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Abstract: When performing indoor tasks, miniature swarm robots are suffered from their small
size, poor on-board computing power, and electromagnetic shielding of buildings, which means
that some traditional localization methods, such as global positioning system (GPS), simultaneous
localization and mapping (SLAM), and ultra-wideband (UWB), cannot be employed. In this paper,
a minimalist indoor self-localization approach for swarm robots is proposed based on active optical
beacons. A robotic navigator is introduced into a swarm of robots to provide locally localization
services by actively projecting a customized optical beacon on the indoor ceiling, which contains the
origin and the reference direction of localization coordinates. The swarm robots observe the optical
beacon on the ceiling via a bottom-up-view monocular camera, and extract the beacon information
on-board to localize their positions and headings. The uniqueness of this strategy is that it uses
the flat, smooth, and well-reflective ceiling in the indoor environment as a ubiquitous plane for
displaying the optical beacon; meanwhile, the bottom-up view of swarm robots is not easily blocked.
Real robotic experiments are conducted to validate and analyze the localization performance of the
proposed minimalist self-localization approach. The results show that our approach is feasible and
effective, and can meet the needs of swarm robots to coordinate their motion. Specifically, for the
stationary robots, the average position error and heading error are 2.41 cm and 1.44◦; when the robots
are moving, the average position error and heading error are less than 2.40 cm and 2.66◦.

Keywords: swarm robots; visual localization; optical beacon; self-localization; indoor environment

1. Introduction

Typically, swarm robots are much smaller, cheaper, and simpler than autonomous
robots, and have limited sensing, computing, and loading capabilities. They often con-
sist of dozens, hundreds, or even thousands of individual robots that work together in
a coordinated manner to carry out missions. Due to their behavior being regulated based
on the distributed control framework using the local sensing information, the collective
behavior of swarm robots is self-organizing and emerging; it features strong robustness,
scalability, flexibility, and adaptability [1]. These excellent characteristics enable them to
serve a wide range of challenging applications, such as target search [2], collective trans-
port [3], multi-target trapping [4], object collection [5], etc. Recently, the field of swarm
robotics has attracted a lot of attention, from theoretical approaches to various applications.

For many tasks within indoor environments, such as environmental maintenance,
structure construction, search and rescues, etc., swarm robots can provide unique solutions
and have efficiency advantages due to the fact that they can act in parallel and work
cooperatively. The corresponding swarm-robotized solutions for these tasks in literature
are known as collective waste collection [6], collective robotic construction [7], collective
search and rescues [8], etc. Of particular interest is when robots carrying specialized
equipment have to enter structurally damaged or even collapsed buildings to undertake
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searches and rescues of survivors, as is the situation when dealing with disaster scenarios
such as earthquakes, typhoons, and fires. Swarm robots can take full advantage of them
due to their small size, fast deployment, and large-scale parallel activities to perform tasks
such as casualty search, goods transport, and structural repair of buildings. However, it
remains a challenge for swarm robots to effectively locate themselves when working inside
buildings. We emphasize that effective self-localization is a necessary condition for swarm
robots to successfully fulfill these indoor tasks.

The commonly used robot localization methods such as GPS, UWB, and SLAM, are
not suitable or cannot meet the requirements of swarm robots working indoors. Some of
the restrictive reasons are as follows: Firstly, the electromagnetic signal might be blocked
by the exterior wall and roof of buildings, making GPS [9] unstable or even completely
ineffective indoors. Secondly, other localization methods such as UWB, motion capture
systems, and wireless sensor location [10–12] require the prior installation and calibration
of the external auxiliary systems, which makes them inflexible in using, and impossible to
deploy quickly. Thus, these methods are not suitable for the indoor localization of swarm
robots in emergencies. Finally, the localization methods based on laser and/or visual
SLAM [13,14] are also challenging to implement in swarm robots due to the restriction of
small size, limited power supply, and poor on-board computing.

As a consequence, a minimalist and effective self-localization approach with low
computational costs and rapid deployment is required for swarm robots working indoors.
It is the goal of our study in this paper.

1.1. Related Works

Self-localization in an indoor environment is one of the challenging issues for swarm
robotics. Most current relevant efforts are based on infrared (IR) sensors. Typically, IR
sensors are used to collect relative bearing and distance data between individual robots,
then this positional data is then aggregated and integrated by specific methods to obtain
information about the spatial configuration of the robot swarm. For example, Mao et al. [15]
used both a compass and an IR transceiver to achieve relative positioning of swarm robots,
where the former establishes a common reference direction for all robots and the latter
detects the relative positions of neighboring robots. Kim et al. [16] proposed a method for
estimating the topology of swarm robots, in which six pairs of IR transceivers are used by
each robot to obtain the relative positions of its neighbors; this information is integrated by
a central computer to estimate the swarm’s topology and generate a map to characterize
the distribution of swarm robots. Wang et al. [17] proposed a relative localization method
for swarm robots based on the so-called polar method, which similarly employs IR sensors
for relative sensing between robots. Nevertheless, we must be aware that the angular
resolution and radial distance resolution of these IR-based localization methods are very
limited due to the sensing nature and layout of IR transceivers.

The shortcomings in angular and radial distance resolution of the above IR-based
localization methods can be compensated by using high-resolution visual sensors in swarm
robots [18]. For instance, Bonani et al. [19] designed a novel omnidirectional camera for
MarXbots swarm robots, which consists of a monocular visual sensor and a uniquely
designed convex reflector. This visual module allows each MarXbots to obtain the position
information of all its surrounding neighbors with high resolution. Wang et al. [20] proposed
a visual perception method for swarm robots by a using forward-facing visual sensor, in
which swarm robots determine the relative position, orientation, and velocity of their
neighboring robots by observing the optical beacon mounted on top of each robot. It is
worth noting that the aforementioned positioning methods, whether based on infrared or
visual sensors, suffer from two shortcomings: achieving group-level configuration of swarm
robots requires the exchange of relative positioning information between individuals, and
this process leads to a significant increase in communication load that grows exponentially
with the number of robots, known as “communication congestion [21]”. Furthermore,



Sensors 2023, 23, 4926 3 of 18

when these methods are used in large and dense swarms, both infrared and visual sensors
may become invalid due to mutual occlusion between robots.

