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Abstract: Functional objects are large and small physical entities installed in urban environments
to offer specific functionalities to visitors, such as shops, escalators, and information kiosks. In-
stances of the novel notion are focal points of human activities and are significant in pedestrian
movement. Pedestrian trajectory modelling in an urban scene is a challenging problem because
of the complex patterns resulting from social interactions of the crowds and the diverse relation
between pedestrians and functional objects. Many data-driven methods have been proposed to
explain the complex movements in urban scenes. However, the methods considering functional
objects in their formulation are rare. This study aims to reduce the knowledge gap by demonstrating
the importance of pedestrian–object relations in the modelling task. The proposed modelling method,
called pedestrian–object relation guided trajectory prediction (PORTP), uses a dual-layer architecture
that includes a predictor of pedestrian–object relation and a series of relation-specific specialized
pedestrian trajectory prediction models. The experiment findings indicate that the inclusion of
pedestrian–object relation results in more accurate predictions. This study provides an empirical
foundation for the novel notion and a strong baseline for future work on this topic.

Keywords: pedestrian trajectory; pedestrian movement modelling; functional objects; deep learning;
recurrent neural networks; urban environments

1. Introduction

The increased urban population in the past few decades has prompted the emergence
of large urban centers comprising shopping, entertainment, transportation, social, and
other personal services under one roof [1,2]. Being in walking proximity to a wide range of
functions is critical to an urban lifestyle [3,4]. The large and small objects installed to offer
specific functionalities to visitors are called functional objects. Some functional objects are
relevant to the principal reasons for the visit; for example, shops, fast-food stalls, and front
offices of the authorities. Other objects, such as escalators, restrooms, information kiosks,
and other amenities, are designed to enhance visitor experience or facilitate movement.
The location of a function object is defined by its perimeter and orientation.

1.1. Modelling Functional Objects for Pedestrian Trajectory Prediction

Functional objects are focal points of pedestrian movements [5–7]. The microscopic
movements in the surrounding area of a functional object are of particular interest. The
trajectories can inform how individual users approach the object, how non-users move past
the object and other aspects of pedestrian–object interaction. Understanding the diverse
relation types between pedestrian movements and functional objects at the microscopic
level and using it to predict the trajectory of individual pedestrians is helpful for many
applications [8], including pedestrian facility engineering [9], public space development [2],
evacuation [10], and technology-enhanced retail [11].
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Microscopic pedestrian movement modelling has attracted much interest from com-
puter science researchers. Pedestrian movement appears complex and may even be bor-
dering on random [12]. However, it can be more fruitful to be considered as samples of
heterogenous movement patterns resulting from the diverse types of pedestrian–object
relations. In most situations, pedestrians have a functional object to pursue and can
perceive and react to different objects in the environment [13]. The notion of relation
has been proven useful in modelling pedestrian–pedestrian interactions. For example,
Zhou et al. (2021) [14] modelled different reactive movements of a pair of pedestrians
based on their relation. Sun et al. considered pedestrian–group relations in movement
prediction [15]. Yucel et al. studied the connection between movement patterns and differ-
ent types of relationships, including friends, colleagues, and couples [16]. Therefore, this
paper aims to investigate the effectiveness of the notion of pedestrian–object relations in
unlocking complex movements.

The notion of a functional object–pedestrian relation is novel in the context of pedes-
trian movement modelling. It resonates with the notions of location-of-interest (LOI),
point-of-interest (POI), or sub-location used in relevant research works to represent an
object of attraction [7,17]. The term POI is, however, more often referred to as a point of
significance in a walking space rather than an object. For example, Ikeda et al. named
the frequent points of making a turn as POIs [18]. Perhaps the most similar is the campus
objects, or analogously dark matters, studied by Xie et al. [6], which exert an attractive or
repulsive force on pedestrians. The functional object, on the other hand, can explain more
than one distinctive movement pattern. It has a rich pedestrian–object relation model for
organizing and classifying movement patterns.

