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Abstract: The early detection of fire is of utmost importance since it is related to devastating threats
regarding human lives and economic losses. Unfortunately, fire alarm sensory systems are known to
be prone to failures and frequent false alarms, putting people and buildings at risk. In this sense, it is
essential to guarantee smoke detectors’ correct functioning. Traditionally, these systems have been
subject to periodic maintenance plans, which do not consider the state of the fire alarm sensors and
are, therefore, sometimes carried out not when necessary but according to a predefined conservative
schedule. Intending to contribute to designing a predictive maintenance plan, we propose an online
data-driven anomaly detection of smoke sensors that model the behaviour of these systems over
time and detect abnormal patterns that can indicate a potential failure. Our approach was applied
to data collected from independent fire alarm sensory systems installed with four customers, from
which about three years of data are available. For one of the customers, the obtained results were
promising, with a precision score of 1 with no false positives for 3 out of 4 possible faults. Analysis of
the remaining customers’ results highlighted possible reasons and potential improvements to address
this problem better. These findings can provide valuable insights for future research in this area.

Keywords: predictive maintenance; industry 4.0; machine learning; big data; data streams; time
series; anomaly detection; fire alarm systems

1. Introduction

Among the several types of natural and human-made disasters, fire has been one of
the most devastating threats in terms of human lives and economic losses [1,2]. The early
detection of fires is of major importance, and fire detectors should be guaranteed to work
properly and soundly. However, smoke detectors have been reported to failure and are
known to be prone to false alarms within specific conditions. Both of these cases pose high
risks because a frequent rate of false alarms usually translates into a reduction of human
sensitivity to true alarms, thus putting people and buildings at risk. A report from 2021
from the National Fire Protection Association [3] indicated that fire alarms have failed in
16% of home fires in the United States. Consequently, this resulted in significant property
damage costs, injured victims, and fire fatalities [4].

Most of the currently implemented maintenance plans for fire alarm systems rely on
preventive maintenance, which is prescheduled and does not consider the system’s current
state. For instance, the European Standards impose the scheduling of maintenance actions
on a regular basis. For example, the EN 54 series mandates that all smoke detectors be
tested yearly [5]. This paradigm yields several costs related to possible unnecessary equip-
ment replacement for preventive reasons or even loss of productivity if the interruption of
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operations and tasks at sites undergoing maintenance is mandatory. Additionally, the main-
tenance of fire detection systems temporarily renders the system inoperable, with false
alarms often occurring during maintenance, which, when interpreted by space users as
coming from maintenance, are usually ignored, putting them at risk.

By utilizing sensors, these systems can be upgraded to a new generation that uses data-
mining techniques to reduce false alarms and to predict the need for system maintenance.
Exploiting data collected on the sensors (e.g., lifetime, reaction to the environment where
it is installed, and behaviour over time) can provide valuable information to predict their
behaviour, reduce the number of false alarms, and allow failure detection.

In this context, data-driven predictive maintenance (PdM) approaches, particularly
anomaly detection approaches, can be applied to inform asset managers about the condition
of their fire alarm systems and help them to take informed and timely actions. In particular,
anomaly detection aims to identify abnormal data patterns that remarkably deviate from
the expected behaviour [6] as a sign of a potential failure. From a data perspective, the goal
is to detect anomalies in the behaviour of data over time as described by a set of consecutive
unusual data points, i.e., subsequent outliers. There are three main types of anomalies [7]:
point (or global), contextual (or conditional), and collective. The goal in PdM is to detect
signs of potential failures, which typically configures a contextual outlier, meaning that it is
recognized as abnormal behaviour within a temporal time frame.

Most of the approaches available in the literature for anomaly detection have been
designed for static datasets [8], i.e., they do not consider the evolving behaviour of the
system, which is known to exist in any piece of equipment. Based on our research, we have
not yet come across any machine-learning (ML) techniques specifically designed to detect
anomalies in smoke detectors’ behaviour. In this context, this work proposes a data-driven
anomaly detection approach for anomaly detection of smoke detectors. The method was
applied and validated in data obtained from real case studies, from which more than three
years of data are available.

This paper is organised as follows. First, an overview of the related work on anomaly
detection of sensory systems is given in Section 2. The subsequent section describes the
case study on the fire alarm sensory system. Section 4 describes the proposed approach
for anomaly detection of smoke detectors. The obtained results are presented in Section 5.
Section 6 closes with the main conclusions and outline of further work.

