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Abstract: In this study, we introduce a novel design for a three-dimensional (3D) controller, which
incorporates the omni-purpose stretchable strain sensor (OPSS sensor). This sensor exhibits both
remarkable sensitivity, with a gauge factor of approximately 30, and an extensive working range,
accommodating strain up to 150%, thereby enabling accurate 3D motion sensing. The 3D controller
is structured such that its triaxial motion can be discerned independently along the X, Y, and Z
axes by quantifying the deformation of the controller through multiple OPSS sensors affixed to
its surface. To ensure precise and real-time 3D motion sensing, a machine learning-based data
analysis technique was implemented for the effective interpretation of the multiple sensor signals.
The outcomes reveal that the resistance-based sensors successfully and accurately track the 3D
controller’s motion. We believe that this innovative design holds the potential to augment the
performance of 3D motion sensing devices across a diverse range of applications, encompassing
gaming, virtual reality, and robotics.

Keywords: strain sensor; motion analysis; stretchable materials; machine learning; human-machine
interface

1. Introduction

Three-dimensional (3D) motion sensing is a crucial technology that identifies and
analyzes the motion of objects to facilitate human-machine interfaces [1–3]. This innovative
technology has been extensively applied in diverse domains, including medical diagno-
sis [4–9], virtual and augmented reality, kinetic motion measurement [10–13], robotics [14],
industry, and education, each possessing significant market potential. Three-dimensional
motion sensing techniques can be broadly classified into two primary categories: contact
and non-contact methods. The contact approach involves the use of stretchable or wearable
devices embedded with an array of sensors, such as inertial, skin conductivity, and sound
pressure sensors [15–23]. In contrast, the non-contact method utilizes optical, ultrasonic,
infrared [14], or magnetic fields [24–28] for motion detection. Depending on the user’s re-
quirements, the parameters being measured, and the sensing environment, an appropriate
method should be utilized for 3D motion sensing.
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Although the non-contact method is particularly advantageous for accurately measur-
ing overall movement without direct contact, it is susceptible to external factors, such as
contrast and obstacles. Moreover, the method’s effectiveness is hindered when the medium
used for measurement encounters obstructions. Consequently, the non-contact method
is more appropriate for detecting motion in a specific space or environment rather than a
moving object. Therefore, to assess 3D motion sensing without environmental restrictions, a
contact method employing wearable motion sensing devices is a more adaptable approach.

In recent years, research on wearable devices has attracted significant interest, with
the direct measurement employing stretchable or flexible strain sensors [29]. Although this
method is constrained by its capacity to measure only specific aspects of movement where
the sensor is attached, it surpasses other techniques in terms of sensitivity, and possesses
the ability to measure various strains irrespective of location and direction, depending on
the purpose [30–35]. Moreover, accurate measurement of diverse deformations, ranging
from small (skin-level motions like pulsation) to large (joint-level motions) magnitudes,
can be achieved with the appropriate sensor. The flexibility and diverse shapes and sizes
of strain sensors also permit their attachment to the surface of non-flat, dynamic objects
or an array of objects to measure the object’s deformation. Thus, 3D motion sensing can
be conducted more effectively by using stretchable strain sensors customized for different
structures and applications.

In previous work, we developed an innovative stretchable strain sensor based on the
nanocracking structure, referred to as the omni-purpose stretchable strain sensor (OPSS
sensor) [36]. In that work, we found a significant relationship between the thickness of a
sputtered thin metal film and the nanocracking structure generated on the film under an
externally applied tensile strain. By controlling and optimizing the nanocracking structure,
we successfully developed the OPSS sensor, which exhibited both high sensitivity (gauge
factor ~30) and an extensive working range (strain up to 150%) with excellent linearity
(R2~0.98) and rapid response time (<30 ms) [36].