1.2. Review of Relevant Research in Functional Objects

Many methods of pedestrian movement modelling have been proposed, and they can
be divided into knowledge-driven and data-driven approaches [19]. The knowledge-driven
methods exploit the rules and mechanisms from known physical, social, and personal
features and are effective for modelling simple behaviors. These models have a strong
assumption of the movement pattern and use a few hand-engineered features to describe
the movement. For example, the acceleration and velocity features can adequately describe
slowing down and stopping pedestrians [20]. Other examples include Kalman filters [21],
the hidden Markov model [22], the collision avoidance models [23], and the social force
model [24]. However, these models can become grossly inadequate when transferred to a
novel scenario. To apply the knowledge-driven approach in the pedestrian–object relation
framework, a specialized hand-crafted model is required for every relation type. Yue et al.,
Li et al., and Sun et al. [25–27] have illustrated the effort required to develop such a model.

The data-driven methods learn the rules and features from trajectory data. These
methods usually consider the trajectory of movement as a time series and use the recurrent
neural networks (RNN) and their variants to learn to predict the next locations from the
previous locations [28]. The data-driven approach has significantly eased the modelling
of specific scenarios. The approach can produce specialized models through filtering or
subsampling a training trajectory dataset or further training a general model with training
data of the desired context. For example, Xue et al. divided the training data into route
classes and used the same training architecture to obtain a route class movement model
for every route class [29]. The specialized models were found to outperform the general
movement model.

1.3. Pedestrian-Object Relation Guided Trajectory Prediction (PORTP)

An approach to develop a data-driven modelling method for the pedestrian–object
relation framework is to inform the training architecture of the relation type associated
with every trajectory sample. Before model training, the samples in the training dataset
are augmented with the relation variables using unsupervised learning. The resulting
model has the required context to encode and decode movement patterns according to the



Sensors 2023, 23, 4882 3 of 22

relation type. While this method can learn complex behaviors, the model training may be
hindered if some relation types are under-represented in the training data. For example,
if the number of users of a functional object is substantially less than the number of non-
users, then the resulting training sample and the learned features in the model will be
heavily biased.

The proposed modelling method, pedestrian–object relation guided trajectory predic-
tion (PORTP), resolves the problem by defining a range of specialized trajectory prediction
(STP) models for each pedestrian–object relation. Each model is specialized for predicting
movements associated with a functional object, an intent class, and a mode of the relation.
In the prototype implementation, the possible intents include user and non-user, and the
possible modes include cruising, approaching, and being engaged. For example, there will
be a model for explaining the users of an escalator in the approaching mode and another
model for explaining the non-users near a ticket office in the cruising mode. The method
assumes the prior collection of a training dataset of pedestrian trajectories. For training
the specialized models, the dataset is divided into a group of specialized datasets based on
unsupervised learning. The proposed method defines a classifier for predicting the relation
type of the trajectory of a pedestrian and selects the STP models accordingly. Hence, the
resulting architecture is dual level, consisting of a set of STP models on one level (including
a general model as a fallback) and a relation classifier on another level.

1.4. Contribution and Structure of the Paper

The main contribution of this paper is the dual-level architecture for modelling indi-
vidual pedestrian movement while taking into account the relation type with functional
objects. Based on the performance evaluation that will be described in this paper, the
significance of functional objects in pedestrian movement modelling is evidenced, and the
trajectory prediction accuracy of the users of functional objects have been found improved
over the modelling architectures that do not consider functional objects. The training and
evaluation of the method were set in the context of three functional objects selected from a
multi-functional center in Osaka.

The next section gives a thorough analysis on the pedestrian–object relation notion
by connecting the elements to the literature. It also describes the deep learning data-
driven techniques used to develop our proposed architecture. The paper then presents the
architecture, notes on the prototype implementation, and the training and evaluation plan.
It is followed by a report on the performance evaluation of the DTP models, the relation
classifier, and the overall movement models of the three scenarios. Based on the findings
from the evaluation, some concluding remarks, including suggestions for future research,
are finally made.

2. Characteristics of Functional Objects

The pedestrian–object relation is defined as a 3-tuple of pedestrian-intent, object-status,
and the phase of the relation, as shown in Figure 1. Each of the three aspects can find support
in the literature. The pedestrian-intent aspect specifies whether the pedestrian intends to
be a user of the object. Hidaka et al. [17], Xie et al. [6], and Kielar and Borrmann [7] studied
the connection between the intent and the target location of movement. The object-status
aspect includes the dynamic features of the function object. Examples are the dynamic
signals of a traffic light [30] and the opening status of a door [31]. Finally, the phase of the
relation is reserved for explaining the changing movement patterns that may emerge in
the interaction between pedestrians and objects. For example, Feliciani et al. identified the
changing movement patterns of pedestrians during a typical interaction with a crosswalk,
namely, moving toward a crosswalk, preparing to step onto the crosswalk, and then to
walking on the crosswalk [32].
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Figure 1. The pedestrian–object relation between a pedestrian and a functional object.

