =

{
S,
{

ui,j
}

j∈S,
{

USN
ij (ui,j, ui,−j

}
j∈S

}
(46)

where
{

USN
ij (ui,j, ui,−j)

}
j∈S

is the set of the sensors’ utility for feasible slot allocation. ui,j

represents the slots allocated to the sensor j in WBAN i, while ui,−j represents the slots
allocated to the other sensors in WBAN i.

As mentioned earlier, S sensors in each WBAN participate in the game, and each sensor
generates monitoring data and transmits it as soon as the slots are allocated. Therefore,
the AoI of the sensors which are allocated slots is equal to the transmission slots plus
the remaining time of the WBAN scheduling. Although the sensors aim to minimize the
cost for the WBAN, there are still some limited cases. All sensors achieve the maximum
AoI if there is no competition for slots during the WBAN scheduling period. Therefore,
this case can be considered as the lower bound of the feasible slot allocation, where the
corresponding utility of the WBAN is minimized. The upper bound of the slot allocation
is that the AoI of all sensors does not change during the whole scheduling period, where
the corresponding utility of the WBAN is maximized. Thus, the feasible minimum and the
unreachable maximum utility of the sensor are:

Ũmin
ij = −(Aij(t) + TWBAN) (47)

Ũmax
ij = −Aij(t) (48)

The objective of the cooperative game for the WBAN is to maximize its utility. Thus,
the game ΩWBAN

0 can be equivalent to:

ΩWBAN
1 =

{
S,
{

ui,j
}

j∈S,
{

UWBAN
i (ui,j, ui,−j)

}
j∈S

}
(49)

where the optimal slot allocation is:

u∗i,j ∈ argmaxUWBAN
i (ui,j, ui,−j) (50)

Theorem 1. The feasible utility set of the WBAN’s cooperative game ΩWBAN
1 has a maximum

value.

Proof of Theorem 1. Based on Equations (47) and (48), the set of all sensors’ utility can be
expressed as:

USN
i =

{
USN

ij

∣∣∣Ũmin
ij ≤ USN

ij < Ũmax
ij , ∀j ∈ S

}
(51)

Thus, the set of the feasible utility for the WBAN can be expressed as:

UWBAN
i =

{
UWBAN

i

∣∣∣∣∣ S

∑
j=1

Ũmin
ij ≤ UWBNA

i <
S

∑
j=1

Ũmax
ij

}
(52)

The set of the feasible WBAN’s utility has a maximum value if and only if the cardi-
nality of UWBAN

i is less than infinity. From Equations (47) and (48), it can be seen that the
utility values of the sensors vary discretely between the minimum and the maximum with
the different slot allocations. Thus, the feasible utility set of the WBAN is limited, and the
maximum value exists. �



Sensors 2023, 23, 4943 13 of 23

A slot allocation algorithm based on collaborative game is proposed to obtain the
optimal solution for the optimization problem of Equation (40). The details are shown in
Algorithm 2.

Algorithm 2. Slot allocation based on collaborative game

Input:
1: The initial maximum utility for every WBAN:

UWBAN
max =

S
∑

j=1
Ũmin

ij

Initialization:
2 : Slot allocation strategy u: ui,j(t) = 0
3 : Remaining unallocated slots in reverse order Tr: Tr = {T, T − 1, . . . , 1}
Optimization:
4 : for each WBAN i, i ∈ N do
5 : for each sensor j, j ∈ S do
6 : Each sensor occupies the slots in reverse order of the scheduling period of the WBAN and

computes the utility UWBAN
i (ui,j) based on (33)

7 : if UWBAN
i (ui,j) > UWBAN

max then
8 : u← ui,j

9: Update the maximum system utility to UWBAN
i (ui,j)

10: Update the unallocated slots in reverse order by removing the allocated slots
11: end if
12: end
13: end
Output:
14 : Optimal time slot allocation strategy: u∗

