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Abstract: In wearable robots, the application of surface electromyography (sEMG) signals in motion
intention recognition is a hot research issue. To improve the viability of human–robot interactive
perception and to reduce the complexity of the knee joint angle estimation model, this paper proposed
an estimation model for knee joint angle based on the novel method of multiple kernel relevance
vector regression (MKRVR) through offline learning. The root mean square error, mean absolute error,
and R2_score are used as performance indicators. By comparing the estimation model of MKRVR
and least squares support vector regression (LSSVR), the MKRVR performs better on the estimation
of the knee joint angle. The results showed that the MKRVR can estimate the knee joint angle with a
continuous global MAE of 3.27◦ ± 1.2◦, RMSE of 4.81◦ ± 1.37◦, and R2 of 0.8946± 0.07. Therefore, we
concluded that the MKRVR for the estimation of the knee joint angle from sEMG is viable and could
be used for motion analysis and the application of recognition of the wearer’s motion intentions in
human–robot collaboration control.

Keywords: motion intention; surface electromyography (sEMG); joint angle estimation

1. Introduction

Wearable robots as electromechanical integration systems, closely cooperating with
the human body, need to recognize the human intention and finally complete actions in
collaboration with human joints [1]. The human–robot interaction (HRI) system performs
an important role in the human–robot collaborative control of wearable robots, and the
occurrence of new human–robot interactive methods requires higher perceptive capabilities
of wearable robots than before, but it is difficult for wearable robots to understand human
intentions in advance and assist them in completing collaborative tasks. The recognition
methods based on biological signals are expected to realize more effective human motion
intention understanding in recent years [2]. Biological signals are often generated by
human organs before the execution of human actions, which shows a certain degree of
motion predictability [3]. Consequently, the human–robot interaction, based on surface
electromyography (sEMG) signals, has attracted a great deal of special attention. The HRI
system with sEMG signals can realize a natural control similar to brain control and can
be accepted by the wearer easily [4]. The innovative wearable real-time Human Activity
Recognition (HAR) system that integrates biosensors into the knee bandage has been
proposed, which shows that the knee bandage is a potential wearable sensor carrier of
sEMG sensors (and other types of wearables) to measure knee joints [5,6]. The sEMG signals
are generated by the contraction of the skeletal muscle, which is a sequence of potential
actions issued by multiple motor units and the results of comprehensive superposition on
the skin surface in terms of time and space. The sEMG signals generate 30 ms to 150 ms
ahead of the schedule of human limb movements, so the sEMG signals can be extracted
through electrodes attached to the skin surface and regarded as the activated signals to
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estimate the limb movements in advance, and they can make human motion intention
recognition more timely and more accurate. The knee joint angle is the most significant
parameter that affects lower limb movements. While walking and running, the amplitude
and speed of changes in knee joint angle are significant, which can represent the bending or
stretching state of the lower limbs and, thus, reflect the human motion intention. Compared
to the hip and the ankle, knee motion can be considered as a single degree of freedom
flexion/extension motion, and its angle prediction is relatively easy to achieve. The sEMG
signals are highly nonlinear and susceptible to interference, so it is difficult to establish the
mapping relationship between the sEMG signals and the knee joint angle for estimating the
intention of the lower limb movements. Furthermore, the performance of motion intention
estimation directly affects the wearable robot’s ability to collaborate with humans.

As presented in many recent studies, the joint angle is the main indicator of movement
estimation, depending on sEMG, and it has always been applied in wearable robots.
However, the technology has been developed, and mapping is difficult to construct between
the joint angle and sEMG signals. The control system of most wearable robots requires
continuous control signals to realize real-time control and to follow and match the wearer’s
movements. In general, how to extract accurate motion intention from sEMG and how to
predict joint movements in advance are still thorny problems for wearable robots up to
now. However, since the lower limb muscles are presented deep beneath the skin with
significant overlap among them, the estimation of the sEMG signals from such muscles
is more challenging when compared to the upper limb muscles [7]. The estimation of the
knee joint angle from sEMG signals captured from lower limb muscles is more challenging
because the flexion and extension of the knee joint are caused by multiple muscles in
nature, and it is rather difficult to eliminate the crosstalk issue caused by the physiological
differences in the active muscles.