2. Related Work

In modern industry, we can find three main maintenance paradigms for a piece of
equipment: corrective, preventive, and predictive [9]. Generally, they differ in the main-
tenance timing and associated costs or savings. Corrective maintenance is the simplest
and oldest method. Maintenance occurs only after the breakdown of the equipment. This
implies the disruption of the equipment operation and unexpected downtime. Preventive
maintenance tries to avoid such downtimes by scheduling regular maintenance actions
based on historically known faults. Nevertheless, it involves additional costs of unnecessary
maintenance. It may also fail when the failure develops in between maintenance schedules.
With the advent of industry 4.0, access to data registered by sensors has become effortless.
Leveraging these data to schedule more effective maintenance plans is the ultimate goal of
data-driven predictive maintenance (PdM). It comprises a set of techniques that use data
analysis tools and machine-learning algorithms to determine when maintenance actions
should occur, allowing maintenance to be performed only when it is strictly necessary [10].
Therefore, PdM minimises maintenance costs by extending the useful life of the compo-
nents [9] and reducing the shut-down time of the equipment. Thus, PdM is increasingly
becoming a central cornerstone in industrial applications and systems.

PdM practices are usually grouped into two main tasks: failure prediction and re-
maining useful life estimation [9,11]. With the former, which can also be called anomaly
detection, the main goal is identifying unusual patterns in equipment behaviour to detect
potential failures. The latter is concerned with predicting the remaining time of the mon-
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itored equipment until the end of its useful life based on its current state and operating
conditions. This paper is focused on the first; that is, the anomaly detection of smoke
detectors using condition monitoring data. Anomaly detection is a broader problem with a
vast number of application domains, such as cybersecurity, predictive maintenance, fault
prevention, automation, or e-health [6]. Timely identification of anomalies is essential to
tackling underlying problems that, if undetected, may lead to costly consequences [6].

Similar to any data-driven learning technique, data-driven PdM techniques are usually
divided into three learning approaches: supervised, unsupervised, and semisupervised.
Supervised learning relies on labelling that classifies each instance as normal or abnormal.
This usually involves an expert that performs the labelling based on domain knowledge
and maintenance reports. However, this approach comes with two main problems: the first
is that very few examples of abnormality are expected when compared to the examples of
normality, which poses additional difficulties to the learning task [12]. Second, this does not
ensure that all possible abnormal behaviours are described in the data for ensuring that the
algorithm can learn precisely what constitutes a fault. For this reason, such a context is not
often encountered. In fact, most of the data-driven techniques follow either unsupervised
or semisupervised approaches. In an unsupervised learning setting, the data have no labels,
and the goal is to identify anomalies without any prior knowledge. Nevertheless, in many
of the PdM applications, it is possible to leverage the data collected during the normal
functioning of a piece of equipment. This configures a semisupervised learning context,
where the goal is to model expected (normal) behaviour and identify any deviation from
that pattern as an anomaly and thus a signal of a potential failure. Another important aspect
of the learning paradigm used in PdM is the ability to update the pattern of normality
continuously. Pieces of equipment are known to be affected, both by their number of
hours in functioning and by external factors, such as temperature [13]. This change in
the functioning pattern does not necessarily lead to a potential failure. Thus, it is very
important to resort to methods that allow an online learning setting.

Unsupervised learning techniques can also be found in the technical literature. Liu et al. [14]
proposed a data compression approach based on edge computing and an outlier detection
approach based on isolation forests. Moreover, they demonstrate that the proposed method
outperforms the graph and K-means clustering algorithm. Goh et al. [15] identified which
sensor was attacked in a cyber-physical system using a recurrent neural network (RNN)
together with a cumulative sum method in data from a replicate of a water treatment
plant. Li et al. [16] proposed an unsupervised multivariate anomaly detection method
based on generative adversarial networks (GANs) using the long short-term memory
recurrent neural network (LSTM-RNN) as the base model. They tested the approach on
two real-world datasets, the Secure Water Treatment and the Water Distribution datasets.
The approach was proven effective in reporting anomalies caused by various cyber-attacks.