4.3. Data Offloading for the ECN Based on Bilateral Matching Game

Taking the third term in Equation (24) as the objective function, the data offloading
problem for the ECN can be written as:

min
a

CECN =
N

∑
i=1

M

∑
m=1

aim

{
βA(Ttran

im + Tcom
im )+ βEEtran

im

}
(53)

Subject to the following constraints:

aim ∈ {0, 1}, ∀i ∈ N, m ∈ M (54)

M

∑
m=1

aim = 1, ∀i ∈ N (55)

N

∑
i=1

aim ≤ NSL (56)

Within the ECN, the interaction between the GUNs and the ESs in the optimization
problem of Equation (53) involves 0–1 variables; thus, the bipartite matching game model
was introduced to solve the problem.

Definition 1. For the disjoint sets of GUNs and ESs, bipartite matching needs to satisfy the
following conditions: (1) µ(i) ∈ M, µ(m) ∈ N∪∅; (2) |µ (i)

∣∣= 1, |µ (m)
∣∣≤ NSL ; where i ∈ N

and m ∈ M.

In order to measure the impact of the GUN’s selection of different ESs on the cost for
the ECN, the cost generated by the GUN’s selection is defined as the selection cost, which
is calculated as follows:

CS
im = βA(Ttran

im + Tcom
im ) + βEEtran

im (57)
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where the selection cost of GUNs cannot be accurately calculated because we cannot get the
inter-user interference and the division of the computation resources before the matching
result. Initially, we assume that there is no inter-user interference and the computation
resources of each ES are equally divided based on the service limitation.

Preference List of the GUNs: For GUNs, every GUN wants to select the ES at the
lowest cost. Thus, for GUN i, i ∈ N, its preference over ES m, m ∈ M can be expressed as:

PLGUN(i, m) = CS
im (58)

The preference list can be acquired by sorting every row of N ×M matrix PLGUN in
ascending order.

Preference List of the ESs: From a system perspective, we are attempting to minimize
the cost of the ECN caused by the different choices of the ESs as much as possible. Therefore,
each ES prefers to match with the GUNs whose selection cost is much lower. For ES m,
m ∈ M, its preference over GUN i, i ∈ N can be expressed as:

PLES(m, i) = CS
im (59)

The preference list can be acquired by sorting every row of M × N matrix PLES in
ascending order.

The preference lists offered in Equations (58) and (59) are initial values that are always
modified when a stable equilibrium cannot be reached.

The exact preference list is not available initially, and the preference lists between
different GUNs affect each other during the matching process. Therefore, there is an
externality in the bilateral matching model studied in this paper. In order to ensure the
stability of the final matching result, the matching object of the established match result
can be exchanged based on the gain matching, which can improve the cost of the ECN
progressively.

Definition 2. For the matching pair (i, m) of the matching result, if change the matching object of
i to m′, where i ∈ N and m, m′ ∈ M will get the finite gain, the gain matching µmm′

i can be defined
as µmm′

i = {µ\(i, m)} ∪ (i, m′).

Finite gain signifies that by swapping out the matching objects, the participants can
lower the cost to some extent. Gain matching provides the GUNs with the opportunity
to change the matching objects, but gain matching only takes effect after obtaining the
permission of the ESs. For ESs, only a gain matching process that can reduce the cost for
the ECN will be allowed.

Definition 3. If there is no blocking pair in the matching result µ, it can be called stable matching.

Definition 4. If the matching pair (i, m) satisfies the following two conditions: (1) GUN i is
unmatched or there is a gain matching object m of GUN i; (2) there is a gain matching object i of
ES m; the (i, m) can be called a blocking pair.

