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Abstract: Photovoltaic (PV) systems have immense potential to generate clean energy, and their
adoption has grown significantly in recent years. A PV fault is a condition of a PV module that is
unable to produce optimal power due to environmental factors, such as shading, hot spots, cracks,
and other defects. The occurrence of faults in PV systems can present safety risks, shorten system
lifespans, and result in waste. Therefore, this paper discusses the importance of accurately classifying
faults in PV systems to maintain optimal operating efficiency, thereby increasing the financial return.
Previous studies in this area have largely relied on deep learning models, such as transfer learning,
with high computational requirements, which are limited by their inability to handle complex image
features and unbalanced datasets. The proposed lightweight coupled UdenseNet model shows
significant improvements for PV fault classification compared to previous studies, achieving an
accuracy of 99.39%, 96.65%, and 95.72% for 2-class, 11-class, and 12-class output, respectively, while
also demonstrating greater efficiency in terms of parameter counts, which is particularly important for
real-time analysis of large-scale solar farms. Furthermore, geometric transformation and generative
adversarial networks (GAN) image augmentation techniques improved the model’s performance on
unbalanced datasets.

Keywords: coupled UDenseNet; aerial thermography; fault classification; GAN

1. Introduction

Most countries and industries have recently begun to evaluate their energy policies
to assist sustainable development by aiming for a net-zero or carbon-neutral future [1,2].
To address the issue of the depletion of fossil fuels and climate change, renewable energy
sources (RESs) have begun to garner significant attention across the globe in order to
reduce CO2 gas emissions and address the climate change issue by increasing the share of
renewables in the energy mix and total final energy consumption (TFEC). Transitioning to
low carbon and renewable energy sources is critical for meeting electrical power demands
for ecologically friendly and sustainable energy production. Due to the advancement of
nanomaterials technology, PV systems are one of the most promising and clean RES types.
PV systems have advantages such as being sustainable, having zero noise operation, and
having minimal installation fees, making them suitable for a large or small-scale distributed
generation (DG) [3].

Photovoltaic (PV) technology converts the sun’s irradiance into electrical energy. It
makes use of components such as silicon, which allows for the generation of an electrical
current by absorbing photons from sunlight and releasing electrons. PV modules are the
primary power-producing component of a PV system, and the efficacy and dependability
of PV modules continue to be potential issues due to failures and degradation in the field.
In PV facilities, different anomalies affecting operation systems typically cause the source
of energy output losses. These defects decrease efficiency and create potential electrical
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hazards for PV system operators. PV modules are subjected to various environmental
stresses and extreme circumstances that risk their dependability and durability throughout
their lives. This damage could lead to abnormal operation, safety issues, and fire hazards,
reducing PV modules’ lifespan [4,5].

The volume of PV module waste is increasing rapidly as the use of PV systems in-
creases. Furthermore, PV module waste, mostly made of crystalline silicon (c-Si) material,
could pollute the environment with heavy metals that are difficult to extract during recy-
cling [6]. Furthermore, it is acknowledged that thorough inspection and maintenance of
PV systems are required to maintain optimal performance. Identifying the economically
optimal interval for inspection and maintenance interventions is critical. In order to find
and fix module failures in time to extend their lifetime and maintain the system’s optimal
operating efficiency, which will lead to higher financial return, it is crucial to develop
methods for accurately detecting and classifying defects in PV systems in a rapid, accurate,
and efficient manner.

For fault detection in PV modules and cells, electroluminescence (EL) imaging, infrared
(IR) imaging, and electrical measurement and characterization are extensively utilized
approaches. Electrical assessment involves assessing the output performance of PV panels
by measuring the current–voltage (I-V) curve. On a synthetic dataset, the combination of
electrical assessment and artificial intelligence can achieve a classification error of 2.7% [7].
However, it cannot pinpoint the location of flaws and requires exact illumination and
temperature [8]. On the other hand, visual and thermal methods such as IR and EL
can pinpoint the exact location of defects. However, EL imaging that requires a special
environment is impractical for large-scale outdoor applications [9], and conventional
IR imaging is time-consuming for large-scale solar farms. Furthermore, these methods
necessitate the assistance of a thermography inspection expert to assess and verify the
issue [9,10].

Aerial thermography, or unmanned aerial vehicle inspection, has developed as a
more efficient, dependable, and cost-effective alternative to conventional visual monitoring
for detecting faults and failures in photovoltaic (PV) modules, particularly in high-risk
human field zones [11]. However, correctly diagnosing defects in aerial thermography
images is difficult. Deep learning models, such as CNNs, are one challenge that neces-
sitates enormous volumes of annotated data and is both time-consuming and costly to
implement. Another challenge is establishing high accuracy in fault classification, which
can be affected by environmental factors and PV module variability. Lightweight models
are also essential for real-time analysis of aerial thermography images and for reducing
processing expenses. As a result, overcoming these obstacles is critical for successfully
adopting aerial thermography in PV fault detection and classification.