With regards to semisupervised learning techniques, several approaches have been
proposed since in many practical anomaly detection applications, only training sets from
a single class (the normal one) are available [13]. Examples of traditional ML techniques
for semisupervised learning include one-class support vector machines (SVMs), which
was applied by Garcia-Font et al. [17] for the detection of attacks in smart city sensor
networks. Deep-learning techniques have also been used in a semisupervised learning
context. Fiore et al. [18] applied a discriminative restricted Boltzmann machine for network
anomaly detection. Luo and Nagarajany [19] applied autoencoders (AEs) for anomaly
detection in wireless sensor networks in a fully distributed manner. They could detect
spikes and bursts in readings from temperature and humidity sensors.

Regarding fire detection systems, most of the related work in the literature [20] has
focused on the use of machine-learning algorithms for the detection of fires to facilitate
the firefighting task of mitigating the fire threat, with less focus placed on the detection of
the failures of these systems. For example, Bahrepour et al. [21] used feed forward neural
networks and Bayesian classifiers to reduce the rate of false fire alarms using a wireless
sensor network and concluded that the Bayesian model would be the most suitable for



Sensors 2023, 23, 4902 4 of 15

this task. They used a relatively small dataset containing 1400 observations and did not
address questions about the behaviour of alarms over time. Iyer et al. [22] used several
machine-learning algorithms for forest fire detection. They showed that the classifiers can
successfully predict small fires with 85% accuracy but did not achieve the same results for
large fires, obtaining only 30% accuracy. In this work, they also showed that incorporating
the time variable can be beneficial in predicting fires. More recently, Wu et al. [23] used an
adaptive threshold of a feature technique and a deep-learning method for smoke and fire
detection from images. They combined attribute extraction with a degree of irregularity
and the weighted sum of fire direction values with the deep-learning method using the
Caffe framework. The results showed that they can successfully detect fire regions and
consequently reduce false alarms.

The above-referred works are meaningful contributions to solving problems mainly re-
lated to fire detection, guidance, and alerts to the human groups involved. Our study seeks
to characterize fire alarm system equipment over time, providing them with autonomy
and intelligence for the self-detection of failures; combines (merges) several heterogeneous
types of data; and explores volumes of data not previously studied in this area. Moreover,
the data acquisition frequency is also a significant difference from the previous studies
that, as they are intended for fire detection, have a much higher frequency. We have at
our disposal one point every 15 min, at best. In our case study, we aimed to approach the
predictive maintenance problem of fire alarm sensory systems following an online anomaly
detection approach based on a semisupervised learning strategy, which is described in the
following section.

3. Case Study

Fire alarm systems are critical components of a security and safety system of a building
since in case of failure, they can cause casualties or severe property damage. A fire alarm
system can have multiple devices and components, such as panels, smoke detectors that
incorporate air-quality-monitoring sensors, video-based fire detection devices, or sirens.

This work aims to develop a data-driven predictive maintenance approach that issues
an alert whenever a smoke detector of a fire system is predicted to suffer a failure when an
abnormal pattern is detected. Smoke detectors are life-saving devices whose primary goal is
to detect the presence of smoke or fire. Different types of technologies for fire and/or smoke
detection are available: photoelectric detectors (also known as optical smoke detectors),
ionization detectors [24], microwave radiometers [25], and or image-based detectors [26].
This work is focused on anomaly detection of optical smoke detectors. The readings from
the optical sensor are used for this purpose. The optical sensor takes advantage of the light-
scattering phenomenon to detect the smoke particles’ size and density within a measuring
chamber embedded in the detector. Some smoke detectors can also be equipped with other
sensors, such as temperature and chemical sensors. However, to develop the detection of
anomalous behaviour in devices only equipped with optical sensors, we only used optical
readings in this study.

Two datasets are available: Condition Monitoring (CM) and Remote Alert (RA).
The former covers information about the physical building conditions and health status
of the fire system components, and a new data point is usually retrieved every 15 min.
The latter has information about events (fire, warning, trouble, etc.).

Figure 1 presents the general structure of the fire alarm system. For each Bosch
customer, having a nonlimited number of systems is possible. Each system can have a
maximum of 32 panels, and each panel can have a maximum of 46 modules. Each module
can also have loops.

As stated above, fire alarm systems are very complex and life-saving components of
a building. Therefore, developing data-driven predictive maintenance approaches is of
considerable importance to reducing and preventing malfunctions and system downtime.