Many studies have explored the relationship between sEMG and joint movement, as
well as the methods of accurate estimation of the joint motion from sEMG signals. In [8],
the researchers composed the AdaBoost and random forests (RFs) as new approaches
for estimating motion intentions based on the sEMG, and they studied the performance
of the execution time and the estimation accuracy. In [9,10], to improve the estimation
accuracy of the knee joint angle and to reduce the estimation artifacts, researchers proposed
fusion-based algorithms based on the Kalman filter. In [11], the researchers compared the
motion recognition performance of lower limbs with Gaussian kernel-based linear discrim-
inant analysis (LDA) and support vector machines (SVMs) by fused sEMG signals and
accelerometer signals. In [12,13], researchers used least-squares support vector regression
(LSSVR) to predict human lower limb periodic motions from multi-channel sEMG signals.
In [14], researchers presented deep-recurrent neural networks (DRNN) by fusing sEMG
and kinematics signals to predict the knee joint angle in real-time. In [15], the researchers
proposed the deep learning approach to predict the foot–floor contact signals in more
natural walking conditions based on sEMG. In [16], researchers established a mapping
relationship between the sEMG signals and the knee joint angle by using the wavelet
neural network and estimating the knee joint angle based on the sEMG signals from the
vastus rectus (VR). In [17], the researchers proposed a multiple linear regression model
to predict the knee joint moment by constructing the mapping model of the EMG signals
and knee joint angle during the extension–flexion movements. In [18], researchers fused
the transfer-learning and long-term recurrent convolution network to predict knee joint
angle. In [19], researchers presented the improved principal component analysis algorithm,
based on the kernel method, to reduce the dimension of the sEMG dataset in the process of
predicting the knee joint angle.

In addition to the above research on the mapping relationship between knee joint
angle and sEMG signals for knee movement estimation, researchers also carried out studies
on the mechanism of muscle action and knee joint movement. In [20], the researchers
acquired sEMG signals of semitendinosus, biceps femoris, rectus femoris, vastus medialis,
vastus lateralis, gastrocnemius, tibialis anterior, and knee joint angle measurement with a
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goniometer from 20 able-bodied subjects so as to estimate knee range of motion. In [21],
researchers captured sEMG signals of the vastus medialis, rectus femoris, biceps femoris,
and the three-dimensional kinematics of lower extremity joints from four participants to
estimate the continuous knee joint angle. In [22], researchers constructed the mapping
relationship between the sEMG signals of biceps femoris, vastus medialis, rectus femoris,
semitendinosus, and the continuous knee joint angle. In [23], researchers constructed the
musculoskeletal biomechanical model to connect the sEMG signals and the knee joint
torque. In [4], researchers built the mapping model between the activation coefficients and
the knee joint angle based on muscle synergy theory and a generalized regression neural
network. In [24], researchers estimated the knee joint angle in voluntary muscle contraction
and the functional electrical stimulation-induced contraction of knee joint extension motion.
In [25], researchers approximated the active joint moments of the subjects during the swing
phase. In [26], researchers proposed two single-joint active training strategies to estimate
the single-joint voluntary motion intention, based on the sEMG signals.

However, the lack of detailed sEMG characteristics for motion recognition has been a
difficult issue with regards to developing safe and intuitive interactions with robots [27].
Furthermore, to reduce the influence of highly nonlinear and susceptible sEMG signals on
estimation performance, the average feature (AF) is evolved to process the sEMG signals.
The average feature values of sEMG signals were used as the input, and the knee joint
angle was used as the output in this study. Multiple kernel relevance vector regression
(MKRVR) was used to estimate the knee joint angles. Last, but not least, MATLAB was
used to evaluate the accuracy and to verify the feasibility of the estimation model.

This paper aims to recognize human lower limb motion intention using sEMG signals
and knee joint angle. To reduce the effects of different gait speeds and strides among
various subjects in the data collection process, the gait cycle was used to measure the
sample data. All of the walking data of each subject were divided into several gait cycles
(GCs) for consistency in the sample size between the sEMG signals and the knee joint angle.
The AF of sEMG signals in each GC was calculated to ensure sample size consistency and
to decrease interference between different sample channels. After signal processing, a
mapping model between the sEMG signals and the knee joint angle was constructed to
represent the relationship between the muscle actions and the knee movements, based on
MKRVR. The comparison between MKRVR and other regression models, such as standard
RVR and LSSVR, indicated that the MKRVR has strong applicability in estimating the knee
joint angle. In addition, it can improve angle estimation accuracy and smoothness. Notably,
the MKRVR performed better in small-sample regression prediction. The proposed method
has the potential to enhance offline intention prediction and to facilitate rapid prediction of
human intentions in HRI systems, based on sEMG signals.

2. Materials
2.1. Data Collection

To obtain the sEMG signals samples of human knee joint movements, this exper-
iment acquired sEMG signals by using the Trigno Wireless sEMG instrument, and a
three-dimensional motion capture system, called Codamotion, was used to acquire kine-
matic data regarding the knee joint. The sampling frequency of sEMG signals is 2000 Hz,
and the sampling frequency of knee joint angles is 100 Hz. To ensure the sEMG signals
and the knee joint angle with the same sample frequency, Codamotion is connected to the
Trigno system. The experimental device is arranged, as shown in Figure 1.