In this study, we designed a novel 3D controller by leveraging the capabilities of
the OPSS sensor. The developed 3D controller features a flexible body equipped with
multiple OPSS sensors at various positions to facilitate the quantification of deformations
for 3D motion sensing. The controller’s flexible body was engineered to exhibit distinct
deformation patterns when moved along each axis, with OPSS sensors strategically at-
tached to these areas. Upon applying a 3D motion (or load) to the controller’s knob, the
sensor affixed to the flexible body responds nearly independently along the corresponding
axis. This response allows for the prediction of the applied 3D motion (or load) to the
controller’s knob by assessing the change in the sensor’s resistance. Furthermore, to mini-
mize interference between the sensors’ measurements and sensing errors induced by the
material properties of the polymeric controller body, machine learning-based data analysis
techniques were employed to compare resistance signals with actual knob movements
and apply compensation based on the comparison, facilitating real-time and precise 3D
motion detection. We argue that the developed 3D controller holds significant potential for
application in fields such as medical surgical robotics and virtual reality, where precise and
accurate movements are imperative.

2. Design and Methods
2.1. 3D Controller Fabrication

As shown in Figure 1a, the developed 3D controller consists of a flexible body onto
which multiple OPSS sensors have been attached at different locations to measure defor-
mations for its 3D motion sensing. Through empirical design, the flexible body has been
optimized to ensure that the controller’s knob can effectively assess externally imposed
motions or loads.
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Figure 1. Overall schematic of 3D controller system. (a) The overall composition is divided into
flexible body, OPSS sensor, and micro controller unit. (b) Flexible OPSS sensor (c) SEM image of
pre-strained OPSS sensor.

The flexible body of a 3D controller should be able to move within an appropriate
range when subjected to applied forces, while also being non-viscous to attach the OPSS
sensor. To achieve this, poly(dimethylsiloxane) (PDMS) was used, and the detailed design
can be found in Section 2.2. The device was simply fabricated by pouring the PDMS
solution into a pre-fabricated acrylic mold, and to prevent the flexible body from sagging
during operation due to weight, a 3D-printed skeleton made of PLA was added to the
design before the PDMS casting process (see Supplementary Figure S1 for more details).

For measurement of 3D deformations of the flexible body, a stretchable strain sensor
with both high sensitivity and wide sensing range is essential to enable precise measurement
and increase working range of the controller (Figure 1b). For the purpose, we utilized the
omni-purpose stretchable strain sensor (OPSS sensor) that was developed in our previous
studies [36–39]. First, thermoplastic polyurethane (PU) beads (Pellethane 2363-80AE,
Lubrizol, Wickliffe, OH, USA) were dissolved in a mixture of tetrahydrofuran (THF)
and dimethylformamide (DMF) (60/40, v/v) to form a 10 wt% PU solution. Second, the
prepared PU solution was used to make a PU membrane by spin-coating on a slide glass,
controlling the thickness of the membrane through spinning speed (thickness of ~100 µm
at 100 rpm), and dried in a 60 ◦C oven for approximately one day. Third, a thin layer of
platinum (Pt) was deposited on the membrane by the magnetron sputtering method. Here,
the sputtering time was empirically optimized to achieve both high sensitivity and wide
sensing range at 50 s, which corresponds to ~10 nm of Pt thickness.

The real-time multi-resistance data of the 3D controller motion measurement system
were measured using a PCB circuit equipped with a microcontroller unit (MCU) and a
12-bit analog-to-digital converter. The resistance measurement circuit can measure four
resistance values in real time, and for this purpose, the MCP3204 12-bit A/D Converter
(Quad Channel SPI Serial IC from Microchip Technology Inc., Chandler, AZ, USA), with a
12-bit resolution, was used to measure the reference voltage. The measured value of the
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circuit was converted into a resistance value through ATmega8L and 8 MHz MCU from
Atmel. The size of the entire PCB circuit was 25 mm × 40 mm.