When a robot works indoors, the most favorable condition for navigation and localiza-
tion is the structured building. The ceiling, like the floor, is a building-scale architectural
reference plane that is continuous without gaps and has a flat surface and good reflectivity.
In particular, the ceiling is generally parallel to the floor and the view observed from the
ground is not easily obstructed by obstacles. By projecting or laying customized visual
beacons on the ceiling, the robot can achieve self-localization. For instance, Li et al. [22] pre-
placed a series of artificial markers on the ceiling that encoded each marker’s ID and some
positional reference information, and the mobile robot locate its position autonomously by
observing these markers.

1.2. Motivation and Contributions

In nature, animal domains have developed efficient division of labor mechanisms
such as a head goose leading young geese to migrate long distances [23], and a scout bee
broadcasting the location information of nectar source to other bees with a tail-wagging
dance [24]. Inspired by this simple and efficient collaborative idea, we propose an active-
optical-beacon-based cooperative localization approach for indoor working swarm robots
in this paper. Specifically, a robotic navigator is introduced into a swarm of robots to project
artificial beacons on the ceiling. Each individual in the robot swarm locates itself relative
to the navigator by monitoring the artificial beacon through a monocular camera with
a bottom-up view mounted on the top of the robot’s body. Basically speaking, the method
can provide a limited range of location services to swarm robots when the navigator’s
position remains stationary; however, the range of location services can be extended
by shifting the navigator’s position. It should be noted that despite being a minimalist
approach to localization, this method proves to be efficient and rapidly deployable for
swarm robots with limited computing capabilities. This is due to the fact that there is no
requirement for any external auxiliary equipment to be pre-installed at the work site.

In this paper, we focus on stationary navigator and concern on the following issues:
ceiling-beacon-based localization approach of swarm robots, designing and recognizing
method of optical beacon, and analyzing the self-localization performance of our method
in different scenarios. The main contributions of this paper are as follows:

(1) A cooperative localization approach for indoor swarm robots is proposed, in which
a robotic navigator is introduced to project an optical beacon on the building’s ceiling,
and swarm robots locate their positions by observing the beacon. The advantages of
this approach are considered to be minimalist, and efficient, and with no requirement
for auxiliary equipment.

(2) Our unique ceiling-projected beacon and bottom-up visual observation have two main
advantages. On the one hand, relative localization failures caused by mutual visual
occlusion can be successfully avoided. On the other hand, recognition complexity
caused by dynamic environments such as people’s movement and unstructured
furniture can be eliminated. In this sense, our approach is suitable for large and dense
groups of swarm robots working indoors.

(3) The proposed approach is verified through self-localization experiments using the
real robot, and its localization precision is sufficient for the cooperative operation of
swarm robots.

1.3. Structure of the Article

The remainder of this paper is organized as follows. In Section 2, a detailed description
of the proposed localization approach for swarm robots is provided. In Section 3, we explain
the implementation of our self-localization approach in detail. Real robotic experiments are
presented to verify the effectiveness of our approach in Section 4. Finally, in Section 5, we
conclude this paper by summarizing our results and discussing some potential avenues for
future work.
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2. Localization Approach for Swarm Robots

When swarm robots work indoors, the ceiling is an ideal beacon display plane due
to its flat surface, good reflectivity, and continuity without gaps. If we project an active
optical beacon onto the ceiling, by observing the optical beacon, the robot can determine its
relative position with respect to the coordinate system defined by the beacon. The strategy
of bottom-up observation reduces the visual recognition complexity brought by dynamic
environments and avoids visual occlusion among swarm robots. With these considerations
in mind, we propose a self-localization methodology for indoor working swarm robots
based on actively projecting an optical beacon on the ceiling.

Assuming that the ceiling is flat with good reflectivity, within a swarm of robots,
an autonomous mobile robot (referred to as Navigator) is introduced into a group of swarm
robots to provide localization services. As shown in Figure 1, the robotic navigator offers
several capabilities such as image projection, autonomous navigation, remote-operated
motion control, global positioning, wireless communication, and more. Its most unique
feature is the ability to project a variable size, adjustable brightness, and colored optical
beacon onto the ceiling. This optical beacon must be visible and easily identifiable and
contains the local coordinate system information required for determining the robot’s
position and orientation, such as the common reference direction and coordinate origin.
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Figure 1. Schematic diagram of the proposed self-localization approach for swarm robots.

Our SwarmBang miniature swarm robot is designed to perform specific indoor tasks
(see Section 3 for details). Contrary to the versatile robotic navigator, the SwarmBang
robot is minimalist designed and highly task-oriented. Each swarm robot is equipped
with a visual module mounted on top to observe the optical beacons projected onto the
ceiling. By measuring the positional discrepancy of the optical beacon from the robot’s
view, SwarmBang is able to determine its relative position and orientation with respect to
the optical coordinate system (defined by the optical beacon). Subsequently, by integrating
and processing the relative localization information of each individual robot, the robotic
navigator can identify and establish the global coordinates, spatial distribution, and collec-
tive movement status of the entire swarm. On the one hand, this group-level information
can be used by swarm robots for task planning and decision-making. On the other hand,
this swarm-robotic information can also be communicated to a remote control center so
that the human operator can monitor and/or intervene in the operations of swarm robots.