The proposed definition provides a comprehensive framework for the microscopic
modelling of pedestrian movement. Each relation type, a particular combination of the
three relation variables, corresponds to specific movement patterns. The modelling problem
can be simplified into modelling a significantly more homogeneous pedestrian movement
sample for every relation type.

2.1. Pedestrian and Functional Object Relation

The functional object is significant to pedestrian movement modelling. It specifies
the locations where users must reach to engage its function. The engaged locations are
often outside the perimeter of the object. For example, information kiosks and ticket offices
engage users at locations on the other side of the counter. The engaged locations may be
derived from the functional object’s location as external knowledge, but they are often
extracted from movement data empirically [33]. Hidaka et al. divided a recreational park
into grids and considered the ones most stayed at by pedestrians as the POI [17]. Bennewitz
et al. considered the locations where many people stopped and stayed at for some time as
intermediate destinations [34]. However, the condition for detecting the engaged locations
is dependent on the functional object. For example, it is a stop for an information kiosk,
but a constant velocity for an escalator.

Several relevant research works utilized the pedestrian–object relation in their for-
mulations. However, these prior relation models were single-aspect, compared to the
three-aspect relation defined in this work.

2.1.1. The Pedestrian-Intent Aspect

The pedestrian-intent aspect indicates how likely the functional object is to be the
destination of the pedestrian. The value can be a probability, the rank among the objects, or
a binary variable (i.e., user or non-user). Many researchers have already studied this aspect
as the topic of destination choice modelling [6,7,17].

Destination choice modelling involves choice set generation, which determines the can-
didates of functional objects [35]. The choice set can be determined by external knowledge,
empirical analysis, or a combination of the two. For example, the list of functional objects
is prior knowledge. However, when there are many functional objects and the problem
becomes too complex, the more distant objects may be ruled out. A method to reduce the
size of the list is to divide the scene into zones of analysis [36]. Another method is to select
popular functional objects using unsupervised learning of pedestrian trajectories [6,18].

2.1.2. The Object-Status Aspect

The object-status aspect indicates if the object has a significant change that may affect
its relation to all the pedestrians. It is rarely studied in the context of urban environments.
One rare example is the status of automatic doors [31], which changes the accessibility
of a walking space. Other potential statuses include engaged status and broken status.
Each functional object may have several statuses, and their values are usually linked to an
external knowledge source.
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2.1.3. The Phase-of-Relation Aspect

The phase-of-relation aspect models the phase change that may happen during the
interaction between a pedestrian and a functional object. The phase change is associated
with distinctive movement patterns. For example, an escalator user starting from some
distance from the destination goes through several phase transitions: (1) cruises in a
minimal-effort manner until the escalator is visible; (2) moves to the side where the track
entrance is located; (3) adjusts the direction and speed to align with the track; (4) steps
on the track. Figure 2 Illustrates the phase transition In a relation between a pedestrian
and the escalator. Some studies have noted phase changes in pedestrian movement. For
example, Hahm et al. noted a non-user of a shop who walks in a usual manner but then
suddenly slows down due to the attraction of the shop window [37]. Likewise, Feliciani
et al. identified several movement patterns in the phases before and during walking across
a crosswalk [32].
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Figure 2. On the left is an illustration of 3 functional objects, the engaged locations specified for these
objects, and a pedestrian, who is a user of the escalator, moving to the escalator in 4 phases. On
the right is an illustration of how the scene is divided into modelling zones, each occupied by one
functional object.