In the experiment, five healthy male participants, without any history of neuromus-
cular disorders and muscular atrophy or lower extremity surgery, participated in the
experiment (age 24.2 ± 1.6 years, height 181 ± 3.8 cm, mass 72.5 ± 6.9 kg). Their infor-
mation was listed in Table 1. The subjects were randomly selected among the volunteer
students of Nanjing University of Science and Technology and were represented as S1 to
S5. The experimental scheme was approved by the Human Ethics Review Committee of
Nanjing University of Science and Technology.
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Figure 1. The schematic of the experiment; (a,b) Position of the sEMG sensor patch electrodes;
(c) Layout of Markers A, B, and C; (d) Data collection environment.

Table 1. The information of participants.

Participants Age Height/cm Mass/kg Thigh Diameter/mm Shank Diameter/mm

S1 24 175 61 45 34

S2 27 179 74 54 40

S3 24 183 75 50 39

S4 24 180 68 43 35

S5 22 186 80 51 40

Before the collection of the sEMG signals and the knee joint angle, the experimental
protocol was introduced to all subjects, and informed consent was given. All subjects were
required to keep calm to avoid affecting the measurement results. When collecting the
sEMG signals, the first step was to determine the muscle positions by palpation. The second
step was to scrape off the hair on the sticking position and to polish the dead skin by using
sandpaper. The third step was to wipe and to disinfect the skin with alcohol to ensure the
stability of the sEMG signals and to reduce noise interference. Finally, the sEMG electrode
was stuck on the surface of the test muscle. Before the start of the experiment, the subject
was asked to calm down for 30 min, continuously, after preparing the experiment device.
After collecting the sEMG signals, the subject walked back and forth nearly 20 times in the
span of 15 min along a straight line about 5 m in length. The walking frequency of the
subject must be his daily gait. All the sEMG signals from different subjects were collected
in the morning. There were approximately 60 full GCs, and corresponding sEMG signals
were recorded from each subject in total.

From research based on the clinical information and experiential practice, there are
nine muscles, up and down the knee joint, affecting knee movements. In [4], researchers
selected the vastus rectus muscle (VR), vastus lateralis muscle (VL), semitendinosus muscle
(SM), biceps muscle (BM), tibialis anterior muscle (TA), extensor pollicis longus (EP),
and gastrocnemius muscle (GM) to acquire the sEMG signals of lower limb movements.
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According to [28,29], to reduce the crosstalk between different sample channels, four to eight
muscles are usually used to extract the sEMG signals. Consequently, in this experiment,
the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), gastrocnemius medialis
(GM), and gastrocnemius lateralis (GL) were selected to acquire the sEMG signals around
the knee joint and to represent the flexion and extension movements of the knee joint. RF is
located on the front of the thigh, above the middle of the knee joint. It is the major muscle
that generates the flexion and extension movements of the knee joint. VL and VM are
located on both sides of the thigh, and GL and GM are located on both sides of the leg.
These four muscles affect the stability of the knee joint in the state of flexion and extension.
The position of the sEMG sensor patch electrodes is shown in Figure 1a,b. To obtain the
knee joint angle, three markers were evenly distributed on the upper and lower sides of the
knee joint. They were located on the same line in the sagittal plane of the human body. As
shown in Figure 1c, Marker B is placed at the approximate center of the knee joint. Marker
A and Marker C were placed on the projection line of the femur and tibia on the sagittal
plane, respectively. The knee joint angle can be calculated according to the spatial motion
trajectory of Markers A, B, and C.

2.2. Data Processing

The raw sEMG signals include noise and a large amount of data with DC offset and
motion artifacts or aliasing [30]. Before applying for angle estimation, these raw sEMG
signals must be filtered from 20 Hz to 500 Hz by using a fourth-order recursive Butterworth
bandpass filter. The cutoff frequency is 20 Hz. After the bandpass is filtered, the full-wave
rectification was continued. Finally, the sEMG signals were filtered from 5 Hz to 10 Hz by
using a fourth-order recursive Butterworth low-pass filter to smooth the signals. The cutoff
frequency was 6 Hz. The sampling frequency of the sEMG signals was much higher when
compared to the knee joint angle. Therefore, the preprocessed sEMG data were resampled
to 100 data points, according to the AF method. The sEMG and knee joint angle data were
not involved in the continuous signals, corresponding to the transition phase.

In this study, the sEMG signals were not imported directly into the estimation model.
Instead, the amplitude was extracted from the sEMG signals by using a low-pass filter
directly. Due to the feature extraction in the time domain, requiring no transformation
and fewer calculations, the amplitude was selected as the input feature to estimate the
knee joint angle, and it was represented by x. It was proposed to calculate the average
value of the sEMG feature signal to reduce the influence caused by the sample difference
and the interference between different sample channels. After filtering, amplification, and
extraction, the sEMG signals were normalized with maximum and minimum amplitudes,
as Equation (1) shows.

xi(j) =
xi(j)−min({xi(j)})

max({xi(j)})−min({xi(j)}) (1)

The AF employed in this paper is presented as follows:

AF =

M
∑

j=1
xi(j)

(M− 1)∆t
(2)

where xi(j) describes the jth sEMG signal in the ith sliding windows. AF represents the
average value of the sEMG feature signal. M represents the number of sliding window
feature signals within a period and is equal to 10. ∆t is the sampling period and is equal
to 1/2000.