Sensors 2023, 23, 4902 5 of 15

Figure 1. Bosch fire system structure.

4. Proposed Approach

The proposed data-driven predictive maintenance approach aims to detect when a
smoke detector should be replaced. An online procedure is followed, i.e., the machine
learning (ML) model is trained in a predetermined time window and predicts the anomaly
scores of the examples in a subsequent forecasting window. If the anomaly score is high,
an alarm is triggered. Whenever a new forecasting window data is available, the online
learning is repeated by moving the training time window forward.

The approach comprises the following main steps, depicted in Figure 2: data prepa-
ration, feature engineering, training an autoencoder with one month of data, using it to
forecast the following week, and classifying each example as normal or abnormal. We
elaborate on each of these steps next.

Figure 2. Flowchart of the proposed Data-driven Predictive Maintenance approach.

4.1. Data Pre-Processing

After importing the CM and RA datasets, we performed feature extraction and data
wrangling to transform the data into tidy datasets. Each dataset refers to data from a target
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loop. In this step, a data-cleaning procedure was also considered to impute missing values
(e.g., in the device’s serial number) and the possibility of removing outliers from readings.

For the latter, we resorted to the box plot of a daily moving window, i.e., through
considering samples of fixed size corresponding to one day, each point is analysed in the
context of that moving window. According to Tukey’s box plot definition, if the point is
outside the interval [Q1 − 3 × IQR, Q3 + 3 × IQR], where Q1 and Q3 are the first and third
quartiles and IQR is the interquartile range (Q3 − Q1), it is regarded as an extreme outlier
and thus can be removed.

As we did not have information regarding the different sensors’ locations, we decided
to perform our analysis per loop. The principle is that sensors in the same loop are,
in principle, closer to each other. However, each loop can have up to 255 devices, which can
lead to situations in which some devices are not physically that close or even exposed to
different environments. After the data preparation, feature engineering takes the features,
which in this case were extracted from raw data, and aggregates them so that eventually,
more useful information is supplied for the machine-learning algorithm [27]. Since the
same type of sensor/variable can have different sampling frequencies, the variables were
resampled to a common sampling frequency.

The following features were created from optical smoke detector readings in the
CM dataset:

• opt1—average of the optical readings (opt1) in the aggregation time interval;
• count_opt1—number of opt1 readings in the aggregated time interval;
• opt1_diff1—first differences of the opt1 variable;
• opt1_kurtosis—kurtosis of the opt1 readings in the aggregation time interval;
• opt1_skewness—skewness of the opt1 readings in the aggregation time interval;
• loop_opt1—average of the opt1 readings of all devices in the loop of the target device,

excluding the target device;
• loop_count_opt1—average number of opt1 readings of all devices in the loop of the

target device, excluding the target device;
• loop_opt1_diff1—average of the first differences of the opt1 readings of all devices in

the loop of the target device, excluding the target device;
• loop_opt1_kurtosis—average of the kurtosis of the opt1 readings of all devices in the

loop of the target device, excluding the target device;
• loop_opt1_skewness—average of the skewness of the opt1 readings of all devices in

the loop of the target device, excluding the target device.

With regards to the RA dataset, all available states regarding events (such as fire,
warning) were aggregated into groups and, for each group, a feature was created with the
number of states in the resampling interval as follows:

• fire_state;
• pre_alarm_state;
• fault_state;
• service_state.

In a similar manner in which the features were extracted from the CM dataset, the fea-
tures extracted from the RA dataset were created for the target device and for all devices
in the loop (excluding the target device). Therefore, four features were extracted from the
RA dataset representing the target device and four features representing the loop of the
target device. The features representing the loop were obtained by summing all the features
of the devices in the loop (except the target device). Figure 3 depicts a flowchart of the
feature-engineering stage for the default parameters of the pipeline.

Finally, two additional binary features were also created:

• work_day—1 if it is a weekday, 0 if it is a weekend day.
• day_night—1 if hour ≥ 8 and hour < 20 but 0 otherwise
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Figure 3. Flowchart of the feature engineering process.

4.2. Online Anomaly Detection

After the feature engineering stage, a machine-learning (ML) model was fitted using
the data from a moving window to capture the evolving normal behaviour of the sensor.
We set the training window to 30 days and resorted to the autoencoder (AE) algorithm to
build a model that learns to reproduce the input data from that time frame. We should
note that all the features were normalised using min–max scaling on the training window.
As for the AE architecture, we decided to define only one bottleneck layer composed of
the number of nodes equal to half of the input features and activation function Relu. This
procedure is schematised on the left part of Figure 4.