2.2. Pedestrian-Object Relation and Microscopic Movement Models

As microscopic pedestrian movement in the urban environment is inherently complex,
many researchers have proposed methods to ease the modelling task. Some effective
methods are based on considering the movement at two or more levels of abstraction. For
example, Hoogendoorn et al. proposed a three-level framework consisting of a strategic
level (i.e., activity planning), tactical level (i.e., destination choice and route choice), and op-
erational level (i.e., inertia, interaction with the environment and obstacles, and interaction
with other pedestrians) [38]. Hoogendoorn et al. also introduced a two-level framework
combining global route choice and local route choice to recover the latent self-organized
movement patterns [39]. Hidaka et al. used the top layer to model the Intent on POIs and
the bottom layer to generate the trajectories under the constraint of the destination in a
two-layer architecture [17].

The multi-layer approach has several advantages. First, the model parameters of
different abstraction levels can be optimized independently, which reduces computation
effort and improves performance [39]. Second, the multi-layer modular architecture can
support a mix-and-match of different multi-model combinations. Third, the multi-layer
architecture can facilitate the division and specialization of the model, with an upper level
as a classifier of cases and the lower level as a provider of STP models for every class
of cases [29,40].
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2.3. Route-Class Modelling (PoPPL)

The prediction of pedestrian paths by the LSTM (PoPPL) method is an advanced
example of the multi-layer architecture [28]. The top layer is a route class classifier of
trajectories, and the bottom layer comprises STP models for the route classes. The route
class is a pairing of origin and destination, each of which may be regarded as a POI
or functional object. The method assumes that the trajectories of the same route class
are homogeneous—pedestrians moving between the same origin–destination pair follow
similar paths.

The classifier and the specialized models are all data-driven and trained using a deep
neural network architecture based on long short-term memory (LSTM). LSTM is a variant
of RNN that can learn the latent long-term features in the trajectories. The same encoder–
decoder architecture was designed to train all the STP models. The training data for each
STP model were the extracted trajectories of the corresponding route class.

2.4. Destination-Driven Modelling (DDPTP)

The destination-driven pedestrian trajectory prediction (DDPTP) is also a dual-layer
architecture [41]. A significant difference from PoPPL is the use of the destination class
rather than the route class. The destination class represents the intent of an LOI and,
therefore, a step toward the pedestrian–object relation. An improved method based on
DDPTP introduced three phases of relation as a pedestrian is moving near a functional
object [40]. The three phases are engaged, approaching, and passing-by, each mapped to an
STP model for the functional object. The method divides the scene into zones, each of
which contains a functional object, and, as a consequence, splits the classification task into
classifiers of every zone. The improvements increased the prediction accuracy compared to
PoPPL and DDPTP.

2.5. Feature Learning of Pedestrian Movement Patterns

The RNN is a well-proven deep learning architecture for learning features in sequential
data. It keeps an internal state for analyzing and encoding the input sequences into implicit
features. Its superior variants, the LSTM and the gated recurrent units (GRU), are used in
practice due to the ability to analyze long sequences. For example, in pedestrian trajectory
prediction tasks, the extracted movement features can be coupled to a classifier for intent or
relation classification. The features can also be coupled to another LSTM or GRU cell for the
generation of predicted trajectories, and this configuration is known as the encoder–decoder
architecture. The role of the encoder is to learn high-level features from the input features.

The kinds of high-level features that may be extracted depending on the input features.
The time series of the absolute locations of pedestrians (based on the reference frame
of the environment) can facilitate the learning of the walking scene [42], including the
accessible locations and estimated goals [43]. The velocities of pedestrians can inform the
movement patterns, such as stopped or slow movement [28]. Some relevant proposed
methods considered other objects in the environment, such as pedestrians [44], robots [45],
and functional objects. The use of relative locations and velocities to the nearby pedestrians
is the basis of much research on social interaction in trajectory prediction. It is reasonable
to expect that the same technique is also effective in modeling the interactions with robots
and functional objects.