Due to the limited viewing range of the visual positioning module, a beacon, which
is fixed at a specific location, can only provide location services for SwarmBang robots in
a limited region. This service region is determined by the size and shape of the beacon,
the view field of the robot’s positioning module, and the height of the ceiling. In order
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to provide a wide range of localization services for swarm robots, once the swarm robots
have completed their tasks in a certain area, the robotic navigator moves to the next
location and projects the optical beacon again according to the task requirements of the
swarm robots in the next stage. As mentioned above, one of the capabilities of the robotic
navigator is to obtain its global position. Thus, the robotic navigator can translate the group
status and position of the swarm robots in the beacon coordinate system to the global
coordinate system.

In this study, we concentrate on implementing the self-localization of swarm robots,
specifically how they determine their relative position and heading based on the active op-
tical beacon on the ceiling, and analyzing the self-localization performance of our proposed
approach in different scenarios. We primarily focus on two major issues: the design and
recognition of active beacons, the relative localization approach of swarm robots based on
active beacons.

3. Implementation of Self-Localization Approach

In this section, the implementation of our self-localization approach is provided in
detail, including the introduction of our swarm robot and its visual localization module,
the design and recognition method of active beacons, and the relative localization method
based on the active beacon.

3.1. Miniature Swarm Robots

Our swarm robot is named SwarmBang, and its hardware architecture is shown in
Figure 2a. The SwarmBang robot is a miniature mobile robot, weighing 180 g, 60 mm
in diameter, and 80 mm in height. The main hardware components of the SwarmBang
robot include the low-power microcontroller responsible for central computation, two 5 V
stepper motors driving the robot’s wheels, an omnidirectional wheel to maintain balance,
and three pairs of infrared transceivers for local emergency avoidance. Our SwarmBang
robot can be equipped with a variety of functional components, including brushes, gas
sensors, grippers, and others, to perform various indoor tasks, such as waste cleaning, fire
source detection, and collective object transport.
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Figure 2. The SwarmBang robot and its kinematics model: (a) SwarmBang with a visual localization
module; (b) kinematics model.

The visual localization module of the SwarmBang robot is a miniature monocular
camera that is developed based on the open-source platform, OpenMV4. The module
is mounted horizontally on top of the robot, and the camera’s field of view is oriented
vertically upward to ensure that the imaging plane remains parallel to the robot’s mo-
tion plane. The localization module has external dimensions of 60 × 43 × 18 mm and
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is mounted approximately 70 mm above the ground. In terms of hardware configura-
tion, the module includes a low-power STM32H7 processor with 480 MHz main fre-
quency, 1 MB RAM, and 2 MB Flash memory, a CMOS sensor with 5-megapixel resolution
(2592 pixels × 1944 pixels), and a distortion-free lens with 2.8 mm focal length and F2.5
aperture. Using this module, the SwarmBang robot can observe the optical beacons on the
ceiling and determine its relative position.

As shown in Figure 2b, the SwarmBang robot adopts a two-wheel differential motion
structure. Instead of directly controlling the speed of the left and right wheels, SwarmBang’s
motion is regulated by setting its linear and angular speed. Its control command is updated
at a fixed time interval ∆t. During each update cycle, the robot maintains its linear and
angular speed until a new control command is received. A brief overview of the control
process is provided as follows: At any moment, the robot’s movement can be seen as
a rotation around point ICR. During this rotation process, the robot’s angular speed ω is
equal to the angular speeds ωL and ωR of its left and right wheels. Therefore, the linear
speeds vL and vR are related as follows:

vL(r +
l
2
) = vR(r−

l
2
) (1)

where r is the turning radius of the robot, and l = 48 mm is the distance between the
two wheels. Using the relationship between the angular speed ω, turning radius r, and
linear speed v, we can obtain:

ω =
vR

r + l
2

=
vR − vL

l
(2)

v = ω× r =
vR − vL

l
× l(vR + vL)

2(vR − vL)
=

vR + vL
2

(3)

When the desired linear and angular speeds of the robot are known, the speeds of the
left and right wheels can then be used to drive the robot’s movement.

vL = v− ωl
2

vR = v + ωl
2

(4)

For the SwarmBang robot, its maximum linear speed vmax = 120 mm/s, and its
maximum angular speed ωmax = 86 deg/s.

3.2. Design and Recognition of Optical Beacons

The optical beacons should include information such as the origin and a directional
reference to help the robot perform self-localization easily and accurately. Also, it must be
extracted and recognized quickly and accurately. In this section, we present a novel scheme
for designing optical beacons and provide a fast recognition and verification method.

3.2.1. Design of Optical Beacons

As mentioned in the previous section, active optical beacons should provide robots
with information about the origin and reference direction of the coordinate system. Con-
sidering this requirement, two candidate beacon prototypes are shown in Figure 3. The
first prototype beacon is designed as an isosceles triangle, while the second prototype
beacon is designed as two circles with different diameters. For the former, the midpoint of
the triangle’s base is defined as the origin point M of the beacon coordinate system; the
vertex of the triangle that is not on the base is point N, which is a point on the X-axis of the
beacon coordinate system. For the latter, the center of the big circle is the origin point M of
the beacon coordinate system, and the center of the small circle is point N. For them, the
direction of the X-axis points from M to N.
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Although the above-mentioned prototype designs are theoretically feasible, it is chal-
lenging for swarm robots to ensure the stability of recognition when they actually detect
and recognize these beacons. This is due to the relatively high computational complexity
of the first prototype. The second prototype has a regular shape that can be recognized
effortlessly. However, it is easy to reverse the direction when determining the positive
X-axis direction by comparing the sizes of the two circles.