Data offloading strategy based on bilateral matching game is shown in Algorithm 3.
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Algorithm 3 Data offloading strategy based on bilateral matching game

Input:
1 : The set of GUNs : N
2 : The set of ESs : M
3 : The initial match result µ: µ =∅
4 : Unmatched GUNs Nu: Nu = N
Initialization:
5 : Compute the initial preference list PLGUN and PLES under the assumptions that there is no inter-user
interference and the computing resources on ESs are equally divided according to the service limitation
6 : while Nu! = ∅ do
7: Unmatched GUNs send service requests to the ESs according to their preference list
8: The ESs receives the top NSL GUNs in their preference list and refuses other GUNs
9: The rejected GUNs remove the ESs which reject them from their preference list
10: end
11: Obtain the match result µ
Optimization:
12 : Compute the preference list PLGUN and PLES based on (43) and (44)
13 : while there exists the gain matching : µmm′

i = {µ\(i, m)} ∪ (i, m′) in µ do
14 : GUN i send a service request to ES m′

15 : if
∣∣µ(m′)∣∣≤ NSL then

16: {µ\(i, m)} ∪ (i, m′)
17: else
18: ES m′ receives temporarily the top NSL GUNs and refuses other GUNs
19: endif
20: Recalculate the preference list PLGUN and PLES
21: end while
Output:
22 : Stable match result : µs
23 : Obtain the offloading strategy a based on µs

4.4. Joint Strategy for Resource Allocation and Data Offloading Based on the Optimal Contracts

In summary, the system utility maximization problem is split into two parts for solving:
one is the utility maximization problem of the MC, i.e., the optimal contract formulation
problem between the MC and the ESs, and the other is the system cost minimization prob-
lem. Specifically, the system cost minimization problem is composed of the slot allocation
problem for the WBAN to minimize the cost for the WBAN and the data offloading problem
for the ECN to minimize the cost for the ECN. The process of resource allocation and data
offloading needs to be performed on the basis of the optimal contract signed by the ESs.
Thus, a joint strategy for resource allocation and data offloading (JSRADO) based on the
optimal contract which is composed of Algorithm 2 and Algorithm 3 is proposed, and the
details are shown in Algorithm 4:

Algorithm 4 Joint strategy for resource allocation and data offloading

Input:
1 : The optimal contracts : (q, π) obtained by the CT strategy (Algorithm 1)
Optimization:
2 : for each GUN i ∈ N do
3: Allocated slot resources based on Algorithm 2
4: end for
5: GUNs broadcast the information of their collected medical monitoring data packets
6: ESs broadcast the information of communication resources
7: All GUNs execute Algorithm 3 in parallel
Output:
8 : The slot allocation profile u and the data offloading strategy a

5. Simulation Results and Analysis

In this section, the proposed strategy for resource allocation and data offloading is
simulated and verified. In the intelligent telemedicine scenario, there are five external
auxiliary ESs in a circular area with a 250 m radius, and the number of the patients is N = 30.
It is assumed that various medical sensors are distributed in a star-shaped architecture
centered on the GUNs. Based on [29,30], the channel gain is set as hi,m = l−η

i,m , where li,m is
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the distance between the GUN i and its accessed ES m, and η denotes the path loss factor.
Additionally, we considered eight different levels of medical urgency, i.e., K = 8 based on
IEEE 802.15.6 [5]. The other simulation parameters in this paper are shown in Table 2.

Table 2. Basic parameters of system simulation.

Parameters Values

Computing resources of the ESs 30 GHz

Transmission power of the sensors 20 mW

Transmission power of the GUNs 0.5 W

Pass loss factor 3

Data size of medical monitoring packets (100, 1000) KB

Computation intensity (400, 800) CPU cycles/bit

Noise −100 dBm

α, c, ε 5 ∗ 106, 1 ∗ 106, 8

θ 0.1, 0.2, 0.3, 0.4, 0.5 [22]

In order to verify the effectiveness of the proposed strategy composed of the CT
algorithm and the JSRADO algorithm, the simulation results will be compared with the
following algorithms, respectively:

• The contract mechanism based on complete information (CI) [31]: the algorithm is
based on the ideal case where the MC can be informed of the participation willingness
of each ES in advance, in which case the ESs cannot misrepresent the information in
order to obtain additional benefits;

• Stackelberg game incentive mechanism under asymmetry information scenario
(SGA) [32]: the MC as a leader makes different contracts according to the participation
willingness of ESs, and the ES as a follower decides the communication resources to
provide according to the rewards of the contract;

• Minimum Distance (MD) [33]: all gathered monitoring data in the GUNs are offloaded
to the nearest ES, which can reduce path loss to the most extent;

• The resident-oriented Gale–Shapley algorithm (RGS) [22]: the GUNs select ESs for
access according to the preference list of the GUNs, and ESs admit GUNs in the order
of the preference list of the ESs;

• Decentralized game theoretic approach for health monitoring (DIGTAL) [30]: a decen-
tralized game theoretic approach is used to model the process of data offloading in
order to minimize the system cost.

Figure 2 shows the comparison of three algorithms in terms of the utility of the MC. It
can be observed that the utility of the MC increases with a stronger participation willingness
of the ES. From Figure 2, the utilities of the MC for the CI algorithm are larger than that
by using the CT or SGA algorithm. However, the CI algorithm is carried out based on the
fact that the MC is aware of the participation willingness of all ESs in advance, which is
hard to achieve in practical applications. If the contract is signed between the MC and
the ESs by using the CT or the SGA algorithm, it is not necessary for the MC to know all
participation willingness of the ESs. Therefore, the CT and the SGA algorithm are more
suitable for practical applications to enhance the utility of the MC. Moreover, the utility of
the MC using the CT algorithm is larger than that by adopting the SGA algorithm with the
same participation willingness of the ES.
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In Figure 3, the optimal contract between the MC and the ES is evaluated by verifying
the IR and IC conditions. The maximum utility value of the ES will increase if the value
of θi becomes larger, which means that the increase in the participation willingness can
enhance the utility of the ES. It can be seen from Figure 3 that the IC condition is verified
by the fact that the maximum utility of the ES is obtained only if the contract matches
its participation willingness θi, in which case the utility of the ES remains non-negative,
verifying the IR condition as well.
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Figure 4 illustrates the trend of system utility as the number of GUNs is changed.
The system utility is reduced if the number of GUNs becomes larger, which means that
more participants compete for the communication resources provided by the ESs, and
more participants need to share ESs’ computing resources. Therefore, it will bring a
greater transmission delay and energy loss for each GUN, which indicates that the system
cost will become larger. Moreover, the JSRADO algorithm can obtain a higher system
utility compared to the RGS algorithm, the MD algorithm, and the DIGTAL algorithm
by providing matched communication and computing resources for the GUNs. If the
number of the GUNs becomes smaller, which means that the communication resources
provided by the ESs are rich enough to satisfy the requirements for all GUNs, the difference
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of the system utility for the proposed JSRADO algorithm and the compared algorithms
will become smaller.
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Figure 5 shows the tendency for the system utility to vary with the WBAN scheduling
period. The system utility decreases with an increase in the WBAN scheduling period. If
the number of time slots for the WBAN is increased, each patient will have more slots to
update medical monitoring data packets, resulting in a huge size of the collected packets
in the GUNs, which indicates a higher system cost as the transmission delay and the
energy consumption of the GUNs become larger. For practical application, the length of
the WBAN scheduling period should be adjusted according to the number of sensors, the
size of packets, and the level of medical urgency of each sensor to enhance the system
utility. As shown in Figure 5, the proposed strategy composed of the CT and the JSRADO
algorithm can always obtain larger system utility compared with the RGS algorithm, the
MD algorithm, and the DIGTAL algorithm.
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The changes in system utility under different system scheduling periods are shown
in Figure 6. It can be seen that the system utility is different in each scheduling period
of the system. As the AoI of the monitoring data changes over time, the slot allocation
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for the WBAN and the data offloading for the ECN vary for different scheduling periods
of the system. To maximize the system utility, the transmission opportunities in the
WBAN scheduling period are always allocated to the sensors with a poor AoI, while the
GUNs in the ECN always select the ESs with a lower cost to offload, which results in a
slight difference in the system utility in each scheduling period of the system. However,
Figure 6 shows that the strategy proposed in this paper always outperformed the other
three algorithms over 200 simulated system scheduling periods.
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Figures 2 and 3 demonstrate the effectiveness of the proposed CT algorithm, while
Figures 4–6 demonstrate the superiority of the proposed JSRADO algorithm on the basis
of the optimal contract. To verify the effectiveness of the strategy composed of the CT
and JSRADO algorithm proposed in this paper, three incentive mechanisms and four data
offloading algorithms were simulated as shown in Figure 7. From Figure 7, it can be seen
that the combination of the CI and JSRADO algorithm can obtain the maximum system
utility, while the combination of the SGA and the MD algorithm can obtain the minimum
system utility. However, as the MC cannot be informed of all ESs’ participation willingness
in advance in practical scenarios, the combination of the CT and the JSRADO algorithm may
be suitable for resource allocation and data offloading in practical applications. Moreover,
we find that the JSRADO algorithm based on the CT incentive mechanism can improve the
system utility by almost two times compared with the data offloading JSRADO algorithm
with the SGA incentive mechanism.