The raw kinematic data of the knee joint collected from Markers A, B, and C were
coordinate points, but 2 vectors can be obtained from Markers A, B, and C, and these
2 vectors are VAB and VBC. Furthermore, the knee joint angle can be calculated, as follows:

ϕknee = arccos
(

VAB ·VBC

|VAB||VBC|

)
(3)



Sensors 2023, 23, 4934 6 of 16

In this study, to reduce the error caused by multiple sets of data concatenation in
motion estimation, the gait cycle was introduced as the unit to measure the sample sizes
of different subjects, and the maximum sample sizes of each subject ranged from 63 GCs
to 82 GCs. One GC of different subjects with a different number of sample points was
considered. GCs are listed in Table 2, and S is represented as the subject, and n is represented
as the sample size.

Table 2. The sample size of different subjects in a gait cycle.

S 1# 2# 3# 4# 5#

n 129± 9 127± 6 126± 7 131± 6 122± 7

After processing the raw data of the sEMG signals and knee joint angle, the datasets
of the estimation model can be established, which are [AFt, Yt], where the sEMG AFt is
the input, and the knee joint angle Yt = ϕknee,t is the output. In this work, the maximum
dataset size was selected as 60 GCs.

3. Methods

Due to the complexity of the sEMG signals extracted from different subjects, it is
difficult to establish a general mathematical model to describe the mapping relationship
between the sEMG signals and the knee joint angle. In addition, the biomechanical model
of the relationship between the sEMG and the knee joint angle has a long way to go in
practical application. Therefore, a novel model-free estimation method has been proposed,
depending on the machine learning algorithm to establish a universal estimation model
between the sEMG signals and knee joint angle with the evolution function. In this paper,
the relevance vector machine (RVM) is used to establish the mapping model between the
sEMG signals and the knee joint angle. Before the beginning of the training process, the
sEMG dataset was used as the input dataset, which is divided into the training data and
the testing data. The output dataset is the knee joint angle. After the training process, the
regression model was established. It estimates the knee joint angle, according to the muscle
action in advance, based on the mapping relationship between the sEMG signals and the
knee joint angle.

3.1. Estimation Model Based on Multiple Kernel Relevance Vector Regression

The RVM is a machine learning algorithm that integrates kernel function, Bayesian
learning, and automatic correlation decision mechanisms. It can achieve high-precision
characterization of the sparse probability distribution of the high-dimensional space sep-
aration of sample data. This method is suitable for small sample data regression and
classification tasks. It provides the advantages of flexible kernel function selection and
simple model parameter setting. The basic idea is that the small sample data are mapped
to a high-dimensional feature space, based on kernel functions. A small number of relevant
vectors that accurately characterize the sparse distribution of sample data are obtained
using Bayesian learning and an automatic correlation decision mechanism to improve the
data generalization performance [31,32]. The relevance vector regression (RVR) model is
a linear regression model using the kernel function as the basis function. The relevant
parameters have independently prior distributions [33]. They are mathematically described
as follows.

Let {x}N
u=1 and {t}N

u=1 be the input and output vectors, respectively, and the objective
t can be obtained using the regression model, shown in Equation (4).

t = y(x) + ξn (4)

where ξn is the noise with zero mean and variance σ2, with y(x) defined as:

y(x) =
N

∑
u=1

wuK(x, xu) + w0 (5)
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where K(x, xu) is the kernel function, wu is the weight, and w0 is the deviation.
To address the problem of poor generalization performance of regression on small

samples of sEMG signals while walking, a knee joint angle regression model was proposed,
which is based on multiple kernel RVR (MKRVR). The model effectively uses multiple
kernel functions (RVR), which can explore more nonlinear features, containing knee motion
difference information in high-dimensional feature space, thus improving the learning
performance of RVR to accurately characterize the sparse distribution of knee motion
difference, as well as improving the regression generalization performance for small sample
data. Compared with the single kernel RVR, MKRVR can process nonlinear data by
mapping data to high-dimensional space, while the single kernel RVR can only process
linear separable data [34]. In addition, MKRVR can also use multiple kernel functions to
process different types of data to improve the regression performance and accelerate the
training process through parallel computing to increase the training efficiency [35]. MKRVR
can largely combine the advantages of polynomial, Gaussian, and sigmoid kernel functions.
This achieves a better capability of generalization and obtains predicted results [36]. The
MKRVR uses three kernel functions to construct the regression model: the Gaussian RBF
kernel, the polynomial kernel, and the sigmoid kernel, respectively. The kernel function is
calculated, as shown in the following equation:

Kgaussian(x, z) = exp
(
−γ‖x− z‖2

)
Kpolynomial(x, z) =

(
γxTz + c

)d

Ksigmoid(x, z) = tanh
(
γxTz + c

)
KMK = 0.8Kgaussian + 0.17Kpolynomial + 0.03Ksigmoid

(6)

Here, γ, c, and d are the kernel parameters, Kgaussian is the Gaussian RBF kernel,
Kpolynomial is the polynomial kernel, and Ksigmoid is the sigmoid kernel.