We propose a novel hybrid approach combining the coupled U-Net architecture and
the dense block from DenseNet to achieve accurate and significantly lightweight PV fault
classification performance. Our novelty and main contributions to this paper are as follows:

• The proposed hybrid approach combining the coupled U-Net architecture and DenseNet
dense blocks enables uninterrupted gradient flow, feature reusability, and training
stabilization, resulting in accurate PV fault classification performance that exceeds
similar studies on the same dataset.

• The proposed coupled UDenseNet model performs thorough classification of 2-class
(Fault/No-fault), 11 types of faults, and 12 types of PV conditions, which have been
validated across 826 real-world solar PV installations across six continents, significantly
boosting the model’s generalization capability, and these 11 types of PV faults are
introduced in Table 1.

• To improve accuracy on imbalanced data, the presented model is trained using ge-
ometric transformation and GAN image augmentation techniques in conjunction
with oversampling methods, further improving fault classification accuracy in aerial
thermography images and allowing for more effective implementation in PV fault
detection and classification.
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Table 1. A comprehensive description and sample images of each class from dataset.

Class Total Images Description Samples

Diode-Multi 175 Multiple activated bypass diodes,
typically 2/3 of module.

Soiling 204 Dust, dirt, or other debris on surface

Hotspot-Multi 246 Multiple hot spots on a thin-film module.

Hotspot 249 Hot spot on thin-film module.

Offline Module 827 The entire module is heated.

Cracking 940 Module anomaly caused by cracking on
the module surface.

Shadowing 1056 Sunlight obstructed by vegetation,
man-made structures, or adjacent rows.

Cell-Multi 1288 Hot spots occurring with square geometry
in multiple cells.

Diode 1499 Activated bypass diode,typically 1/3 of
the module.

Vegetation 1639 Panels blocked by vegetation.

Cell 1877 Hot spot occurring with square geometry
in single cell.

No Anomaly 10,000 Nominal solar module

Total 20,000

The rest of this paper is structured as follows: Section 2 provides an overview of the
related works for PV fault classification using a publicly available dataset [10]. Section 3
provides a complete explanatory analysis of the dataset and data preprocessing. Section 4
provides an outline of our proposed strategy as well as how we run the experiments. The
findings of our trials and comparisons with other methodologies are presented in Section 5.
Finally, Section 6 summarizes our findings and discusses future work.

2. Literature Review

Classification and evaluation of observed defects in solar panels necessitate an in-
depth understanding of solar technology as well as knowledge of the inspected system.
Various advanced fault detection and diagnostic (FDD) approaches for classifying PV
panel problems have been presented in recent years. Deep learning-based approaches
for detecting and classifying anomalies in thermographic PV images have become more
popular as machine learning has advanced. Deep learning algorithms extract and learn
features more effectively, resulting in more accurate and robust classification performance.

On the other hand, deep learning algorithms often demand a massive quantity of data,
and examining thermal images of solar modules requires the expertise of an expert to spot
anomalies and label the data. As a result, data availability remains a challenge for machine
learning researchers. Millendorf et al. [10] provide a publicly available dataset that includes
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real images of 11 class anomalies. This dataset has been used in several studies on PV
fault classification.

For example, Le et al. [12] offered an ensemble of different ResNet-based structure
models with varied sets of data augmentation and minority class increment to obtain an
average accuracy of 94% in binary classification and 85.9% in multi-class classification
of 12 fault types. The study also looked at the effects of data augmentation, oversam-
pling, SMOTE, and focal loss on the unbalanced dataset, which led to 2.9% and 7.4%
improvements for the 2-class and 12-class outputs, respectively. Another work, Fonseca
Alves et al. [13], classified 11 different anomaly classes using a CNN-based model paired
with undersampling and oversampling approaches on an unbalanced dataset. Through
cross-validation, this technique attained an accuracy of 92.5% in binary classification, 66.43%
in classifying 12 fault types, and 78.85% in classifying faults for eight selected classes.

Similarly, Korkmaz et al. [14] suggested a multi-scale CNN with three branches based
on pre-trained AlexNet architecture and an offline augmentation approach for classi-
fying 11 different anomaly categories. The authors increased the input image size to
227 × 227 pixels and the total model parameter to around 42M. This approach had an aver-
age accuracy of 97.32% for two-class outputs and 93.51% for 11 anomalous class outputs.
These studies show that various approaches, such as data augmentation, oversampling,
and pre-trained models, can significantly improve the performance of image classification
algorithms on imbalanced datasets.

3. Dataset Preparation

Long-term operation of solar PV panels can expose them to a wide variety of potential
faults. There is a lack of publicly available datasets that provide aerial thermographic
images of various anomalies in PV systems as a result of the fact that anomalies are
rare, and this method needs to be analyzed and labeled by an expert. This is because
anomalies require an expert to perform classification tasks. Therefore, an original and
widely accessible dataset called the Infrared Solar Modules dataset, which is licenced under
an MIT copyright and contains aerial thermographic images of numerous PV anomalies
identified in practical solar power plants, was chosen in order to provide an accurate
classifier architecture.