In our previous study [36], we found that the generation and propagation of nanoc-
racks in the non-stretchable metallic (Pt) layer are the key mechanisms underlying the
resistance change in the OPSS sensor. As demonstrated in the SEM image of the nanoc-
racking structure generated on the platinum layer for the pre-strained OPSS sensor in
Figure 1c, by empirically optimizing the Pt thickness, we can achieve a highly dense
(crack density ≈ 107/m) and nearly uniform-sized nanocracking structure, facilitating high
linearity of resistance in response to externally applied strain [36]. During the initial loading
on the sensor, nanocracks form on the Pt layer, and their width increases with increasing
strain, resulting in an increase in resistance. Conversely, during the unloading stage, as the
strain decreases, the width of the nanocracks decreases while their number is maintained,
leading to a decrease in resistance. After the initial loading and unloading process, unless
a strain higher than the initial loading one is applied, subsequent loading and unloading
typically do not generate new cracks but rather change only the width of the existing cracks,
resulting in a change in resistance.

For 3D motion sensing using the OPSS sensor, multiple sensors are required, and each
sensor should detect both stretching and contracting modes at its respective location. To
achieve this, each OPSS strain sensor was attached with 30% pre-strain applied, allowing
the sensor to measure not only stretching but also contracting. If the sensor is attached
to the 3D controller body without pre-strain, contraction at the corresponding location
of the 3D controller body cannot be directly translated into a length change of the OPSS
sensor. Instead, a gap would occur between the sensor and the surface of the 3D controller
body. Consequently, we cannot obtain the resistance change of the sensor corresponding
to the contraction accurately, and the induced gap could even cause damage to the sensor
and detachment of the sensor from the 3D controller body. By applying pre-strain when
attaching the OPSS sensor to the surface of the 3D controller body, we can address this
issue, as we can analyze the contraction from the resistance decrease. The contraction
would cause the crack width to decrease from the originally expanded width due to the
pre-strain, similar to a typical unloading process. This approach enables the measurement
of not only stretching but also contraction at the attachment site, resulting in more accurate
device motion measurements using fewer sensors.

2.2. Numerical Analysis of Deformation of the Flexible Body

Due to the constraint that only deformations at the sensor attachment points can be
measured, determining the optimal sensor placement on the flexible body of the controller
is critical for accurately assessing the 3D motion of the controller’s knob. Ideally, each
sensor would separately evaluate the motion of each axis, enabling a direct translation of
individual sensor measurements to the corresponding axis motion without the need for
further decomposition of multiple measurements.

However, obtaining perfectly axis-separated measurements from sensors affixed to a
single-body structure is not feasible, as all sensor readings are inherently interdependent.
Despite this limitation, it remains essential to optimize the sensor attachment positions to
achieve high sensitivity and efficient decoupling of 3D motion. In order to identify the most
suitable locations, we conducted a numerical analysis of the flexible body’s deformation
under three-axis loads, utilizing COMSOL Multiphysics for the simulations.

The flexible body’s geometry was designed using 3D CAD software (SolidWorks 2018)
and subsequently imported into the numerical simulation software. The Solid Mechanics
module was utilized in the numerical analysis, with two key boundary conditions applied:
a “Fixed constraint” condition to designate one end of the flexible body as fixed, and a
“Body load” condition to apply external motion (or load) to the knob of the flexible body,
as depicted in Figure 2a,b. The optimized sensor position should satisfy two requirements:
high deformation and minimal interference between sensors. As the sensors are attached to
the flexible body in the longitudinal direction, which corresponds to the Y-axis in Figure 2,