In this study, the estimation model was proposed, according to the MKRVR. The
process of estimation is shown in Figure 2. It can be seen, in the figure, that the amplitudes
of sEMG signals were extracted, based on the gait cycle. The average features were
calculated to stack the sEMG data of different gait cycles. The comparison with the LSSVR
was used to illustrate the advantages and the advancement of the MKRVR for joint angle
estimation, depending on small sample sEMG data. In the process, the sEMG signals of
human walking were divided into several GCs. The number of sample points in each GC is
different. The sEMG frequency of each GC is 2000 Hz, and the knee joint angle frequency
of each GC is 100 Hz. Thus, the AF was used to resample the number of sEMG signals in
each GC as equal to the number of knee joint angles and to stack the sEMG data of different
GCs. Finally, the sEMG signal was composed, and the corresponding knee joint angle was
used as the input and output to construct the mapping model between sEMG signals and
the knee joint angle, based on MKRVR and LSSVR.

3.2. Parameter Sets

In this study, the key parameters are the kernel parameters and kernel weight of
multiple kernels. The kernel parameters are the degree of the polynomial kernel (d), the
width of the kernel (γ), and the offset of the kernel (c), respectively. The kernel weights of
multiple kernels are the weight of the Gaussian RBF kernel (Kgaussian), the weight of the
polynomial kernel (Kpolynomial), and the weight of the sigmoid kernel (Ksigmoid), respectively.
The parameters for the algorithm were set, as recorded in Table 3.

Table 3. The key parameters of the algorithms.

Parameters d γ c Kgaussian Kpolynomial Ksigmoid

Value 0.02 [0.01, 0.005] 0.01 0.8 0.17 0.03
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3.3. Performance Indicators

In this study, the mean absolute error (MAE), root mean square error (RMSE), and
R2_score (R2) are the performance indicators. MAE is the result of averaging the absolute
value of the difference between each true value and each predicted value. MAE reflects the
overall difference between the predicted and true values of the samples. Furthermore, MAE
reflects the overall situation of all samples of a model, and if there are obvious outliers, it
will disturb the results more. To consider the influence of outliers, the RMSE is introduced,
and the absolute value is replaced by the square, which amplifies the influence of outliers.
To exclude the influence of the scale of the dataset and to portray the performance of the
regression model, R2 was adopted to evaluate the accuracy of the model. These factors are
defined as follows. Unless specified otherwise, in these equations below, n is the sample
size, yi is the true value of the ith sample, and ŷi is the predicted value of the ith sample.

(1) Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1
|ŷi − yi| (7)

(2) Root mean square error (RMSE):

RMSE =

√
1
n

m

∑
i=1

(yi − ŷi) (8)

The range of MAE and RMSE is [0, +∞), and, when the predicted value is completely
consistent with the true value, it is equal to 0. The larger the error, the larger the value. The
smaller the value, the better the accuracy of the estimation model.

(3) R2_score (R2):

R2 = 1−

n
∑

i=1

(
y(i)true − y(i)

)2

n
∑

i=1

(
y(i)mean − y(i)

)2 (9)

where y(i)true is the true value, y(i) is the predicted value, and y(i)mean is the average of true
values. The closer the R2_score is to 1, the better the estimation. R2_score = 0 means
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the predicted value is equal to the average value, and the training model is not ideal.
R2_score < 0 means the model is not as effective as simply taking the average value.

4. Results

This study requires finding a novel and rapid method for estimating the knee joint
angle. Validate the model and analyze the impact of training data on the model by selecting
multiple gait cycles to form a training dataset of different sample sizes. Take the sample of
1 GC as the initial training data. Each time the sample size changes, five GCs are added. A
total of 13 training datasets of different sizes are set. The sample size range is 1 to 60 GCs.
First of all, to determine the performance of MKRVR, a comparison between MKRVR and
other methods is proposed. The contrast methods are the standard RVR with Gaussian RBF
kernel, LSSVR, random forest (RF), and random forest with principal component analysis
(RFPCA). In the RF model [37], the number of trees in the forest (N), the number of features
of the input (Nf ), and the minimum size of the terminal nodes (Nm) were determined, and
they are set as N = 50, Nf = 5, and Nm = 5.