The dataset’s collecting, processing, labelling, and categorization were all handled by
the Raptor Maps team. They completed this work using standardised inspection methods,
including solar panel infrared imaging [15]. All of the images were captured using visible
spectrum cameras integrated into an unmanned aerial vehicle (UAV) system or piloted
aircraft, along with midwave or longwave infrared (3–13.5 µm) cameras in a grayscale
colorspace. The discovered abnormalities were divided into groups based on the structure
of the classes and cropped to each specific module. The data were collected in 2019 from
25 countries and a total of 826 solar PV systems across 6 continents.

The dataset contains 20,000 images, with temperature values represented by
24 × 40 × 1 pixels per image. Due to the varying distance between the UAV and the PV
modules, the spatial resolution of the images ranges from 3.0 to 15.0 cm/pixel. There are
12 different classes, consisting of 1 normal module class and 11 anomaly classes (cell, hotspot,
cracking, diode, shadowing, etc.). Table 1 displays the comprehensive description and random
samples for each class. Figure 1 provides a graphical representation of data distribution.

Based on the total number of existing global findings, the proportion of classes in the
dataset is unbalanced (e.g., the fault class cell has 1877 images and diode multi class only
has 175 images). The unbalance of classes within the dataset poses a significant issue for the
machine learning-based classification method. In addition, although some anomalies were
easy to recognize and classify, others were considerably more complicated to differentiate.
Consequently, it is essential to develop a deep-learning model that can automatically detect
and classify panel anomalies without the assistance of an expert.

Unbalanced class distributions in datasets can substantially affect the performance
of image classification models in deep learning because unbalanced class proportions can
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impact the neural network training and its ability to generalize to unknown examples. A
common solution to this problem is oversampling or undersampling the original images in
the dataset [16].

Undersampling means decreasing the amount of majority-class data to match the
amount of minority-class data. This approach can be accomplished by arbitrarily removing
samples from the majority class or by employing algorithms designed to select a subset of
the majority class that most accurately represents it. However, this method can result in
the loss of information, making it more difficult for the model to discover the underlying
data pattern.

Figure 1. Total images in the dataset for each class.

In contrast, oversampling entails adding additional samples to the minority group.
Using techniques such as synthetic minority over-sampling technique (SMOTE) [17], adap-
tive synthetic sampling (ADASYN) [18], GAN [19], and variable autoencoders (VAE) [20],
it is possible to generate synthetic samples for this method. This method has the benefit
of increasing the number of samples for the minority class, making it easier for the model
to discover the underlying data pattern. However, it is not guaranteed that synthetic
data will have the same characteristics as the original data, particularly in complex and
high-dimensional datasets [21].

In this study, we propose an oversampling method based on image augmentation
through geometric transformations to increase the total amount of images of the minority
classes to match the majority classes while preserving the pattern of the fault. The transfor-
mations used include horizontal and vertical flipping, shifting, and adjusting brightness.
Furthermore, we employed and analyzed GAN image augmentation techniques for the
oversampling [22].

Structural similarity index (SSIM) was used as metric to quantify the similarity between
real images and GAN-augmented images [23]. Based on Table 2, it can be observed that
for most anomaly classes, the maximum SSIM score of GAN-augmented images is lower
than that of raw data. This suggests that the GAN augmentation technique may introduce
some level of distortion or dissimilarity in the images, particularly for subtle anomalies
such as cracking and vegetation. However, mean SSIM scores for most anomaly classes are
higher for GAN-augmented images than for raw data, indicating that the overall image
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quality is improved by the GAN technique. This improvement in the mean SSIM score
can be attributed to the fact that GANs generate new images that are visually similar to
the original ones but have some level of variation, which can enhance the diversity and
richness of the dataset. However, it is important to note that the improvement in the mean
SSIM score is not uniform across all anomaly classes and that the GAN technique may not
be suitable for all types of image data.

Table 2. Comparison of SSIM scores for raw and GAN-augmented images across different PV
anomaly classes.

Classes
Raw Data GAN

Max Mean Max Mean

Diode 1.0 0.5558 0.8398 0.6907
Diode Multi 0.9479 0.4884 0.8399 0.6349
Hotspot 0.9449 0.6275 0.8497 0.7447
Hotspot Multi 0.9363 0.5217 0.7889 0.6528
Offline Module 1.0 0.6306 0.8686 0.7492
Soiling 0.9556 0.5223 0.6755 0.6407
Vegetation 1.0 0.6099 0.8443 0.7266
No Anomaly 0.9922 0.6548 0.8568 0.7874
Cell 0.9724 0.6211 0.8571 0.7376
Cell Multi 0.9503 0.5268 0.7985 0.6537
Cracking 0.8853 0.3941 0.6999 0.5261
Shadowing 1.0 0.5095 0.7797 0.6407

Following the data augmentation and oversampling processes, the dataset consisted
of 88,000 images for 2-class experiments, 110,000 images for 11-class experiments, and
120,000 images for 12-class experiments. The images were balanced across the different fault
classes and had a resolution of 24 × 40 pixels. We split the data into training, validation,
and testing sets with distributions as shown in Table 3. The 2-class experiments or binary
classification (error or no error) are beneficial when the main goal is to ascertain whether
or not the PV module is defective. When creating, setting up, or managing PV systems,
this classification is frequently used to ensure quality. The 11-class experiment is useful
when the main goal is to identify a specific type of fault that is present in the PV module.
This classification can assist the maintenance technicians in identifying and fixing issues
that might affect system performance. Furthermore, the 12-class experiment is useful when
the purpose is to categorize a variety of PV module situations, including normal and all
defective conditions.