Sensors 2023, 23, 4941 5 of 14

we analyzed the magnitudes of Y-axis normal strain (εyy) under X-, Y-, and Z-axis body
load conditions (at 0.01 N), respectively. Figure 2c–e illustrate the magnitudes of Y-axis
normal strain (εyy) under X-, Y-, and Z-axis body load conditions, respectively. Although it
is not feasible to identify specific regions affected exclusively by one axial load independent
of other axial loads, we were able to select regions predominantly influenced by each axial
load with high deformation. The optimized sensor positions were determined primarily
based on numerical analysis results with sensor attachment compatibility. In order to
measure both stretching and shrinking modes at specific regions using an OPSS sensor,
it is necessary to apply pre-strain to the sensor when affixing it to the flexible body’s
surface. Consequently, a convex-shaped surface is more compatible for sensor attachment.
The determined optimized sensor positions are represented in Figure 1a, where sensors 1
and 2 are primarily responsible for the X-axis motion (or load) of the knob of the flexible
body, while sensors 3 and 4 predominantly account for the Y- and Z-axis motion (or
load), respectively.
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Figure 2. Numerical analysis of 3D deformation caused by the multi-axis motion of the designed
flexible body. The blue highlighted regions indicated the regions where we applied (a) fixed constraint
and (b) external body load boundary conditions. (c–e) represent the magnitudes of Y-axis normal
strain (εyy) under the X-, Y-, and Z-axis body load conditions (at 0.01 N), respectively. The black solid
lines in (c–e) represent the original location of the flexible body before deformation.

2.3. Machine Learning Based Estimation of 3D Controller Position

To obtain the 3D position of the proposed controller and identify the relationship
between the resistive sensor data and 3D motion, we utilized Leap Motion (Ultraleap,
Bristol, UK). The ground-truth position of the controller was determined by using the
3D position of the distal bone of the thumb that pinches the proposed controller. The
resistive sensor data calculated by the MCU were transmitted to a personal computer via
serial communication. We collected both the resistive sensor data and Leap Motion data
simultaneously every 0.1 s and used a third-order low pass filter with a 0.5 Hz cut-off
frequency to remove noise interference. Then, we used a shallow neural network trained
using Levenberg–Marquardt backpropagation [40], to establish the relationship between
the four resistance signals and the 3D position data (i.e., x, y, and z position). The MATLAB-
built-in fitnet function was utilized for this purpose with default parameters including one
hidden layer of size 10, a learning rate of 0.001, decrease factor for learning rate of 0.1, and
increase factor for learning rate of 10, respectively.
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For training data collecting, we manually controlled the controller in an arbitrary man-
ner, taking care to avoid any occlusion of the Leap Motion. After each trial, we maintained
the final position of the controller for one second before returning to its starting point. More
than 5 trials were conducted, and the data were collected for training. To evaluate the
performance of the proposed method, we calculated the coefficient of determination (or
R2 score).

3. Results and Discussion
3.1. Independent Resistance Change Measurement for Each Axis and Visualization

In this study, we evaluated the device’s performance by attaching the OPSS sensor to
the flexible body of the 3D controller. As the knob of the 3D controller moves, the flexible
body also moves, causing deformation in specific parts that correspond to each axis. By
attaching the OPSS sensor to these deformation parts, the movement of each axis can be
accurately measured. However, to ensure precise measurement of the movement, it is
essential that the change in resistance of the sensor is independent of the movement in
each axis. For instance, when the 3D controller moves along the X-axis, the resistance of
the sensor attached to the deformed part of the X-axis changes, while the resistance of the
sensors attached to the deformed parts of the Y-axis and Z-axis must remain unchanged. To
verify this, we conducted a deformation test by attaching the sensor to the corresponding
positions on the 3D controller body determined in the numerical analysis and then moving
the knob of the 3D controller along each axis. The resulting resistance changes for the X-axis,
Y-axis, and Z-axis movements are shown in Figure 3a–c, respectively; in Figure 3, graphs
show the profiles of the ‘relative change of resistance’ which is defined as (Ron −Ro f f )/Ro f f .
As a result, when the knob moved in the X-axis direction, the +X and -X sensors showed
resistance changes in opposite directions, while there was little change in resistance for
the Y-axis and Z-axis sensors. This suggests that the attached sensor can measure tension
and contraction well, and the resistance changes nearly independently for different axes.
Similarly, we observed similar resistance changes for the remaining sensors in the Y-axis
and Z-axis movements.
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Through these observations, it was verified that only the sensors corresponding to the
direction of motion were dominantly activated, featuring almost independent deformable
parts along each axis. Furthermore, it is feasible to measure both tension and contraction
strain of each axis through the pre-strained method, signifying that the target’s movement
can be detected instantaneously and accurately regardless of the deformation mode. If the
knob moved along a specific axis, the resistances of sensors responsible for the other axes
exhibited minimal changes; however, even these small fluctuations can significantly impact
motion detection accuracy. A detailed discussion of this error can be found in Section 3.2.