The fitted model is then used to forecast the features in the window following the
training window, which we set to one week. Then, based on the model’s residuals, each
is classified as normal or abnormal following a semisupervised approach. If the model is
able to reproduce well the features in the forecasting window, the residuals are considered
similar to the ones obtained for the data used for fitting the AE model. Otherwise, if the
fitted model cannot reproduce the features in the forecasting window, the residuals are
expected to be higher. The latter case indicates a novelty or anomaly, and thus an alarm
is triggered.

We implemented this classification process with two approaches: one using the univari-
ate box plot analysis and the other using the multivariate Mahalanobis distance. Regarding
the first approach, the mean squared error of the reconstruction error (ei) regarding all the
features of a given instance was computed using Equation (1),

ei =
1
N
(xi − x̂i)

T(xi − x̂i) (1)

where N is the number of features, xi is the input vector with N features for timestamp i,
and x̂i is the vector with the model forecast. Next, a box plot analysis was needed to set the
upper control limit (UCL). Based on the third quartile (Q3) and on the interquartile range
(IQR) of the distribution of the mean squared errors obtained for the training window, we
used the UCL = Q3 + 1.5 × IQR, as defined by the box plot for high and extreme outlier
values. This threshold is used to classify each instance in the forecasting window as normal
or abnormal, according to

âi =

{
0 i f ei < UCL
1 otherwise

(2)

where âi is the anomaly output prediction obtained based on ei which is the reconstruction
error for the instance in timestamp i, and UCL is the box plot threshold for identifying high
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extreme outliers obtained from the distribution of the mean-squared reconstruction errors
in the training window. Instances for which the reconstruction error is lower than the UCL
are considered normal and predicted as 0. All the others, i.e., those with a reconstruction
error equal to or higher than the UCL, are considered abnormal and predicted as 1.

A low-pass filter (LPF) is then used to reduce the number of false alarms. This filter
smooths the output of the previous step so that isolated anomaly predictions do not trigger
an alarm. Only subsequent anomaly predictions trigger an alarm. The applied LPF is
defined as follows

ŷi = ŷi−1 + α(âi − ŷi−1) (3)

where ŷi is the filter output obtained based on the previous filter output ŷi−1 and on the
anomaly prediction based on the reconstruction error âi, and alpha is the smoothing
parameter, also designated as the forgetting factor. The initial value for the recursion is
ŷ0 = 0. If ŷi is bigger than 0.5, this indicates that subsequent anomaly predictions have
been made, and thus an alert should be triggered. In this case, ŷi−1 is reset to 0 in the next
forecasting window. It should be noted that two slightly different approaches are available
and were implemented. Before computing the mean square of the reconstruction errors,
the reconstruction errors may or may not be standardised.

Alternatively to the box plot approach, a classification algorithm based on the Maha-
lanobis distance was also implemented. It follows a similar strategy to the one described
above. Nevertheless, the reconstruction error in this case is represented by a vector of size
equal to the number of features (ei) and the squared Mahalanobis distance for timestamp i
is computed by as follows:

DM2
i = (ei − ē)TS−1(ei − ē) (4)

where ei = xi − x̂i, ē is the vector with the average of the residual errors obtained for the
training window, and S is the covariance matrix of the residual errors obtained using the
reconstruction errors of the training window. The UCL is then defined as the 0.95 quantile
obtained for the training window, and Equations (2) and (3) are sequentially applied
similarly to the box plot analysis approach described.

Figure 4 presents the flowchart with a full description of these steps for the training,
forecasting, and classification stages.

Figure 4. Flowchart of the machine-learning process: training, forecasting, and classification stages.
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4.3. Evaluation

To evaluate the proposed approach, the evaluation scheme shown in Figure 5 was
used. A description of the alarm outcomes and their conditions defined according to this
scheme are as follows:

- True positive (TP): if there is an alert 120 days before the actual change of device;
- False positive (FP): if there is an alert outside the interval defined for TP;
- False negative (FN): if there is no alert in the interval defined for TP;
- False positive* (FP*): if the alarm is in the month after the actual change of the serial.