Here, we choose to integrate the two prototype designs, and the final beacon design
scheme (referred to as triangular isomorphic beacon) is shown in Figure 3. The triangular
isomorphic beacon is composed of three equally sized circles, arranged in an isosceles
triangle. On the basis of identifying the centers of the three circles and measuring the
distance between each pair of circles, the base and sides of the triangular beacon can be
determined. As shown in Figure 3, the beacon coordinate system can then be established:
the origin point is the midpoint, M, of the triangular base; the positive direction of the

X-axis directs from point M to point N (referred to as the vector
−−→
MN ), where N is the

vertex that is not on the triangular base; the direction from point Q to point J is the positive

direction of the Y-axis (referred to as the vector
−→
QJ ).

It is worth noting that due to the inherent distortion of optical lenses, some errors in
beacon recognition inevitably occur at the edge of the camera’s field of view. Therefore, the
visual beacons should contain specific verification information so that the robot can quickly
check whether to accept or discard the current recognition result. Our designed triangular
beacon supports geometric verification based on the property of isosceles triangles, i.e.,

the midline and base are perpendicular to each other. Specifically, if the vector
−−→
MN is not

perpendicular to the vector
−→
QJ , the beacon recognition result should be discarded.

3.2.2. Recognition and Verification of Beacons

In order to recognize and extract the structural information of the triangular iso-
morphic beacon we designed, we propose a recognition processing flow for the visual
localization module, as shown in Figure 4. The flow primarily consists of three segments:
beacon detection, extraction of localization information, and information verification.
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Figure 4. Flowchart of active optical beacon recognition and verification.

Firstly, the color images collected by the robot are converted to grayscale. By using
Canny edge detection [25] and Hough circle recognition [26], the coordinates of possible
vertices in the robot’s field of view are acquired. Here, spots with a radius of less than three
pixels are considered as noise and are removed.

Secondly, we scan and mark all the candidate vertices based on the NCC template
matching approach [27] to determine the three vertices of the optical beacon, i.e., the centers
of the three circles. On the basis of calculating the distance between each pair of vertices,
the base, and waist of the beacon can be determined by vertex-spacing sorting, and the
pixel coordinates of three vertices N, J, and Q are extracted. Then, according to the design
scheme described in Section 3.2.1, we can obtain the information of the coordinate system
as: the origin point is M = (J + Q)/2, and the positive directions of the X-axis and Y-axis

are the vector
−−→
MN and

−→
QJ , respectively.

Finally, the detected beacons are verified based on the geometric property of the
isosceles triangle, i.e., its midline and base are perpendicular to each other. Formally,

the inner product of the vectors
−−→
MN and

−→
QJ should be zero if they are perpendicular.

However, the actual recognition process of the beacon may be impacted by unfavorable
factors such as camera distortion, stray light interference, and blurred contours, which
may lead the robot to incorrectly identify the three vertices. Therefore, a criterion is set as

follows: if the angle between the vectors of
−−→
MN and

−→
QJ is in the range of (80◦, 100◦), the

recognition result is valid for the current frame; otherwise, we consider that the recognition
result is improper and the robot re-collects a new frame of the image to recognize and
extract the efficient data.

3.3. Relative Localization

When the swarm robots perform certain tasks in an indoor area, the robotic navigator
remains stationary in a fixed position and projects optical beacons on the ceiling. Along
with the movement of the robot, the imaging of the beacon within its field of view changes
with the change of its pose. Utilizing the imaging difference and prior knowledge of the
beacon’s pixel coordinates, the position and heading of the robot relative to the beacon
coordinate system can be estimated.
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As shown in Figure 5a, two coordinate systems are established: (1) the beacon co-
ordinate system XBOBYB, which serves as the reference coordinate system for the self-
localization of swarm robots; (2) the camera coordinate system XCYCZC, in which the
origin point is the optical center of the robot’s camera (which is coincident with the robot’s
motion center), and the positive directions of the Y-axis and Z-axis are aligned with the
robot’s heading and the camera’s optical axis, respectively. For a certain frame of the image,
the robot first determines the coordinates of the beacon in the pixel coordinate system, PM
and PN . Then, PM and PN are converted into the corresponding coordinates CM and CN
in the camera coordinate system. Finally, according to the geometric relationship between
XCYCZC and XBOBYB, the position and heading of the robot in the coordinate XBOBYB
are obtained.
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Figure 5. Robot’s position and heading calculation: (a) 3D scenario; (b) top view of beacon coordi-
nate system.

According to the camera pinhole camera model [28], the relationship between a point’s
position in the camera coordinate system and its position in the pixel coordinate system is
as follows:

ZC

 u
v
1

 = T

 XC
YC
ZC

, T =

 1
dx 0 u0
0 1

dy v0

0 0 1


 f 0 0

0 f 0
0 0 1

 (5)

where ZC is the distance between the imaging object’s plane and the robot’s camera optical
center, (u, v) denotes the coordinates in the pixel coordinate system, and (XC, YC, ZC)
denotes a point in the camera coordinate system. T is a 3× 3 matrix of the camera’s internal
parameters, which can be obtained through several camera calibration methods [29]. f
is the focal length of the camera lens. (u0, v0) is the pixel coordinates of the camera’s
optical center. dx and dy represent the physical dimensions of a unit pixel in the X-axis and
Y-axis, respectively.