The independent changes in resistance data for each axis when the 3D controller is
moved imply that not only simple movements of the X-, Y-, and Z-axes but also complex
movements can be accurately displayed. Furthermore, if these resistance data are collected
in real time and simultaneously, the movement of the 3D controller can be traced back
with only the resistance data. In this regard, Figure 4 shows the result of visualizing the
movement of the 3D controller based on the measurements of four OPSS sensors attached
to the optimized locations of the controller. Four OPSS sensors were attached to the
deformation part of each axis of the 3D controller, and the resistance change of each axis
was measured in real time through the MCU-based real-time multi-resistance measuring
system. First, after attaching sensors to the deformation parts of the X- and Y-axes, the
results of predicting the position of the knob through the resistance data change when
the 3D controller knob is moved in the order of upper left, upper right, lower left, and
lower right on the XY plane are presented in Figure 4a. At this time, it was confirmed that
the movement of the knob was accurately measured because the movement of each axis
did not affect each other’s resistance data even in the complex movement in which the
X and Y components were mixed. Therefore, the predicted position matched the actual
position accurately. Similarly, the position of the knob can be predicted by collecting the
change in resistance when the knob is moved in the Z-axis direction, as shown in Figure 4b.
In addition, the sensor was attached to the Z-axis deformed parts and the movement of
the knob was successfully sensed and visualized. When the 3D controller moves, the
position can be expressed as X, Y, and Z components by the Cartesian coordinate system,
and the final position is determined by the sum of each movement. Likewise, the sum of
the corresponding resistance changes on each axis can accurately track the position of the
3D controller.

In order to confirm a slightly more complicated movement, a device that implements
the same movement as a remote control was produced. To this end, resistance data
produced when the sensor-attached 3D controller moved were collected, and the system
was designed to represent it as position data in the MATLAB environment and implement
the same movement through position control of the robot arm. As a result, it was confirmed
that the movement of the 3D controller was normally converted into data form, and that
the robot arm moved to the same position as the movement of the 3D controller. Detailed
results may be found in Supplementary Video S1.

3.2. Compensation of Limitations of Polymers through Data Learning

In the previous section, it was demonstrated that the sensors attached to the 3D
controller can track its movement along the corresponding axis with a good accuracy.
Although the resistances of the sensors accountable for other axes did not exhibit substantial
changes„ even minor alterations can significantly degrade motion detection accuracy. In
addition, the material characteristics of the sensor should be considered, as they directly
affect the applied strain to the OPSS sensor. Figure 5 shows the change in resistance
when the sensor corresponding to the Y-axis strain attached to the flexible body of the 3D
controller is repeatedly moved in the +Y and −Y directions. At this time, different residual
resistances are shown when returning to the initial position in the + and − directions. This
phenomenon, which is similar to the backlash of mechanical parts, is a typical problem
when polymers are stretched, and these properties are particularly strong in polymers under
high elongation conditions. This can be explained by the viscoelastic properties inherent to
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elastomeric materials, such as flexible polymers. The viscoelastic behavior of elastomers
is known to influence the stress-strain relationship, generating a hysteresis loop due to
cross-linking during repetitive tensile loading at a constant strain [41]. Specifically, when
an external force is exerted upon a viscoelastic polymer, the force is not instantaneously
propagated through the cross-linked network, as would be the case for an ideally elastic
body. Instead, it behaves as if temporarily stored within the polymer matrix. This leads
to a nonlinear response during both tension and compression phases of the polymer.
Consequently, the stress softening effect and imperfect elastic recovery become apparent.
As a result, under identical stress conditions, the strain experienced by the material will
vary according to the path of tension and compression.
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duced when the sensor-attached 3D controller moved were collected, and the system was 
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along (b) Z-axis.