Figure 8 illustrates the comparison of the system utility in different types of intelligent
telemedicine systems. It can be seen that the system utility is different in the three types of
intelligent telemedicine systems. In a normal system, the same weight is assigned to the
two parameters, i.e., βA = βE = 0.5. In energy-deficiency systems, energy consumption
needs to be seriously considered to ensure sufficient energy supplies and to extend the
working life of the system. Thus, the coefficients are set as βA = 0.1 and βE = 0.9. In
time-sensitive systems, the medical information monitored by each sensor needs to be
updated frequently. To improve the timeliness of the data updates, the parameters are set
as βA = 0.9 and βE = 0.1. As shown in Figure 8, the strategy composed of the CT algorithm
and the JSRADO algorithm always outperformed the other strategies in terms of the system
utility.
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6. Conclusions

In this paper, an edge-computing-assisted intelligent telemedicine system consisting
of the WBAN and the ECN was considered. Based on the requirements of the patients and
the utility of the MC, it was assumed that system utility is jointly determined by the MC’s
utility and the system cost. Considering the selfishness of ESs, the CT algorithm was first
utilized to encourage ESs to provide communication resources to maximize the utility of
the MC. In addition, the JSRADO algorithm was proposed to minimize the system cost,
where the cooperative game and the bilateral matching game were used to address the slot
allocation problem for the WBAN and the data offloading problem for the ECN, respectively.
Numerical simulations demonstrated the effectiveness of the strategy composed of the CT
algorithm and the JSRADO algorithm in this paper with respect to the system utility.
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Appendix A. Proof of Lemma 1

Proof of Lemma 1. We first prove the “sufficiency”, i.e., when there is θi > θj, πi(θi) >
πj(θj) will be satisfied. Based on IC condition, there are:

θiv(πi(θi))− cqi(θi) ≥ θiv(πj(θj))− cqj(θj) (A1)

θjv(πj(θj))− cqj(θj) ≥ θjv(πi(θi))− cqi(θi) (A2)

Adding and simplifying Equations (A1) and (A2), then:

(θi − θj)v(πi(θi)) ≥ (θi − θj)v(πj(θj)) (A3)

Since θi > θj, we have v(πi(θi)) > v(πj(θj)). Based on the strict monotonicity of the
v(π), πi(θi) > πj(θj) is satisfied. Thus, “sufficiency” is proven.

Then, we prove the “necessity”, i.e., when there is πi(θi) > πj(θj), θi > θj will be
satisfied.