For an indoor working robot, due to the ground and ceiling being parallel, ZC is
constantly equal to h, i.e., ZC = h, if we ignore the impact of ground undulation on the
robot’s motion, where h is the distance between the ceiling plane and the optical center of
the camera. Hence, Equation (5) can be re-written as:

h

uk
vk
1

 = T

xk
yk
h

, T =

ax 0 u0
0 ay v0
0 0 1

 (6)

where (uk, vk) and (xk, yk, h) stand for any point K’s coordinates in the beacon coordinate
system and camera coordinate system, respectively. ax = f /dx and ay = f /dy, respectively,
are the scale factors of the horizontal and vertical axes for the image coordinate system.
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Then, based on the inverse transformation of Equation (6), the point’s positions, (uk, vk), in
the camera coordinate system can be obtained:xk

yk
h

 = hT−1

uk
vk
1

 (7)

Based on Equation (7), the pixel positions PM(um, vm) and PN(un, vn) acquired by
the visual localization module can be translated into the camera coordinate system, yield-
ing CM(xm, ym, h) and CN(xn, yn, h), respectively. Because the optical axis of the visual
localization module is perpendicular to the ceiling plane and the motion center of the
robot coincides with the origin of the camera coordinate system, the robot’s motion can
be mapped to the ceiling plane on which the beacon is projected. Therefore, as shown
in Figure 5b, according to the geometric relationship between the coordinate systems
XBOBYB and XCYCZC, the position of the robot in the beacon coordinate system, (xr, yr), is
as following: (

xr
yr

)
=
∥∥CM − CR

∥∥( cos α
sin α

)

α = arccos

 −−→C MCR∥∥∥∥∥−−→C MCR

∥∥∥∥∥
·
−−→
C MC N∥∥∥∥∥−−→C MC N

∥∥∥∥∥


(8)

where CR is the origin of the camera coordinate system, i.e., CR=(0, 0); ’·’ represents the
inner product of the vectors.

Finally, since the robot’s heading that we set is concordant with the positive direction
of the X-axis of the camera coordinate system, its heading is equal to the rotation angle of
the camera coordinate system with respect to the beacon coordinate system:

heading = arctan2(yn − ym, xn − xm) (9)

where arctan2(∗, ∗) stands for the four-quadrant arctangent function.

4. Experimental Results

In this section, some real robot experiments are conducted to test the localization
performance of our approach. We first carry out an experiment to investigate the effective
localization area of the robotic navigator, and then, two experiments with stationary and
moving robots, respectively, are performed to verify the feasibility and effectiveness of
swarm robots.

4.1. Experiment Set-Up

As depicted in Figure 6a, our experiments are conducted in a ~30 m2 indoor arena
with flat ground and no obstacles. Around the arena, 16 NOKOV motion capture cameras
are mounted, which connect to a host. This motion capture system serves to monitor
the real-time position and heading of each SwarmBang robot. The NOKOV system has
a positioning and orientation accuracy of 0.2 mm and 0.28◦, respectively, so these collected
data can be treated as the true pose to check the robot’s self-localization results.
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In the original setup of our approach, an optical beacon should be projected onto the
ceiling by the robotic navigator. For the purpose of simplifying the experimental setup,
in practical experiments, three fixed light spheres are used as the beacons. This setting
also helps to minimize the interference in localization performance caused by a cluttered
background, changes in the projection position, and the jitter of the projected pattern.
Specifically, three white lights are set up at the top of the site to simulate the active beacons
projected by a robotic navigator on the ceiling. Figure 6b illustrates the location and spacing
of three lights, that are installed at a height of 2.7 m above the floor.

To quantitatively evaluate the self-localization performance of SwarmBang robots, the
following metrics are used.

(1) The position error, Epos, is defined as the Euclidean distance between the true position
and the estimated position of the self-localization module:

Epos = ‖(xs, ys)− (xa, ya)‖ (10)

where (xs, ys) and (xa, ya) are the self-localized coordinates and the true coordinates,
respectively. The positioning accuracy of the robot decreases as Epos increases. Epos = 0 is
the ideal case.

(2) The heading error, Eang, is defined as the absolute value of the error between the true
heading and the estimated heading obtained of the self-localization module.

Eang = |θs − θa| (11)

where θs and θa are the self-localized heading and the true heading, respectively. The
orientation accuracy of the robot decreases as Eang increases, and Eang = 0 is the ideal case.

4.2. Experiment of Effective Self-Localization Area

Restricted by the view field of the visual localization module, the effective area of
self-localization that can be provided by the optical beacon to swarm robots is limited.
Although the effective localization area can be directly calculated according to the size
and height of the optical beacons, the distorted imaging at the edge of the visual field may
make beacon verification impossible, leading to a smaller effective localization area than
expected in theory.
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As seen in Figure 7, we set 12 test directions with 30◦ intervals and control the robot
to move gradually outward from the beacon’s origin point along these directions. As the
robot makes each change in position, it slowly rotates in place while observing the beacon
in its field of view. The position is considered to be within the effective localization range if
the beacon can be fully observed and successfully verified during the robot’s rotation. The
experimental results show that the effective localization area is ellipse-like, with a short
axis of around 2.4 m and a long axis of around 3.0 m, when the beacon is positioned at
a height of 2.7 m. Notably, the effective localization area is roughly 400 times larger than
the SwarmBang’s size, meaning that the beacon can support more than 100 robots carrying
out tasks simultaneously. Certainly, the effective localization area can be further extended
by increasing the height of the beacon.
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4.3. Experiment of Static Localization

The static localization experiment corresponds to the scenarios in which swarm robots
do not need to move their positions during task operation, such tasks as detecting and
sampling at certain fixed locations. It is featured that both robots and the beacon are in
a stationary state, resulting in a stable and clear imaging result, which facilitates swarm
robots to locate their positions and headings with high accuracy.

As shown in Figure 8a, the robot is placed at 32 distinct locations within the effective
localization range, and these locations are spaced at intervals of 0.3 m, 0.6 m, 0.9 m,
and 1.2 m from the origin point. At each location, the robot remains stationary for 30 s,
continuously monitoring the beacon and recording the localization results at 0.2 s intervals.
The experimental results in Figure 8 are derived from the median values of the observed
localization data. On average, the position error is 2.41 cm, and the heading error is
1.44◦. Thus, the self-localization method proposed in this paper has a good localization
performance when the robot is at rest.
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Figure 8. Experimental results of robot without moving: (a) true position and self-localization results;
(b) statistical results of position error; (c) statistical results of heading error.