Figure 5 shows an experiment in which a 30% pre-strained sensor was attached and
repeated tension was applied in the +Y and −Y directions. At this time, the attached sensor
is stretched 30% in the initial state, but after stretching and rest in the +Y direction, it does
not exactly return to the initial state, 30% tension. According to the viscoelastic effect of
elastomer, it actually stops at a higher strain state due to the viscoelastic effect. Likewise,
when returning to the initial state of 30% tension after contraction in the −Y direction,
it stops at a strain lower than 30% due to the delay in elastic recovery. As a result, the
resistance change curve appears different due to the strain recovery delay effect during
tension and contraction, and two residual resistances occur. That is, measuring tension and
contraction with a single sensor causes a serious problem of low accuracy.
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The results presented in Figure 5 demonstrate the behavior of the resistance of the
Y-direction stretchable sensor when the 3D controller undergoes a repeated Y-direction
front/back motions. Specifically, they show change in resistance in the tension/contraction
cycle and the recovery phase of the polymer after each cycle. Tension and contraction
were performed in the light blue and orange boxes, respectively. It was observed that two
residual resistances were generated, as shown by the blue dotted line in the tension phase
and the red dotted line in the contraction phase. This phenomenon indicates that the sensor
cannot accurately measure the position data when the direction of motion is changed. The
cause of this phenomenon is attributed to the viscoelastic properties of polymers, where
the polymers are connected in a crosslinking structure and resulting elastic recovery delay
effect. When the polymer is stretched, the crosslinking structure of the polymers is released,
and the polymers crosslink with each other at the stretched state. When tension is applied
in the initial state, the resistance deformation is not large until the crosslinked structure
is broken, but after being broken, the resistance change increases rapidly. Similarly, when
restored to the original state after applying tension, due to being crosslinked in the tensile
state, residual resistance is observed at a resistance slightly higher than the initial resistance
after tension restoration because of the stress softening effect. This problem also occurs in
the contraction phase, and consequently, two different paths are made in the stress-strain
curve when contraction and tension are repeated, rather than a straight path. Therefore,
additional solutions are needed to overcome the material limitations of these polymer
sensors under high elongation conditions and the induced error.

This section aims to tackle the challenges stemming from the inherent limitations of
polymers by utilizing machine learning techniques, as opposed to relying solely on material-
based solutions. Although there have been previous studies in which machine learning
was employed for motion detection, questions remain regarding its stability and reliability,
and most of these prior works have primarily focused on measuring unidirectional motion
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rather than multi-axis movements [42–44]. To this end, resistance sensors were attached
to the X, Y, and Z axes of the 3D controller to measure the resistance change, while the
motion of the 3D controller was visually captured through the Leap Motion camera (i.e.,
the thumb’s trajectory) and location tracking device. As shown in Figure 6a, the position
data of the 3D controller were captured through the Leap Motion camera and the resistance
was measured through the sensor attached to the 3D controller. In addition, by learning
the position data of the Leap motion from the resistance data obtained by the sensor, the
position of the 3D controller can be tracked only with the resistance data. In addition,
we checked whether meaningful results can be obtained in practice from the learning
algorithm produced in this way. At this time, although the OPSS sensor has a rapid
response time(<50ms), and Leap motion can operated with a higher sampling rate than
100 Hz, we limited the sampling rate to 10 Hz for 3D position estimation. This was to
minimize the crosslinking problem of the material, as a higher sampling rate tended to
degrade performance for the simple neural network we used. Implementing a network
considering temporal characteristics of sensors, such as Long short-term memory [45], will
facilitate more accurate estimation with a higher sampling rate.
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Figure 6b is the result of comparing the position data of the 3D controller obtained
through the Leap Motion with the position data derived only with resistance change
through the learning algorithm. As a result, inaccurate or non-measurable results were
obtained. In the graph, the red line is the position data value measured by the Leap Motion,
and the blue line is the position data value derived through the learning algorithm when
there is a change in resistance. Although the position is matched for the X-axis, the position
data value is not derived at all for the remaining Y-axis, and in the case of Z, the movement
is smaller than the actual movement. It can be confirmed that the position data cannot
be tracked with only a sufficient resistance. This is the crosslinking problem of polymer
materials mentioned above, and it that occurs because the resistance value continues to
change even at the same location. Even when the resistance pointing to the position 0 is set
through the learning algorithm, the same position shows different resistance according to
the tension and contraction of the 3D controller, which becomes an obstacle in tracking the
movement of the 3D controller.