Figure 5. Schematic representation of the evaluation procedure.

Multiple alerts distancing less fewer that seven days apart are grouped into a single
event. Note that the FP* alarms, i.e., alarms in the yellow zone of Figure 5, are not considered
for the computation of the evaluation metrics. This means that if an anomaly (ground truth)
does not have an alarm in the TP zone, it is still considered an FN even if there is an alarm
in the FP* zone.

For performance estimation, the considered metrics were the following: precision = TP
/(TP + FP), recall = TP/(TP + FN), and F1 = (2 · precision · recall)/(precision + recall).

5. Experimental Study

A total of 22 features were considered for the experiments, with 10 representing the
target devices, 10 representing the loop where the target device is inserted, and 2 correspond
to the binary features work_day and day_night. A total of 11 datasets described by feature
subsets were considered with combinations of the 22 available features. The features that
compose each dataset are presented in Table 1.

Table 1. Composition of the 11 feature sets. Check marks (3) indicate included features.
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FS1 3 3 3 3 3 3 3 3 3 3 3 3 3 3
FS2 3 3 3 3 3 3
FS3 3 3 3 3 3 3 3 3 3 3
FS4 3 3 3 3 3 3 3 3
FS5 3 3 3 3 3 3
FS6 3 3 3 3 3 3 3
FS7 3 3 3 3 3 3 3 3 3
FS8 3 3 3 3 3 3 3 3
FS9 3 3 3 3 3 3 3 3 3 3
FS10 3 3 3 3 3 3 3 3 3
FS11 3 3 3 3 3 3 3 3 3

Besides the feature subsets presented in Table 1, six different aggregation times were
also considered: 3, 4, 6, 8, 12, and 24 h.
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Next, we present the obtained results for a device chosen to demonstrate the approach
for all the devices of the same customer where a change of the device took place. Then, we
present the obtained results for the other three customers. It should be noted that we used
the device change as the ground truth by tracking the serial number. However, a device
change can occur not only due to a malfunction but also due to a multitude of factors.
For this reason, a high number of FNs were expected.

5.1. Illustrative Case

The proposed approach was applied to customer Cust27, for which there were five
device changes. Results showed that the approach loses sensitivity to anomalies, i.e., no
alarms were triggered for aggregation times higher than 4 h. For this reason, only results
for time aggregations of 3 and 4 h are presented. Moreover, no outliers were removed in
the preprocessing step, as this did not improve the overall results. The number of TPs, FPs,
and FNs obtained for case 1 from customer Cust27 and the amount of time between the
first alert and the actual change of device for different time aggregations, feature sets, and
classification approaches are presented in Table 2. For this particular case, the box plot
without standardisation of the reconstruction errors presents the worst results with a higher
number of FPs and FNs for some of the feature sets and a generally shorter anticipation
time of the device change. For the other classification approaches, similar results were
obtained. In general, the anticipation time was about 100 days, and except for FS1, FS2,
FS4, FS7, FS8, and FS9, no FPs or FNs were obtained.

Regarding the time aggregation, similar results were obtained for 3 and 4 h of aggre-
gation time. For this reason, only the results obtained for three hours of aggregation time
are presented.

Table 2. Number of TPs, FPs, and FNs and time before the device change of the first alarm triggered
by the proposed approach for case 1 from customer Cust27.

Classifier: Box Plot No Stand. Residuals Box Plot Stand. Residuals Mahalanobis Distance

Time Feat. Anticip. Anticip. Anticip.
Aggreg. Subset TP FP FN FP* (Days) TP FP FN FP* (Days) TP FP FN FP* (Days)

3 h FS1 1 0 0 0 65 1 1 0 0 67 1 0 0 0 64
FS2 1 0 0 0 65 1 0 0 0 65 1 1 0 0 64
FS3 1 0 0 0 64 1 0 0 0 99 1 0 0 0 101
FS4 1 0 0 0 63 1 0 0 0 101 1 0 0 0 100
FS5 1 0 0 0 98 1 0 0 0 101 1 0 0 0 97
FS6 1 0 0 0 63 1 0 0 0 101 1 0 0 0 98
FS7 1 0 0 0 88 1 0 0 0 101 1 0 0 0 64
FS8 1 1 0 0 88 1 0 0 0 100 1 0 0 0 100
FS9 0 0 1 0 - 1 0 0 0 101 1 0 0 0 100