It is worth noting that the positioning accuracy of the robot may become less precise
when it is far away from the beacon’s origin. As shown in Figure 8b, when the robot is
less than 0.6 m from the origin, the position error ranges from 0.47 cm to 2.69 cm, with
an average of 1.68 cm. When the distance from the origin is within 0.6–0.9 m, the position
error ranges between 1.50 cm and 4.19 cm, with an average of 2.77 cm. When the robot is
located within 0.9–1.2 m from the origin, the position error is between 1.15 cm and 5.39 cm,
with an average of 3.5 cm. Once the robot reaches nearly the edge of the effective localization
area, the location accuracy may be hindered by camera distortions. This problem can be
solved to some extent by adding image distortion correction to the recognition process or
by improving the resolution of the camera.

The statistical results of the robot’s orientation are shown in Figure 8c. The distribution
of the heading errors ranges primarily from 0.70◦ to 2.30◦, with an average of around 1.50◦,
indicating that our approach achieves an excellent orientation performance. This is due
to the fact that the position error is much smaller than the distance from vertex N to the
beacon’s origin, which contributes to reducing the upper limit of heading errors. Therefore,
the heading error does not increase dramatically with the robot’s distance from the origin.

4.4. Experiment of Dynamic Localization

The dynamic localization experiment corresponds to scenarios in which swarm robots
need to move during task operations, such as coordinated formation, collective cleaning,
and cooperative transport. The most significant feature, in this case, is the motion blurring
of images [30] and the optical axis wobble, which leads to a degradation in the precision of
the robot’s localization. To investigate the localization performance of our approach, we
first employ a single robot moving along a straight and a square trajectory (each experiment
is repeated five times), and then a swarm of 5 robots is employed in the experiment. The
robot’s control commands are updated at 0.2 s intervals, and it has a maximum linear speed
of 120 mm/s and a maximum angular speed of 42 deg/s.
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4.4.1. Straight Trajectory

The experimental results of the robot moving along a straight trajectory are shown in
Figure 9, where dMR is the distance from the robot to the origin. It can be seen from the
case shown in Figure 9a, that the robot’s self- localization trajectory roughly overlaps with
its true trajectory, indicating that good localization results are obtained. According to the
quantitative statistics obtained from five repeated trials (see Table 1 for the corresponding
data of each trial), as shown in Figure 9b, the robot’s position error is less than 4.09 cm,
with an average error of 1.12 cm; the heading error is essentially less than 5.08◦, with an
average error of 1.16◦. Further analysis of the spatial distribution of these errors shows
that the robot’s positioning accuracy decreases as its location gets further away from the
origin, as shown in Figure 9c. This is caused by the imaging distortion of the visual
localization camera.
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Figure 9. Experimental results of moving robot with the straight trajectory: (a) a typical case;
(b) histograms of position error and heading error; (c) spatial distribution of position error; (d) the
distribution of position error and heading error with different linear speeds.

Table 1. Localization performance of five straight trajectory motion experiments.

No. Average Position Error (cm) Position Error Variance Average Heading Error (◦) Heading Error Variance

1 0.73 0.38 0.83 0.82
2 0.90 0.94 0.74 0.70
3 1.41 0.79 1.04 1.82
4 1.07 0.51 1.41 1.95
5 1.62 0.71 2.03 1.73

Figure 9d further shows the relationship between the positioning error, the heading
error, and the robot’s linear speed. Clearly, its positioning and heading errors increase as
the robot’s linear speed increases. This is mainly due to motion-induced image blur, which
increases the beacon recognition errors. This can be reduced to some extent by improving
the sampling rate of the camera.

4.4.2. Square Trajectory

Figure 10a shows a typical result in which the robot moves along a square trajectory.
Generally, the self-localized trajectory matches the true trajectory of the robot, although
some noticeable errors are present at certain locations. To get a quantitative picture, this
experiment is repeated five times and the corresponding results for each trial are presented
in Table 2, while the overall statistics are shown in Figure 10b. Quantitatively, the position
error of the robot ranges from 0.01 cm to 4.94 cm, with an average of 1.56 cm; the heading
error is less than 6.45◦, with an average of 1.79◦. Similar to the results in the previous
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section, Figure 10c shows that the positioning accuracy of the robot decreases gradually as
it moves away from the origin. This is mainly due to the imaging distortion at the edges of
the camera’s field of view.

Figure 10d further shows the relationship between the positioning and heading errors
and the robot’s linear speed. It can be seen that the robot’s positioning and heading errors
slowly increase as the robot’s linear speed increases. This is because the linear speed
decreases as the robot turns, at which the optical axis of the camera may drift, causing
significant position and heading errors even at low linear speed. We can solve this issue by
introducing a horizontal verification process for imaging to reduce the negative effects of
the optical axis deviation.

Table 2. Localization performance of five square trajectory motion experiments.

No. Average Position Error (cm) Position Error Variance Average Heading Error (◦) Heading Error Variance

1 1.41 0.64 1.31 0.72
2 1.49 0.83 2.02 1.12
3 1.81 0.77 1.89 1.34
4 1.53 0.84 1.37 1.08
5 1.55 0.73 2.32 1.48
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Figure 10. Experimental results of the moving robot with a square trajectory: (a) a typical case;
(b) histograms of position error and heading error; (c) spatial distribution of position error; (d) the
distribution of position error and heading error with different linear speeds.

4.4.3. Self-Localization Experiment for a Swarm of Robots

In this experiment, a swarm of five robots is employed that moved in a semicircular
trajectory. The experimental results are shown in Figure 11. Overall, there is a high degree of
coincidence between the self-localized trajectory of robots and their true motion trajectory,
indicating a favorable performance of self-localization. Figure 11b depicts the time-evolving
curves of the position and headings errors of these robots during their movement. It can be
seen that the position errors are less than 6.75 cm, and the heading errors are no greater
than 8.53◦. Further statistical analysis shows that the average position error is 2.40 cm,
with 90% of the position errors ranging from 0.50 cm to 4.20 cm. Meanwhile, the average
heading error is 2.66◦ and 86.7% of the heading errors are less than 5.10◦. Table 3 gives the
positioning and heading errors for each individual in the robotic swarm.