This appears to be the case because the crosslinking of the polymers mentioned above
affects the tension and restoration, and it seems to be the result of learning data from which
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different resistance results were derived at specific locations, due to the viscoelastic effect,
by crosslinking during learning. In particular, the degree of crosslinking in the initial zero
tension and in the tension state is different, and in the previous algorithm, all resistance
changes were learned while ignoring this. However, in order to predict the motion more
accurately, the resistance change in the stationary state before tension was excluded from
the learning algorithm, and only the change in resistance during tension was applied to the
learning algorithm, to learn only at the same degree of crosslink.

As shown in Supplementary Figure S2, it was observed that the resistance of the
sensor is similar at the same position when tension or contraction is repeated, except
that the resistance when the tension starts is about 4% lower. This is considered to be
because the polymers form crosslinks before starting the tension, and the resistance change
is small when the polymers are stretched until the crosslinks are broken. Accordingly,
the learning was attempted by omitting the resistance data of the stationary state. From
the results, we found that accurate position prediction can be achieved by comparing
the algorithm learned from the second repetition and after tension repetition with the
actual position data by Leap motion. Upon comparing the algorithm’s learning results
from the second tensile iteration with the actual position data, it was demonstrated that
a relatively accurate position prediction could be achieved, exhibiting a coefficient of
determination (or R2 score) of 0.8878, with the exception of the first tensile event (Figure 7).
The findings demonstrate that 3D motion can be predicted across an extensive deformation
range and intricate repeated motions in multiple axes using multiple sensors, compared
to the previous studies, where machine learning was primarily employed for calibrating
sensor performance in relatively small movements and repetitions of unidirectional motion
using a single sensor [42–44].
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4. Conclusions

In this study, a new type of 3D controller was developed, employing the OPSS sensor
to measure its 3D motion. A numerical simulation was conducted to optimize sensor
placement on the flexible body of the 3D controller, with the aim of achieving efficient and
precise quantification of 3D motions in the X, Y, and Z axes. By attaching OPSS sensors to the
optimized locations, interference between the measurements of sensors on each axial motion
was minimized, ensuring that only the sensor connected to the deformed segment of the
moving axis responded, predominantly autonomously, during motion along a specific axis.
This enabled the accurate quantification of intricate movements as three variables, while
simultaneously achieving high sensor sensitivity to input motion. Furthermore, machine
learning algorithms were employed to address the material limitations of residual strain and
incomplete spontaneous deformation recovery in polymer-based sensors by acquiring and
processing the actual motion through Leap Motion technology and the resistance changes
resultant from attaching the OPSS sensor. We anticipate that the developed 3D controller
can exert a widespread influence across numerous applications, including medical robotics,
wearable devices, motion monitoring systems, and various industrial sectors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23104941/s1, Figure S1: Fabrication of the flexible body part of
the designed 3D controller.; Figure S2: Comparison of different initial resistances in X-axis tensile
repetitions; Video S1: Control of a robot arm using the developed 3D controller.
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