FS10 1 0 0 0 88 1 0 0 0 100 1 0 0 0 101
FS11 1 0 0 0 96 1 0 0 0 101 1 0 0 0 98

4 h FS1 1 0 0 0 64 1 0 0 0 66 1 0 0 0 64
FS2 1 0 0 0 64 1 0 0 0 63 1 0 0 0 64
FS3 1 0 0 0 63 1 0 0 0 100 1 0 0 0 99
FS4 0 0 1 0 - 1 0 0 0 100 1 0 0 0 99
FS5 1 0 0 0 100 1 0 0 0 100 1 0 0 0 99
FS6 1 0 0 0 63 1 0 0 0 100 1 0 0 0 100
FS7 1 1 0 0 64 1 0 0 0 100 1 0 0 0 99
FS8 0 0 1 0 - 1 0 0 0 98 1 0 0 0 99
FS9 1 0 0 0 88 1 0 0 0 100 1 0 0 0 99

FS10 1 0 0 0 88 1 0 0 0 100 1 0 0 0 99
FS11 1 0 0 0 88 1 0 0 0 100 1 0 0 0 99

Customer Cust27 also had three more cases in which there was a device change (one
with two changes in the evaluated time frame). Except for one of the device changes, all
were predicted in timely fashion by the proposed approach.

Table 3 presents the obtained metrics of all the cases of device change for customer
Cust27 for the 11 datasets and for the three classification approaches considered: box
plot analysis without standardisation of the reconstruction errors, box plot analysis with
standardisation of the reconstruction errors, and Mahalanobis distance. Datasets FS1 to FS3
presented a high number of FPs for all the classification approaches. The datasets FS4 to FS6
generally showed higher F1-score across all the classification approaches. The remaining
feature sets did not exhibit uniform behaviour across the three classification approaches.
For instance, FS10 had an F1-score of 0.750 for the Mahalanobis distance and for the box
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plot with standardisation of the reconstruction errors but an F1-score of 0.444 when the box
plot without standardisation of the residuals was used for classification.

Table 3. Performance results for customer Cust27. The best F1-Score is highlighted in bold for each
classification approach and feature set.

Classifier Metric Feature Subset
FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8 FS9 FS10 FS11

Box plot TP 4 3 4 3 3 3 3 3 2 2 3
no stand. FP 7 9 5 0 0 0 3 2 2 2 2
residuals FN 1 2 1 2 2 2 2 2 3 3 2

FP* 1 1 2 0 0 0 0 0 0 0 0
Precision 0.364 0.250 0.444 1.000 1.000 1.000 0.500 0.60 0.500 0.500 0.600
Recall 0.800 0.600 0.800 0.600 0.600 0.600 0.600 0.600 0.400 0.400 0.600
F1 0.500 0.353 0.571 0.750 0.750 0.750 0.545 0.600 0.444 0.444 0.600

Box plot TP 3 3 3 3 3 3 3 3 3 3 3
stand. FP 9 14 14 0 0 0 1 0 1 0 1
residuals FN 2 2 2 2 2 2 2 2 2 2 2

FP* 0 0 0 0 0 0 0 0 0 0 0
Precision 0.250 0.176 0.176 1.000 1.000 1.000 0.750 1.000 0.750 1.000 0.750
Recall 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600
F1 0.353 0.273 0.273 0.750 0.750 0.750 0.667 0.750 0.667 0.750 0.667

Mahalanobis TP 4 4 3 2 2 3 3 3 2 3 2
Distance FP 14 7 2 0 1 0 0 0 0 0 0

FN 1 1 2 3 3 2 2 2 3 2 3
FP* 0 0 0 0 1 0 0 0 0 0 0
Precision 0.222 0.364 0.600 1.000 0.667 1.000 1.000 1.000 1.000 1.000 1.000
Recall 0.800 0.800 0.600 0.400 0.400 0.600 0.600 0.600 0.400 0.600 0.400
F1 0.348 0.500 0.600 0.571 0.500 0.750 0.750 0.750 0.571 0.750 0.571

Ultimately, the features work_day and day_night did not improve the performance. A
similar situation occurred regarding the RA features (fire_state,pre_alarm_state, fault_state,
and service_state), as they were afterwards found to be redundant. In fact, some of the
alarms/states in the RA were triggered by sensors’ readings when reaching specific thresholds.