Compared to previous experiments in which the robot moves along a straight trajec-
tory, the localization performance of the semicircular trajectory is slightly worse. This is
due to the mounting bias of the camera, which causes more significant optical axis shifts
when the robot turns its orientation.
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Table 3. Localization performance of swarm self-localization experiments with five robots.

Robot ID Average Position Error (cm) Position Error Variance Average Heading Error (◦) Heading Error Variance

1 2.02 0.66 2.63 4.28
2 3.09 0.42 2.96 2.17
3 2.38 1.24 2.76 3.13
4 2.42 0.60 2.60 4.32
5 2.11 0.89 2.62 4.66
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5. Conclusions

In this paper, a minimalist self-localization approach for miniature swarm robots is
proposed by skillfully utilizing the structured ceiling of an indoor environment, particularly
taking into account the small size and limited computing power of the swarm robots.
A robotic navigator actively projects a triangular optical beacon onto the building’s ceiling
to provide localization reference for the robotic swarm. By analyzing the visual information
collected by a bottom-up-view camera, the individual robot can determine its position and
heading within the beacon coordinate system. Several robotic experiments are conducted
to verify the feasibility and effectiveness of our approach. The experimental results show
that our approach can provide reliable positioning and heading services for swarm robots
with sufficient accuracy to meet the operational needs of swarm robots.

Our future work will focus on eliminating the negative impacts of the camera mount-
ing bias and the optical distortion on self-localization accuracy. In addition, we will explore
the cooperative strategy between swarm robots and robotic navigators to extend the local-
ization range and implement more complex tasks.

Author Contributions: Conceptualization, formal analysis, supervision, visualization, writing—
review and editing, X.L.; methodology, formal analysis, software, investigation, validation, visual-
ization, writing—original draft preparation, M.D.; software, formal analysis, and validation, Z.Z.;
investigation, supervision, and project administration, Z.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partially funded by the National Natural Science Foundation of China
with grant number No. 62076203.



Sensors 2023, 23, 4926 17 of 18

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dorigo, M.; Theraulaz, G.; Trianni, V. Swarm robotics: Past, present, and future [point of view]. Proc. IEEE 2021, 109, 1152–1165.

[CrossRef]
2. Tang, Q.; Xu, Z.; Yu, F.; Zhang, Z.; Zhang, J. Dynamic target searching and tracking with swarm robots based on stigmergy

mechanism. Robot. Auton. Syst. 2019, 120, 103251. [CrossRef]
3. Hu, J.; Liu, W.; Zhang, H.; Yi, J.; Xiong, Z. Multi-robot object transport motion planning with a deformable sheet. IEEE Robot.

Autom. Lett. 2022, 7, 9350–9357. [CrossRef]
4. Lei, X.; Zhang, S.; Xiang, Y.; Duan, M. Self-organized multi-target trapping of swarm robots with density-based interaction.

Complex Intell. Syst. 2023. [CrossRef]
5. Zhang, S.; Pan, J. Collecting a flock with multiple sub-groups by using multi-robot system. IEEE Robot. Autom. Lett. 2022, 7,

6974–6981. [CrossRef]
6. Darmanin, R.N.; Bugeja, M.K. A Review on Multi-Robot Systems Categorised by Application Domain. In Proceedings of the 2017

25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, 3–6 July 2017; pp. 701–706.
7. Zhang, K.; Chermprayong, P.; Xiao, F.; Tzoumanikas, D.; Dams, B.; Kay, S.; Kocer, B.B.; Burns, A.; Orr, L.; Choi, C. Aerial additive

manufacturing with multiple autonomous robots. Nature 2022, 609, 709–717. [CrossRef]
8. Youssefi, K.A.-R.; Rouhani, M.; Mashhadi, H.R.; Elmenreich, W. A swarm intelligence-based robotic search algorithm integrated

with game theory. Appl. Soft Comput. 2022, 122, 108873. [CrossRef]
9. Ohno, K.; Tsubouchi, T.; Shigematsu, B.; Yuta, S.i. Differential GPS and odometry-based outdoor navigation of a mobile robot.

Adv. Robot. 2004, 18, 611–635. [CrossRef]
10. Park, J.; Cho, Y.K.; Martinez, D. A BIM and UWB integrated mobile robot navigation system for indoor position tracking

applications. J. Constr. Eng. Proj. Manag. 2016, 6, 30–39. [CrossRef]
11. Mayya, S.; Pierpaoli, P.; Nair, G.; Egerstedt, M. Localization in densely packed swarms using interrobot collisions as a sensing

modality. IEEE Trans. Robot. 2018, 35, 21–34. [CrossRef]
12. Garcia, M.; Tomas, J.; Boronat, F.; Lloret, J. The Development of Two Systems for Indoor Wireless Sensors Self-location. Ad Hoc

Sens. Wirel. Netw. 2009, 8, 235–258.
13. Schuster, F.; Keller, C.G.; Rapp, M.; Haueis, M.; Curio, C. Landmark based radar SLAM using graph optimization. In Proceedings

of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November
2016; pp. 2559–2564.