Table 3. Data distribution across training, validation, and testing sets for 2-class, 11-class, and 12-class
experiments.

Data Augmentation Training Set Validation Set Testing Set Total Number of Images

The First Case: Binary Classification

Raw Data
16,000 (80%) 2000 (10%) 2000 (10%)

20,000 (100%)15,000 (75%) 4000 (20%) 1000 (5%)

14,000 (70%) 4000 (20%) 2000 (10%)

Geometric Transformation
70,400 (80%) 8800 (10%) 8800 (10%)

88,000 (100%)66,000 (75%) 17,600 (20%) 4400 (5%)

61,600 (70%) 17,600 (20%) 8800 (10%)

Geometric + GAN
35,200 + 35,200 (GAN) 8800 (10%) 8800 (10%)

88,000 (100%)33,000 + 33,000 (GAN) 17,600 (20%) 4400 (5%)

31,300 + 31,300 (GAN) 17,600 (20%) 8800 (10%)
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Table 3. Cont.

Data Augmentation Training Set Validation Set Testing Set Total Number of Images

The Second Case: 11 Class Output

Raw Data
8000 (80%) 1000 (10%) 1000 (10%)

10,000 (100%)7500 (75%) 2000 (20%) 500 (5%)

7000 (70%) 2000 (20%) 1000 (10%)

Geometric Transformation
88,000 (80%) 11,000 (10%) 11,000 (10%)

110,000 (100%)82,500 (75%) 22,000 (20%) 5500 (5%)

77,000 (70%) 22,000 (20%) 11,000 (10%)

Geometric + GAN
44,000 + 44,000 (GAN) 11,000 (10%) 11,000 (10%)

110,000 (100%)41,250 + 41,250 (GAN) 22,000 (20%) 5500 (5%)

38,500 + 38,500 (GAN) 22,000 (20%) 11,000 (10%)

The Third Case: 12 Class Output

Raw Data
16,000 (80%) 2000 (10%) 2000 (10%)

20,000 (100%)15,000 (75%) 4000 (20%) 1000 (5%)

14,000 (70%) 4000 (20%) 2000 (10%)

Geometric Transformation
96,000 (80%) 12,000 (10%) 12,000 (10%)

120,000 (100%)90,000 (75%) 24,000 (20%) 6000 (5%)

84,000 (70%) 24,000 (20%) 12,000 (10%)

Geometric + GAN
48,000 + 48,000 (GAN) 12,000 (10%) 12,000 (10%)

120,000 (100%)45,000 + 45,000 (GAN) 24,000 (20%) 6000 (5%)

42,000 + 42,000 (GAN) 24,000 (20%) 12,000 (10%)

4. Proposed Method

In this study, we propose a novel architecture, Coupled UDenseNet, that combines
the advantages of the UNet and DenseNet architectures to improve image classification
performance for the anomaly in PV panels. The coupled UDenseNet model is composed of
two UDenseNet that are positioned in a series and connected with a coupled connection
to make information flow more efficient across UNet. The UNet architecture is chosen for
its effectiveness in feature extraction [24], whereas DenseNet is known to promote feature
reuse and better gradient flow during training [25]. By combining these two architectures,
the authors aim to leverage the advantages of both to improve performance for this specific
task. In the original UNet, each multi-channel feature map applied two 3 × 3 convolutions,
followed by a ReLU and a 2 × 2 max pooling operation.

To improve the information flow in the UNet, we propose to utilize DenseNet in
the multi-channel feature map of the UNet. Thus, in this work, we called the multi-
channel feature map as a dense block. The dense block is an important component of
the coupled UDenseNet architecture. It connects each layer in a feedforward fashion,
resulting in enhanced feature propagation and reuse. In particular, the output of each layer
is concatenated with the input of the following layer, allowing the network to learn more
complex features [25]. Mathematically, the dense block can be expressed as:

xl = Hl([x0, x1, . . . , xl ]) (1)

where l represents the lth layer on the dense block, [x0, x1, . . . , xl ] refers to the concate-
nation in the lth layer, and Hl is the composite function of convolution, LeakyReLU,
and BatchNorm.

Figure 2 depicts the coupled UDenseNet architecture. Skip connections are used to
connect components of each UDenseNet in order to create a coupled connection between
two UDenseNets [26,27]. Both UDenseNets have the same architecture, which performs
downsamples and upsamples three times. Each downsample’s image size is reduced by
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half by performing a dense block and pooling layer. Following the downsampling, the
image is upsampled to its original size.

Figure 2. An illustration of the proposed coupled UDenseNet architecture designed for the accurate
classification of PV faults. Each color represents specific block and function.