The results are listed in Table 4. The results showed that the R2_Score of MKRVR is
slightly better than RVR. The average RMSE and MAE of MKRVR is better than RVR, but
the average running time of MKRVR is less than RVR. Considering the quality of the dataset
and the setting of the hyperparameter, it can be considered that the performance of MKRVR
is superior to standard RVR with a Gaussian RBF kernel. In contrast to RF and RFPCA,
although the R2_Score, RMSE, and MAE of RFPCA are better than RF, RVR, and LSSVR,
the R2_Score, RMSE, and MAE of RVR are better than RF. The R2_Score, RMSE, and MAE
of MKRVR are better than RFPCA. MKRVR has more advantages in estimating running
time than RF/RFPCA/LSSVR. Different regression methods have different advantages in
different problems because the SVR and RVR are similar, in principle. RVR is developed
on the basis of SVR. Thus, the subsequent analysis focused on the comparison between
improved RVR (MKRVR) and improved SVR (LSSVR).

Table 4. The average accuracy of different methods.

R2_Score RMSE MAE Time

RVR 0.8881 ± 0.05 5.17◦ ± 1.34◦ 3.58◦ ± 1.3◦ 1.2 ± 0.9 ms

LSSVR 0.8308 ± 0.09 6.19◦ ± 1.58◦ 4.25◦ ± 1.2◦ 13.31 ± 0.5 ms

RF 0.8698 ± 0.05 5.36◦ ± 1.18◦ 3.41◦ ± 1.1◦ 2.97 ± 0.05 ms

RFPCA 0.8924 ± 0.04 4.94◦ ± 1.26◦ 3.24◦ ± 0.6◦ 2.99 ± 0.1 ms

MKRVR 0.8946 ± 0.07 4.81◦ ± 1.37◦ 3.27◦ ± 1.2◦ 1.9 ± 0.2 ms

Therefore, the results of LSSVR and MKRVR are compared to illustrate the proposed
method. The test running time and estimation accuracy were presented to verify the
advantages and performance of the estimation model. The results have been illustrated
in Figures 3–7. The comparison results of running time, MAE, and RMSE for different
methods are listed in Table 5.

Figure 3 shows the different running times of different subjects using LSSVR and
MKRVR to estimate the knee joint angle. Figure 3a–e used a histogram to compare the
running time of different methods for estimating the knee joint angle and the yellow broken
line, which represents the difference (D-value) of the running time by using LSSVR and
MKRVR to estimate the knee joint angle. Figure 3f compared the running time of different
subjects generated by the MKRVR. It can be obtained from these figures that, whatever
method is used, the running time increases as the whole of the sample size increases. The
MKRVR has a significant advantage over the LSSVR in time, which can save five to ten
cycles. The MKRVR generally takes less than 5 ms, while the LSSVR takes at least 4.5 ms.
This further shows that MKRVR has a stronger generalization ability for small samples
than LSSVR. MKRVR is more suitable for small sample regression training. These results
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may be due to the MKRVR based on the Bayesian framework, removing irrelevant points,
according to automatic relevance determination, which greatly reduces the calculation of
kernel function. To reduce the interference of abnormal parameters in the learning process,
there needs to be a preprocessing method to generate a better input for MKRVR from the
raw data.
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Figures 4 and 5 show the MAE and RMSE of different subjects when estimating the
knee joint angle using surface EMG signals. As shown in Figures 4 and 5, (a)–(e) compared
MAE and RMSE of the estimation models of different sampling subjects under different
sample sizes. The blue curve represents the MAE and RMSE obtained from the estimation
model, established by LSSVR. The orange curve represents the MAE and RMSE obtained
from the estimation model established by MKRVR. (f) indicates the MAE and RMSE
changes in knee joint angle, which are estimated by two methods for different subjects
when the sample size is 60 GCs (Where the A-value represents the original value, and the
D-value represents the difference between the A-value of MAE and the RMSE obtained by
two methods.). It can be seen, from the figure, that the changing trend of MAE and RMSE
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curves is the same. By contrast, RMSE is more obvious at the mutation position than MAE,
which further illustrates the ability of RMSE to characterize abnormal characteristics. With
the increase in sample size, the MAE and RMSE values gradually decrease.
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According to the numerical description in Table 5, when the MKRVR was used, the
best MAE, corresponding to different subjects, ranges from 1.95◦ to 4.64◦. The best RMSE,
corresponding to different subjects, ranges from 3.57◦ to 6.56◦. When the LSSVR is used,
the best MAE, corresponding to different subjects, is between 2.85◦ and 5.61◦, and the
best RMSE, corresponding to different subjects, ranges from 4.3◦ to 7.79◦, which shows
that the MKRVR method is better than the LSSVR method in estimating the knee joint
angle. The MKRVR can continuously estimate the knee joint angle with a global MAE of
3.32◦ ± 1.37◦ and a RMSE of 4.86◦ ± 1.37◦. These results seem to be large in comparison
to the actual motion angle of the knee. It is acceptable for the application of controlling
wearable robots because the actuators of robots have motion errors, and the wearer has
both flexibility and tolerance to the small differences of several degrees. In addition, the
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estimation model, using MKRVR, has some hyperparameters on both the kernel functions
and weight. Therefore, a better parameter set leads to a more accurate estimation model
of MKRVR.
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Table 5. The results of LSSVR and MKRVR.