14. Yousif, K.; Bab-Hadiashar, A.; Hoseinnezhad, R. An overview to visual odometry and visual SLAM: Applications to mobile
robotics. Intell. Ind. Syst. 2015, 1, 289–311. [CrossRef]

15. Mao, L.; Chen, J.; Li, Z.; Zhang, D. Relative localization method of multiple micro robots based on simple sensors. Int. J. Adv.
Robot. Syst. 2013, 10, 128. [CrossRef]

16. Kim, J.Y.; Kashino, Z.; Pineros, L.M.; Bayat, S.; Colaco, T.; Nejat, G.; Benhabib, B. A high-performance millirobot for swarm-
behaviour studies: Swarm-topology estimation. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419892127. [CrossRef]

17. Wang, S.; Li, Y.; Zhang, S.; Wang, B.; Yang, H. Relative localization of swarm robotics based on the polar method. Int. J. Adv.
Robot. Syst. 2022, 19, 17298806221080634. [CrossRef]

18. Tan, L.N. Omnidirectional-vision-based distributed optimal tracking control for mobile multirobot systems with kinematic and
dynamic disturbance rejection. IEEE Trans. Ind. Electron. 2017, 65, 5693–5703. [CrossRef]

19. Bonani, M.; Longchamp, V.; Magnenat, S.; Rétornaz, P.; Burnier, D.; Roulet, G.; Vaussard, F.; Bleuler, H.; Mondada, F. The marXbot,
a Miniature Mobile Robot Opening New Perspectives for the Collective-Robotic Research. In Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Taiwan, China, 18–22 October 2010; pp. 4187–4193.

20. Wang, X.; Wang, F.; Nie, Z.; Ai, Y.; Hu, T. OptiSwarm: Optical Swarm Robots Using Implicit Cooperation. IEEE Sens. J. 2022, 22,
24380–24394. [CrossRef]

21. Inoue, D.; Murai, D.; Ikuta, Y.; Yoshida, H. Distributed Range-Based Localization for Swarm Robot Systems Using Sensor-fusion
Technique. In Proceedings of the SENSORNETS 2019: 8th International Conference on Sensor Networks, Prague, Czech Republic,
26–27 February 2019; pp. 13–22.

22. Li, Y.; Zhu, S.; Yu, Y.; Wang, Z. An improved graph-based visual localization system for indoor mobile robot using newly designed
markers. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418769191. [CrossRef]

23. Voelkl, B.; Portugal, S.J.; Unsöld, M.; Usherwood, J.R.; Wilson, A.M.; Fritz, J. Matching times of leading and following suggest
cooperation through direct reciprocity during V-formation flight in ibis. Proc. Natl. Acad. Sci. USA 2015, 112, 2115–2120.
[CrossRef]

24. Grüter, C.; Farina, W.M. The honeybee waggle dance: Can we follow the steps? Trends Ecol. Evol. 2009, 24, 242–247. [CrossRef]

https://doi.org/10.1109/JPROC.2021.3072740
https://doi.org/10.1016/j.robot.2019.103251
https://doi.org/10.1109/LRA.2022.3191190
https://doi.org/10.1007/s40747-023-01014-6
https://doi.org/10.1109/LRA.2022.3178152
https://doi.org/10.1038/s41586-022-04988-4
https://doi.org/10.1016/j.asoc.2022.108873
https://doi.org/10.1163/1568553041257431
https://doi.org/10.6106/JCEPM.2016.6.2.030
https://doi.org/10.1109/TRO.2018.2872285
https://doi.org/10.1007/s40903-015-0032-7
https://doi.org/10.5772/55587
https://doi.org/10.1177/1729881419892127
https://doi.org/10.1177/17298806221080634
https://doi.org/10.1109/TIE.2017.2782245
https://doi.org/10.1109/JSEN.2022.3216445
https://doi.org/10.1177/1729881418769191
https://doi.org/10.1073/pnas.1413589112
https://doi.org/10.1016/j.tree.2008.12.007


Sensors 2023, 23, 4926 18 of 18

25. Ansari, M.A.; Kurchaniya, D.; Dixit, M. A comprehensive analysis of image edge detection techniques. Int. J. Multimed. Ubiquitous
Eng. 2017, 12, 1–12. [CrossRef]

26. Djekoune, A.O.; Messaoudi, K.; Amara, K. Incremental circle hough transform: An improved method for circle detection. Optik
2017, 133, 17–31. [CrossRef]

27. Mori, M.; Kashino, K. Fast Template Matching Based on Normalized Cross Correlation Using Adaptive Block Partitioning and
Initial Threshold Estimation. In Proceedings of the 2010 IEEE International Symposium on Multimedia, Taiwan, China, 13–15
December 2010; pp. 196–203.

28. Grossberg, M.D.; Nayar, S.K. A General Imaging Model and a Method for Finding Its Parameters. In Proceedings of the Eighth
IEEE International Conference on Computer Vision, ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; pp. 108–115.

29. Sels, S.; Ribbens, B.; Vanlanduit, S.; Penne, R. Camera calibration using gray code. Sensors 2019, 19, 246. [CrossRef] [PubMed]
30. Gong, D.; Yang, J.; Liu, L.; Zhang, Y.; Reid, I.; Shen, C.; Van Den Hengel, A.; Shi, Q. From Motion Blur to Motion Flow: A Deep

Learning Solution for Removing Heterogeneous Motion Blur. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2319–2328.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.14257/ijmue.2017.12.11.01
https://doi.org/10.1016/j.ijleo.2016.12.064
https://doi.org/10.3390/s19020246
https://www.ncbi.nlm.nih.gov/pubmed/30634616

	Introduction 
	Related Works 
	Motivation and Contributions 
	Structure of the Article 

	Localization Approach for Swarm Robots 
	Implementation of Self-Localization Approach 
	Miniature Swarm Robots 
	Design and Recognition of Optical Beacons 
	Design of Optical Beacons 
	Recognition and Verification of Beacons 

	Relative Localization 

	Experimental Results 
	Experiment Set-Up 
	Experiment of Effective Self-Localization Area 
	Experiment of Static Localization 
	Experiment of Dynamic Localization 
	Straight Trajectory 
	Square Trajectory 
	Self-Localization Experiment for a Swarm of Robots 


	Conclusions 
	References