Based on Equation (A3), we have:

θi[v(πi(θi))− v(πj(θj))] ≥ θj[v(πi(θi))− v(πj(θj))] (A4)

According to the monotonicity of the evaluation function and πi(θi) > πj(θj), we can
find that θi > θj. Thus, “necessity” is proven. �

Appendix B. Proof of Lemma 2

Proof of Lemma 2. Proof the “sufficiency”. Based on Equation (A1), we have:

θi[v(πi(θi))− v(πj(θj))] ≥ c(qi(θi)− qj(θj)) (A5)

Since c > 0 and qi(θi)− qj(θj) > 0, we can get θi[v(πi(θi))− v(πj(θj))] > 0. According
to the monotonicity of the v(π), πi(θi) > πj(θj) is satisfied. Thus, “sufficiency” is proven.
Then, we proved the “necessity”. Based on Equation (A2), we can get:

θj[v(πj(θj))− v(πi(θi))] ≥ c(qj(θj)− qi(θi)) (A6)

Since πi(θi) > πj(θj) and the strict monotonicity of the evaluation function, v(πj(θj))−
v(πi(θi)) < 0 is satisfied, i.e., qi(θi) > qj(θj) is satisfied. Thus, “necessity” is proven. �

Appendix C. Proof of Lemma 3

Proof of Lemma 3. By iterating the IC condition, we can obtain:

θiv(πi(θi))− cqi(θi) ≥ θiv(π1(θ1))− cq1(θ1) ≥ θ1v(π1(θ1))− cq1(θ1) ≥ 0 (A7)

Equation (A7) shows that once the ES with participation willingness θ1 satisfies the IR
condition, the other ESs automatically meet the IR condition. Thus, the IR constraint can be
simplified as:

θ1v(π1(θ1))− cq1(θ1) ≥ 0 (A8)
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Thus, Lemma 3 is proven. �

Appendix D. Proof of Lemma 4

Proof of Lemma 4. Based on the IC condition, we can get:

θiv(πi(θi))− cqi(θi) ≥ θiv(πi−1(θi−1))− cqi−1(θi−1) (A9)

θi−1v(πi−1(θi−1))− cqi−1(θi−1) ≥ θi−1v(πi−2(θi−2))− cqi−2(θi−2) (A10)

Converting Equations (A9) and (A10) on the basis of θi > θi−1, we can get:

θiv(πi(θi))− cqi(θi) ≥ θiv(πi−1(θi−1))− cqi−1(θi−1) ≥ θiv(πi−2(θi−2))− cqi−2(θi−2) (A11)

Iterating Equation (A11), we have:

θiv(πi(θi))− cqi(θi) ≥ θiv(πi−1(θi−1))− cqi−1(θi−1) ≥ . . . ≥ θiv(π1(θ1))− cq1(θ1) (A12)

Thus, all DICs can be equivalently replaced by the LDICs as shown in Equation (32).
Based on IC condition, there are:

θiv(πi(θi))− cqi(θi) ≥ θiv(πi+1(θi+1))− cqi+1(θi+1) (A13)

θi+1v(πi+1(θi+1))− cqi+1(θi+1) ≥ θi+1v(πi+2(θi+2))− cqi+2(θi+2) (A14)

Converting Equations (A13) and (A14) on the basis of θi+1 > θi, we can get:

θiv(πi(θi))− cqi(θi) ≥ θiv(πi+1(θi+1))− cqi+1(θi+1) ≥ θiv(πi+2(θi+2))− cqi+2(θi+2) (A15)

Iterating Equation (A15), we have:

θiv(πi(θi))− cqi(θi) ≥ θiv(πi+1(θi+1))− cqi+1(θi+1) ≥ . . . ≥ θiv(πI(θI))− cqI(θI) (A16)

Thus, all UICs can be equivalently replaced by the LUICs as shown in Equation (33).
�
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