The coupled connection enables a block to receive features from the same block in
the preceding UNet. Hence, each block in the coupled UDenseNet receives two features
from the previous block of the same UNet and the same block in the preceding UNet. The
purpose of coupling connections between two UNets is to improve the gradient flow to
the later layers. Therefore, the learning performance can be improved, and it is possible
to achieve higher accuracy in classification performance. The mathematical model of the
coupled UDenseNet can be represented as:

qb
a = xl

′([qb
a−1, Qb−1

a ]) (2)

wb
a−1 = xl

′′([wb
a, qb

a, Wb−1
a ]) (3)

Qb−1
a = qb−k

a , . . .→, qb−1
a (4)

Wb−1
a = wb−k

a , . . .→, wb−1
a (5)

where Qb−1
a = q0

a, q1
a, . . .→, qb−1

a is defined as the outputs of the ath or the top-down blocks
in UDenseNet. Similarly, Wb−1

a = w0
a , w1

a , . . . →, wb−1
a are the outputs of the bth or the

bottom-up blocks. The xl
′ and xl

′′ in the equation represent operations of the dense block,
transpose of convolution, pooling, and spatial dropout. The notation (. . . →) denotes
the feature concatenation process, which ensures an uninterrupted flow of information.
Additionally, the value of 0 ≤ k represents how many preceding UDenseNet connections
are used.

At the end of the coupled UDenseNet, a dense layer is attached, which consists of
two neurons for binary classification and 11 or 12 neurons for multi-class classification.
The dense layer’s function generates the class result based on the relevant features learned
in the coupled UDenseNet. Following the dense layer, an activation function is applied,
where the Sigmoid activation function is utilized for binary classification and the Softmax
activation function is for multi-class classification.

The detailed components of UDenseNet are shown in Figure 3. The input block
is depicted in Figure 3a, which consists of two series of convolution, LeakyReLU, and
BatchNorm. The input layer performs initial feature extraction for the input image. Next,
the downsampling block is shown in Figure 3b, where there are three downsampling blocks
implemented. Each downsampling block performs feature size reduction into half-size by
using a series of max pooling and dense blocks.
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Figure 3. Details on the layer of coupled UDenseNet architecture. (a) Input block, (b) downsampling
block, (c) upsampling block, (d) downsampling with coupled connection block, (e) upsampling with
coupled connection block, (f) classification block, (g) dense block. In a dense block, the asterisk
symbol represents the total number of dense blocks used.

Next, the downsampling block is followed by three upsampling blocks, shown in
Figure 3c. In the upsampling block, a transpose of convolution is utilized to restore the
initial feature size. In addition, the output features from the previous block are concatenated
with the features from the skip connection to preserve the feature information. To select the
useful features and prevent overfitting, spatial dropout is applied in the upsampling layer.

Subsequently, the features are fed to the second downsampling block of the coupled
UDenseNet, which is shown in Figure 3d. The principle in the second downsampling block
is similar to that in the previous downsampling block. The difference is only in the use
of spatial dropout on the end of the block to prevent overfitting. The second upsampling
block is applied after the second downsampling block and presented in Figure 3e. Again,
the second upsampling block is similar to the previous upsampling layer, but in this block,
spatial dropout is not utilized. All downsampling and upsampling blocks in the second
UDenseNet receive additional features from the preceding UDenseNet.

Finally, after the second upsampling block, the classification block is applied to gener-
ate the class prediction. The architecture of the classification block is depicted in Figure 3f,
where it consists of additional convolution and BatchNorm. A flatten layer is utilized to
map the 2-dimensional features from the preceding blocks into 1-dimensional features. The
flatten layer is important because we use the dense layer to generate the class prediction,
and the dense layer cannot use 2-dimensional features as input. After flattening the features,
they are fed to the dense layer, which includes a Sigmoid activation function or a Softmax
activation function, depending on the classification purpose.

5. Experiments

Experimental investigations are conducted in this study to evaluate the proposed
method. The experiments were performed in Python 3.10.6 with an AMD Ryzen 5 3400G
CPU, an NVIDIA RTX 3080Ti GPU, and 24 GB of RAM. The Keras 2.10.0 library, which
runs on the TensorFlow 2.10.0 framework, was employed for training and simulation.
Three sets of tests were carried out: a 2-class classification of anomaly and no-anomaly, 11
different types of PV faults, and a 12-types of PV conditions, encompassing no-anomaly
and 11 different anomaly classes in total.

The deep learning model was trained with the AdamW [28] optimizer, 32 batch size,
and a learning rate of 0.001, with a learning rate decay introduced if the validation loss did
not decrease within ten epochs. The maximum number of epochs was set at 200, and the
early stopping strategy was employed to avoid overfitting. Table 4 describes a complete
hyperparameter tuning used to train the coupled UDenseNet model.
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Table 4. Hyperparameter tuning.