LSSVR MKRVR

Time Range ∆t MAE Range ∆d RMSE Range ∆d Time Range ∆t MAE Range ∆d RMSE Range ∆d

S1 [13.69, 26.27] 12.58 [5.61, 17.03] 11.42 [7.79, 24.29] 16.5 [2.13, 4.86] 2.73 [4.64, 9.13] 4.49 [6.56, 11.66] 5.1

S2 [5.43, 20.77] 15.34 [4, 13.07] 9.07 [6.21, 16.89] 10.68 [0.58, 1.07] 0.49 [3.01, 6.6] 3.59 [4.46, 9.56] 5.1

S3 [5.11, 19.93] 14.82 [2.85, 14.17] 11.32 [4.3, 31.16] 26.86 [0.93, 2.69] 1.76 [1.95, 6.09] 4.14 [3.45, 7.48] 4.03

S4 [4.91, 18.11] 13.21 [4.69, 27.65] 22.96 [6.71, 39.6] 32.89 [0.53, 2.35] 1.82 [3.63, 8.05] 4.42 [5.02, 10.57] 5.55

S5 [4.53, 15.83] 11.3 [4.09, 29.53] 25.44 [5.79, 39.32] 33.53 [0.8, 2.81] 2.01 [3.37, 8.53] 5.16 [4.54, 10.48] 5.94

Figure 6 describes the comparison of model estimation accuracy when LSSVR and
MKRVR are used. Figure 6a–e show the R2 of different subjects under the conditions of
two methods. Figure 6f illustrates the R2 of different subjects with a marked stacked line
chart when MKRVR is used. It illustrates that, when the two methods are used to estimate
the knee joint angle, the estimation accuracy will increase with the increase in the sample
size. From the analysis of the R2 change trend of the two methods, however, the sample
size changes, and the results of the MKRVR method show obvious regularity. Since the
LSSVR method is used, R2 will appear less than 0 when the sample size is less than 30 GCs.
It means that there are errors in parameter or feature configuration during training. It
indicates that, when the sample size is small, the feature learning ability of LSSVR is limited.
The method cannot achieve ideal generalization ability. Therefore, the MKRVR method has
more advantages than the LSSVR method in processing small sample estimation.

According to the information in Table 6, when the LSSVR is used, the best R2 values,
corresponding to different objects, are (S1, 0.743), (S2, 0.864), (S3, 0.913), and (S4, 0.794), and
(S5, 0.841). When MKRVR is used, the best R2 values, corresponding to different subjects,
are (S1, 0.821), (S2, 0.921), (S3, 0.951), (S4, 0.871), and (S5, 0.911). The results showed that
LSSVR can continuously estimate the knee joint angle with a global R2 of 0.8308± 0.09, and
the MKRVR can continuously estimate the knee joint angle with a global R2 of 0.8946 ± 0.07.
The accuracy of model estimation established by the latter is better than the former by
comparison. Once the sample size is more than 20 GCs, the subsequent changes in the
estimation accuracy would be stabilized. It means that, when the sample size increases to a
certain value, the larger sample size would further enhance the estimation accuracy.
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Table 6. The R2_scores of different subjects with LSSVR and MKRVR.

Subject
Method

LSSVR MKRVR

S1 [0.555, 0.743] [0.588, 0.816]

S2 [0.413, 0.862] [0.668, 0.921]

S3 [0.458, 0.913] [0.689, 0.951]

S4 [0.439, 0.794] [0.467, 0.871]

S5 [0.311, 0.841] [0.217, 0.911]

According to the above estimation results, the comparison curve of the estimated knee
joint angle and the true knee joint angle of subject 3 is selected to illustrate the estimation
accuracy of the two methods with different sample sizes. This can be seen in Figure 7.
From the figure, the coincidence degree of the estimated knee joint angle curve and the
true value curve when using different methods can be seen. Figure 7 selects the estimation
results when the sample sizes are 1 GC, 5 GCs, 10 GCs, 20 GCs, 30 GCs, 40 GCs, 50 GCs,
and 60 GCs to illustrate the corresponding relationship between the estimated knee joint
angle and the increased of the sample size. It can be seen that the changing trend of the
estimated knee joint angle corresponds to the changing trend of other evaluation criteria.
The estimation accuracy will be improved with the increase in the sample size as a whole.