5.2. Results for Other Customers

The results obtained for customer Cust27 are very interesting and promising. However,
how the approach performs with data from other customers should also be evaluated.
For that purpose, three systems from three different customers with more device changes
were selected. Thus, customers Cust2, Cust6, and Cust30 were chosen since they had 12, 8,
and 8 device changes for the analysed period, respectively. Figure 6 presents the precision,
recall, and F1-score obtained for customers Cust2, Cust6, Cust27, and Cust30 for the 11
datasets considered.

The first conclusion that can be taken from the analysis of the plots is that there is
no classification approach or dataset with better metrics across all the customers. For in-
stance, while for customer Cust27, the datasets with the worst performance were FS1 to
FS3, for customer Cust2, these were the feature sets with the best performance metrics
when using the box plot analysis without standardisation of the reconstruction errors (cf.
Figure 6a).
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(a) (b)

(c) (d)
Figure 6. Performance results obtained for customers (a) Cust2, (b) Cust6, (c) Cust27, and (d) Cust30.
Results present the precision, recall, and F1-score obtained with the 11 feature subsets used for classi-
fying training window of 30 days and box plot analysis without standardisation of the reconstruction
errors; box plot analysis with standardisation of the reconstruction errors; and Mahalanobis distance
(MD) with the threshold computed for the 0.99 quantile.

Moreover, for some datasets in customers Cust6 and Cust30, the approach did not
trigger any alarms. This may be explained by the fact that a device change does not
necessarily mean that the replaced device had a malfunction. Indeed, in some cases
significant differences in the sensor readings were not spotted for any of the considered
features. Cases such as these are not expected to be flagged by the anomaly detection
approach since any variability/change is present in the data. As already mentioned, device
changes such as these may not be related to a malfunction, or the used/available features
may not be sensitive to the anomaly. For this reason, for further work and development,
the exploration of other features, such as energy consumption or "FallTime" of the optical
sensor, should be carried out [4]. Other meta-features may also be of interest [28].

A training window of 90 days was also considered to evaluate the sensitivity of the
performance metrics to this hyperparameter. However, similar results were obtained.
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6. Conclusions

Fire detectors, such as smoke detectors, should be guaranteed to work properly and
soundly since their inefficient behaviour or failure can lead to damaging, and sometimes
irreversible, consequences to society and the economy, such as causalities or property
damage. False alarms and periodic maintenance of the fire detection system are the two
cost factors associated with the fire detection system in a given building.

In this context, this paper described a practical application of an online data-driven
predictive maintenance approach for anomaly detection of smoke detectors. The online
procedure involves training an autoencoder in a predetermined time window and predict-
ing anomaly scores of the examples in a subsequent forecasting window. If the anomaly
score is high, an alarm is triggered. Whenever the date from a new forecasting window are
available, the online learning is repeated by moving the training time window forward.

The proposed approach was applied to over three years of data obtained from inde-
pendent fire alarm systems installed with four customers. Without further information on
possible failures, the tracking of the device change was used as the ground truth. However,
a device change may not be related to abnormal behaviour. For this reason, a high number
of FNs were obtained. A total of 22 features were considered, extracted from continuous
monitoring and event data. The obtained performance values for different features and
classification approaches are presented in this paper.

The method proved robust for one of the customers (Cust27), detecting three out of
four device changes without any FPs (precision of 1). However, the results were not of the
same quality for the remaining customers. It was impossible to obtain a combination of
feature set and classification approach with consistent performance across all the customers.
Therefore, tuning the method for each specific case will always be necessary. Indeed, this is
an expected outcome in real-case applications [29]. Each fire alarm system was located in
a different building with different environmental conditions and activities. Thus, in the
future, considering the geolocation and/or the building core activity may help to improve
the results obtained.

The less than satisfactory performance for some customers may also be related to a
lack of information on the considered features regarding the abnormal behaviour of the
device. Therefore, further developments to improve this approach should explore other
domain-specific features, such as the energy consumption of “FallTime” [4]. Moreover,
experimenting with more meta-features may also be of interest [28]. Finally, only parametric
analysis of input features and classification approaches were considered in this work. Other
autoencoder architectures and ML models, such as principal component analysis, can also
be tested in the future.
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