Hyperparameter Setting Value

Network hyperparameter

Batch size 32

Learning rate 0.001

Optimizer AdamW [28]

Learning rate schedule Monitoring: validation accuracy, Patience: 10

# of epochs 200

Early stopping Monitoring: validation accuracy, Patience: 20

Loss function [Binary cross entropy, Categorical cross entropy]

Dense block hyperparameter

# of layer (L) for downsampling 2,3,6

# of layer (L) for upsampling 6,3,2

Spatial dropout rate 0.2

5.1. Evaluation Metrics

The performance of the proposed coupled UDenseNet model is evaluated using a
variety of evaluation indicators. Accuracy is a popular image classification evaluation
metric that evaluates the total correctness of the model’s predictions. It is measured as the
proportion of correct estimations to total predictions. In image classification, accuracy is
defined as the proportion of correctly identified images. It is important to note, however,
that accuracy alone may not provide a complete representation of the model’s performance,
especially when the dataset is unbalanced.

To address this issue, precision and recall are frequently employed in concert with
accuracy. Precision in image classification is a proportion of true classified positive images
among all positive images, whereas recall is the proportion of true classified positive images
among all actual positive images in the dataset. The F1 score, which is the harmonic mean
of precision and recall, is another extensively used image categorization evaluation metric.
It provides a balanced measure of precision and recall, which is especially beneficial when
the dataset is unbalanced.

To construct these evaluation measures, a confusion matrix is often employed, which
indicates the number of correct and incorrect predictions made by the model for each class
in the dataset. The following formulas can be used to determine the accuracy, precision,
recall, and F1 score from the confusion matrix:

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 score =
2TP

(2TP + FP + FN)
(9)

where TP, FP, TN, and FN are the number of true positives, false positives, true negatives,
and false negatives, respectively.

To analyze the model efficiency, we use model parameters as the evaluation metric.
The total parameter refers to the number of adjustable parameters in a model that can be
learned from data during training. These parameters include the weights and biases of



Sensors 2023, 23, 4918 11 of 19

the model’s layers, which are adjusted to its performance. Additionally, the parameter
count can also impact the model’s computational efficiency, particularly for large-scale
applications, making it an important consideration for practical implementation.

5.2. Result and Discussion

The first simulation will be conducted to ascertain the presence of any defect in a
specific solar panel. In the second and third simulation scenarios, the images labeled as
anomalies are segregated based on their respective anomaly categories.

5.2.1. The First Case: 2-Class Output

The evaluation of the proposed model’s performance was conducted utilizing diverse
data augmentation methodologies and distributions. Figure 4 displays the validation
accuracy and loss of the model during training. The results indicate that the validation
loss and accuracy stabilized after approximately 60 epochs. The study’s findings revealed
that the utilization of geometric transformation and GAN augmentation methodologies
had a remarkably positive impact on the model’s performance. Although the impact of the
data distribution was minimal, it was noted that the proposed model demonstrated greater
efficacy in capturing the fundamental patterns inherent in the data.

Figure 4. Evolution of validation loss and accuracy for 2-class outputs. Evolution of validation loss
and accuracy in different (a) data augmentation methods and (b) data distributions.

The findings of the 2-class classification experiment are presented in Table 5. The
results indicate that the raw data, without augmentation, attained an accuracy of 92.22%
on the test dataset, using a data split of 70% for training, 20% for validation, and 10% for
testing. Using geometric transformation alone or combined with GAN enhanced accuracy
rates to 99.17% and 97.36% on the test dataset, respectively, for the identical data split.
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The observed enhancement shows that the proposed approach can extract more useful
information from the augmented data than the raw data.

Table 5. The classification performance results of the coupled UDenseNet model for 2-class output.

Data Augmentation
Data Distribution (%) Validation (%) Test (%)

Train Val Test Accuracy Precision Recall Accuracy Precision Recall F1

Raw Data
70 20 10 93.4 90.41 97.1 92.22 89.22 95.99 92

75 20 5 93.12 90.36 96.55 92.63 89.88 95.99 93

80 10 10 92.8 90.3 97.1 93.91 91.97 96.2 94

Geometric

Transformation

70 20 10 99.34 98.69 100 99.17 98.37 100 99.12

75 20 5 99.61 99.22 100 99.39 98.79 100 99.4

80 10 10 99.22 98.46 100 99.25 98.52 100 99.18

Geometric +

GAN

70 20 10 97.84 97.13 98.58 97.36 97.02 97.73 97.36

75 20 5 97.72 97.19 98.27 96.93 96.19 97.7 96.93

80 10 10 96.89 96.84 96.93 97.47 97.18 97.77 97.47
Note: the best performance for each metric in bold.

The results indicate a positive correlation between the proportion of data utilized for
training and the overall enhancement of the model’s performance. Notably, the maximum
training data did not necessarily yield the highest values for accuracy, precision, recall,
and F1 score. The study found that the most favorable equilibrium between the quantity
of training data and the model’s capacity to generalize was attained by utilizing a data
split of 75% for training, 20% for validation, and 5% for testing across all augmentation
methodologies. Furthermore, it was observed that the geometric transformation technique’s
sole employment yielded superior results compared to the utilization of the geometric
transformation with the GAN technique. The augmented complexity introduced by the
GAN technique may not be necessary for this specific scenario. Moreover, the confusion
matrix for 12-class output is presented in Figure 5.

Figure 5. A confusion matrix of the coupled UDenseNet model for 2-class output.