5. Discussion

In this study, a novel estimation approach based on MKRVR was proposed to construct
the mapping relationship between the knee joint angles and sEMG signals. According to
the results, the proposed approach improves the angle estimation in comparison with the
LSSVR and standard RVR with the Gaussian RBF kernel. The sampling size is positively
correlated with the estimation accuracy, and the data partitioning method based on the gait
cycle avoids the impact of individual differences, such as gait speed, stride, etc. The AF is
used to reconnect each GC as a complete dataset. The estimation accuracy of MKRVR is
slightly better than the standard RVR with Gaussian RBF kernel. The reason may be related
to the dataset quality, hyperparameters, muscle synergies, etc, but the estimation accuracy
has been further improved than LSSVR. This result showed that MKRVR can construct a
better estimation model, depending on its relevance.

According to the above results, since the sample size increases to a certain value, the
running time shows a sudden change, and the uncertainty of the running time increases
with the sample size increase. On the premise of ensuring estimation accuracy, selecting a
reasonable sample size is more meaningful for decreasing running time and improving the
practicability of sEMG signals on the online control of wearable robots.

In comparison, the estimation process using MKRVR is stable, and, even if 1 GC is
used as the training sample, good results can still be achieved. When the sample size
is greater than 10 GCs, the MAE and RMSE values are significantly reduced. While the
estimation process using LSSVR is relatively variable, only when the sample size is greater
than 30 GCs will the MAE and RMSE values show a regular decrease. The above results
can explain that the MKRVR can quickly realize the generalization of the regression process
under a limited sample size.

This study aimed to lay the foundation for future development in the application
of human–robot collaboration control and construct the HRI system based on sEMG to
predict human motion intention accurately. However, sEMG is unstable, and only the
investigated cases of unimpaired persons were considered for normal walking. Hence,
the exceptions from the input data sets must be removed before estimation. Otherwise,
the estimation accuracy shows a larger uncertainty variation. Thus, more subjects will be
invited to participate in the research to validate the composited approaches further.
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From the coincidence degree between the estimated knee angle curve and the true
value curve in the figure, it can be seen intuitively that MAE and RMSE cannot be indicated.
The knee angle curve estimated by LSSVR fluctuates more, especially in the gait-switching
stage when the number of sampling points is 60. However, MKRVR reduces the abnormal
fluctuation at this stage and improves the coincidence degree with the true value. The
results of the LSSVR are more unstable, relatively, and the results of the MKRVR have
estimations similar to the raw value. That is, MKRVR has a better error tolerance.

Of course, different machine learning methods have different advantages, which
depend on the settings of hyperparameters, the size of datasets, the use of dimension
reduction methods, and the requirements of application scenarios. In this study, the MKRVR
method demonstrated excellent regression estimation performance in a small sample size.
Although the MKRVR performs brightly better than LSSVR, compared to standard RVR, it
performs slightly better, and this may be related to the kernel weight of multiple kernels,
as the kernel weight is set based on prior knowledge and manual verification. According
to the results, improving the estimation accuracy should be performed by collecting more
sEMG signals from relevant muscles and adding the preprocessing of sEMG signals based
on muscle synergy.

6. Conclusions and Future Work

In this study, a novel estimation model of MKRVR was proposed to estimate the
knee joint angle based on sEMG and study their relationship with the HRI of wearable
robots. In the preprocessing of the raw sEMG signals, AF is used to extract the sEMG
features of sample points in different gait cycles to improve the consistency of input data.
The comparison between MKRVR and LSSVR is proposed to verify the usefulness of the
proposed method.

According to the results, MKRVR performs better than RFPCA\RVR\RF\LSSVR in
the estimation of small samples, and MKRVR and RVR have more advantages in execution
time. The MKRVR performs better than the LSSVR in the estimation of the knee joint
angle, mainly in the following aspects: less running time, higher estimation accuracy,
and better stability in small sample estimation under the same sample size. The results
showed that the MKRVR can continuously estimate the knee joint angle, with a global
MAE of 3.27◦ ± 1.2◦, a RMSE of 4.81◦ ± 1.37◦, and a R2 of 0.8946 ± 0.07. This concludes
that MKRVR is suitable for knee joint angle estimation from the sEMG signals with high
accuracy and requiring minimal time. The MKRVR will be used to promote the safety and
easiness of sEMG in the application of recognizing the wearer’s motion intentions while
controlling wearable robots. These results also demonstrate the potential for this method to
achieve rapid online intention recognition regarding human–robot collaboration control.

Future work on improving the estimation accuracy will be performed by using an
intelligent optimization algorithm to optimize the hyperparameters of the kernel function
in the model. Future research will extract sEMG signals from more than five muscles to
analyze the muscle synergies and the relationship between the sEMG and joint movement.
The composited groups of different muscles and different features will be selected as the
inputs to train the regression model. Furthermore, the proposed method in this work will
be verified on the public dataset, such as the CSL-SHARE dataset [38]. Finally, this method
will be applied in the control of wearable extra robotic limbs.
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