5.2.2. The Second Case: 11-Class Output

Figure 6 depicts the validation accuracy and loss trends for the proposed technique
during training for the 11-class output case. The validation loss stabilized after approxi-
mately 70 epochs. The data split of 80% train, 10% validation, and 10% test exhibited the
most fluctuation of all data augmentations, showing that this distribution influenced the
model’s performance. The results of the picture classification task with 11 output classes
utilizing various data augmentation strategies and distributions are presented in Table 6.
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Raw data had relatively poor accuracy compared to other augmentation strategies, ranging
from 64% to 67.9% for all data split distribution on the test dataset. On the other hand,
the geometric transformation produced significantly higher accuracy, ranging from 94.43%
to 96.65% for all data distribution on the test dataset, proving its ability to improve the
model’s performance.

Figure 6. Evolution of validation loss and accuracy for 11-class outputs. Evolution of validation loss
and accuracy in different (a) data augmentation methods and (b) data distributions.

Table 6. The classification performance results of the coupled UDenseNet model for 11-class output.

Data Augmentation
Data Distribution (%) Validation (%) Test (%)

Train Val Test Accuracy Precision Recall Accuracy Precision Recall F1

Raw Data
70 20 10 67.1 65.6 64.8 67.9 69.8 66.9 67

75 20 5 68.4 66.8 65.7 64 65.1 63.3 64

80 10 10 66 64.6 63 65.7 67.6 64.4 65

Geometric

Transformation

70 20 10 94.6 94.92 94.36 94.43 94.86 94.3 94

75 20 5 95.99 96.22 95.83 96.65 96.75 96.61 97

80 10 10 95.5 95.8 95.3 95.1 95.4 94.8 95

Geometric +

GAN

70 20 10 90.8 91.33 90.45 88.48 89.19 88.13 88.5

75 20 5 93.39 93.89 93.19 94.22 94.78 93.97 94.2

80 10 10 89.84 90.62 89.42 89.48 90.27 89.15 89.5
Note: the best performance for each metric in bold.

On the other hand, the efficiency of integrating geometric transformation with GAN
varies depending on the data distribution. For example, while utilizing a data split of 75%
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train, 20% validation, and 5% test, the accuracy of geometric transformation combined
with GAN was 94.22% on the test dataset, outperforming raw data but falling short of
geometric transformation in identical data split distribution. Although GANs can produce
realistic images, they can also produce false positives or negatives, resulting in incorrect
classifications. Furthermore, the number of output classes in this task is significantly higher
than in the previous task, which had only two output classes, making it more difficult
as well as explaining the raw data’s lower accuracy. Moreover, the confusion matrix for
11-class output is presented in Figure 7.

Figure 7. A confusion matrix of the coupled UDenseNet model for 11-class output.

5.2.3. The Third Case: 12-Class Output

Figure 8 illustrates the proposed method’s training performance for the 12-class output
case, demonstrating a similar pattern to previous tasks. The validation loss stabilizes at
approximately 75 epochs; however, the loss graph fluctuates considerably because of the
increased false alarms caused by the no-anomaly class. Table 7 displays the results of
the picture classification task with 12 output classes utilizing various data augmentation
strategies and data distributions. Consistent with prior examinations, raw data produce
low accuracy ranging from 78.6 to 80.4% on the test dataset across all data distributions,
highlighting the relevance of data augmentation in enhancing model performance in
imbalanced datasets. The geometric transformation alone results in a considerable increase
in accuracy ranging from 94.2% to 95.7% on the test dataset, demonstrating its efficiency
in boosting model performance for this specific context. The confusion matrix for 12-class
output is presented in Figure 9.
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Figure 8. Evolution of validation loss and accuracy for 12-class outputs. Evolution of validation loss
and accuracy in different (a) data augmentation methods and (b) data distributions.

Table 7. The classification performance results of the coupled UDenseNet model for 12-class output.

Data Augmentation
Data Distribution (%) Validation (%) Test (%)

Train Val Test Accuracy Precision Recall Accuracy Precision Recall F1

Raw Data
70 20 10 79.4 80.4 78.6 79.7 80.5 79.1 64

75 20 5 78.9 79.9 78.3 78.6 79.5 78 59

80 10 10 78.86 79.8 78.4 80.4 81.3 79.8 65

Geometric

Transformation

70 20 10 94.1 94.5 93.9 94.2 94.6 93.9 94

75 20 5 95.3 95.6 95.1 95.7 96 95.5 96

80 10 10 95.1 95.4 94.8 94.7 95.2 94.5 95

Geometric +

GAN

70 20 10 90.54 81.31 90.1 87.73 88.54 87.2 88

75 20 5 92.58 93.19 92.24 93 93.51 92.9 93

80 10 10 89.16 90 88.73 89 89.69 88.6 89
Note: the best performance for each metric in bold.

Although there may be some numerical variation between these results and previ-
ous analyses of image classification tasks with 2 and 11 output classes, the overall trend
remains consistent: raw data yield poor performance, the geometric transformation signifi-
cantly improves accuracy, and the effectiveness of combining geometric transformation
with GAN varies depending on the data distribution. This consistency in results em-
phasizes the need to carefully select data augmentation approaches when training image
classification models.
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Figure 9. A confusion matrix of the coupled UDenseNet model for 12-class outputs.

5.2.4. Comparison with the Previous Study

In Table 8, we compare the performance of various models on the same dataset for a
2-class classification task. The CNN model developed by [13] attained 92.5 % accuracy, with
precision and recall values of 92.00%. In contrast, the Ensemble model proposed by [12]
achieved a higher accuracy of 94.40%, but with no reported precision or recall values. The
Transfer Learning and Multiscale CNN model proposed by [14] produced an even higher
accuracy of 97.32%, with precision and recall values of 97.63% and 97.00%, respectively.

Table 8. The comparison of classification performance results of the related work in the same dataset
for binary classification.

Model Year No. of Class Total Parameter Accuracy Precision Recall F1
CNN [13] 2021 2 - 92.5% 92.00% 92.00% -
Ensemble Model [12] 2021 2 1.5M 94.40% - - -
Transfer Learning and
Multiscale CNN [14]

2022 2 42M 97.32% 97.63% 97.00% 97.32%

Proposed Method 2023 2 13.9M 99.39% 98.79% 100% 99.39%

Note: the best performance for each metric in bold.

With an outstanding value of 99.39%, our proposed technique attained the best accu-
racy of all models. Our model also has a high precision value of 98.79% and an excellent
recall value of 100%, for a total F1 score of 99.39%. Our model has 13.9M parameters, many
fewer than the 42M parameters employed by the Transfer Learning and Multiscale CNN
models. Although it is not the lowest, it implies that it is lightweight and computation-
ally efficient. These findings indicate that our suggested strategy outperforms the other
models on the same dataset for this 2-class classification job, suggesting the usefulness of
our approach.

Similar to Table 8, Table 9 shows the performance evaluation of different models for
the multi-class image classification on the same dataset. The first model, CNN structure
by [13], was evaluated on an 11-class output, and its performance is reported with an
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accuracy of 66.43% for the 11-class output. The second model, Ensemble model by [12],
was evaluated on a 12-class output, and its performance is reported with an accuracy of
85.90%. The third model, Transfer Learning and Multiscale CNN by [14], was evaluated on
an 11-class output, and its performance is reported with an accuracy of 93.51%.

The proposed method in this study was evaluated on both 11-class and 12-class output
and is reported to have an accuracy of 96.65% and 95.72%, respectively. This model was
developed using a coupled UDenseNet architecture with 13.9 million parameters. The
proposed method outperforms all the other models in accuracy, precision, recall, and
F1-score, demonstrating its superiority in multi-class image classification.

Table 9. The comparison of classification performance results of the related work in the same dataset
for multi-class classification.

Model Year No. of Class Total Parameter Accuracy Precision Recall F1
CNN [13] 2021 11 - 66.43% - - -
Ensemble Model [12] 2021 12 1.5M 85.9% - - -
Transfer Learning and
Multiscale CNN [14]

2022 11 42M 93.51% 93.52% 93.51% 93.49%

Proposed Method 2023
11 13.9M 96.65% 96.75% 96.61% 97.00%
12 13.9M 95.72% 96.01% 95.53% 97.00%

Note: the best performance for each metric in bold.

6. Conclusions

Photovoltaic (PV) systems are eco-friendly, noiseless, and inexpensive to install. Field
failures and degradation may decrease PV module reliability and durability. This might
produce malfunctions, safety issues, and fire hazards, reducing PV module lifespan. Heavy
metal-containing PV module waste is growing. Therefore, PV systems need frequent
inspection and maintenance.

The evaluation of the proposed model’s performance was conducted using various
data distributions and data augmentation techniques, such as geometric transformation
and GAN image augmentation. The results showed that the utilization of geometric trans-
formation and GAN augmentation methodologies had a positive impact on the model’s
performance. Furthermore, the effectiveness of combining geometric transformation with
GAN varied depending on the data distribution, and the augmented complexity introduced
by the GAN technique may not be necessary for this specific scenario.

Our analysis has shown that the accuracy of the proposed model was notably superior
compared to previous studies conducted on the identical dataset. The proposed model
achieved an accuracy of 99.39%, 96.65%, and 95.72% for 2-class, 11-class, and 12-class output
on the test dataset, respectively. Furthermore, the accuracy of our model was 2–3% higher
than the best-performing model reported in the literature, which utilized the Transfer
Learning and Multiscale CNN approach and possessed more than three times the total
parameter counts of our proposed model. These results demonstrate that the proposed
approach can significantly improve the accuracy of PV fault detection, which can lead to
improved maintenance of PV systems and increased energy efficiency.

In the future, further research can explore the combination of coupled charge device
(CCD) cameras and thermal cameras to obtain a more comprehensive diagnosis of PV faults.
Additionally, there is a need to investigate the feasibility of implementing the proposed
approach in real-world settings. Moreover, there is scope for extending the current model
to predict the remaining useful lifetime (RUL) of PV modules to enhance the maintenance
schedule of solar PV plants. Finally, there is a need to consider developing a cloud-edge
architecture with a user-friendly software tool that can automatically detect and classify
faults in real time, thereby minimizing manual inspections and reducing downtime for
solar PV plants.
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