Reference values are essential for the semantic interpretation of many features such as
speed and direction. For example, the high-level feature of cruising requires a reference of
the usual speed of all or a subset of pedestrians. In addition, location-dependent reference
values, often represented as a heatmap, can inform interactions between pedestrians and
the environment [46]. Examples of heatmaps include the presence of stationary pedes-
trians [47] and significant waypoints (i.e., where pedestrians often change direction) [48].
In particular, the locations where many pedestrians changed their movement patterns
(e.g., suddenly stop, slow-down, or make a turn) may also be the place a function object
becoming visible [49] or attractive [50].
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3. Method

The interactions between functional objects and pedestrians are complex, making the
explanation of pedestrian trajectories challenging a challenging task. Based on the above
discussion, the intent of pedestrians, the status of functional objects, and the phase of their
interactions can help organize the trajectories into more homogeneous sets for modelling.
The result is PORTP, a pedestrian–object relation framework, that can guide more effective
data-driven modelling of pedestrian movements. Like PoPPL and DDPTP, PORTP is
a dual-layer architecture accommodating an array of STP models. PORTP is a generic
method for modelling different types of functional objects through the pedestrian–object
relation framework.

3.1. Overview of the Problem

The problem is defined as follows. Given an observed movement sequence of a pedes-
trian ending at time τ called sτ.z where sτ,z = [〈 xτ−z+1, yτ−z+1〉, · · · , 〈xτ , yτ 〉] consists of z
observations of (x, y) positions from time τ− z+ 1 to τ, the task is to predict the future z po-
sitions ŝτ+z,z = [〈 x̂τ+1, ŷτ+1〉, · · · , 〈x̂τ+z, ŷτ+z 〉]. The rudimentary deep learning method
of building the pedestrian trajectory prediction model ψ(·) : sτ,z → ŝτ+z,z involves feature
learning from S , which is a set of observed movement sequences of length 2z extracted
from the raw dataset.

In the PORTP method, the universal model ψ(·) is supplemented by the STP mod-
els 〈ψ̃1, ψ̃2, · · · , ψ̃kmax〉 where kmax is the number of instances in the pedestrian–object
relation set. The same index from 〈1, · · · , kmax〉 uniquely identifies the relation type and
its respective STP models. The pedestrian–object relation r is a 3-tuple r =

(
rint, rst, rph

)
,

where rint, rst, and rph are the pedestrian-intent, object-status, and phase-of-relation aspects,
respectively. The relation set is pre-determined based on external knowledge. PORTP uses
the pedestrian–object relation tracker γ(·) : sτ,z → r to determine the relation type of a
pedestrian movement sequence, which informs the selection of the STP model.

Figure 3 shows the proposed method in a step-by-step manner. It is assumed that a hu-
man such as an analyst has defined the modelling areas in an urban environment, obtained
relevant information on the functional objects in the areas, and collected a trajectory dataset.
The analyst then specifies the Mmax functional objects 〈 f o1, f o2, · · · , f oMmax〉 and the
relation types for every functional object, including their parameters. The engaged location
of a functional object may be calibrated using the trajectory dataset and unsupervised
learning (e.g., clustering of the locations where pedestrians stopped moving).

In the next step, the training dataset is prepared by cleansing and re-sampling the
raw trajectory dataset. Then, the samples are annotated with the ground-truth relation
type using a combination of rules and cluster analysis. After this, the feature set of the
training dataset is expanded. Several reference values and heatmaps are prepared for the
computing of four sets of input features.

The pedestrian–object relation tracker is essentially rule-based, except the intent
classifier is based on deep neural networks. The classifier is trained on the expanded
training dataset using supervised learning. Finally, the training dataset is split according to
the relation type and the functional object, and each subset is used to train a STP model.
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Figure 3. The PORTP method illustrated with the tasks in every step. The numbers in red circles
indicate the steps of the method. The arrows with a solid line indicates the dependency of the steps
and the arrows with a broken line represent information flow.

3.2. Specify the Model Parameters

Every functional object f om is defined with its location ZF, the engaged locations ZN

and the zone of control ZC, which are sets of (x, y) positions. The engaged locations may be
calibrated. Given the raw trajectory dataset and a predicate for the engaged condition, for
every position near the functional object, the number of trajectories that match the condition
can be tallied. The engaged locations can be re-defined using the more frequently visited
positions. The zones of control of function objects are assumed to be non-overlapped.

A set of relation types is also defined for every function object. There is no limit on
the classes of intents, phases, and statuses between pedestrians and a functional object.
However, of the most basic definition, the intent is either user or non-user, and the phase is
one of the engaged, approaching, and passing-by, and the status is simply undefined.

3.3. Prepare the Training Dataset and Enrich the Input Features

The intent classifier of the relation tracker γ(·) and the STP models 〈ψ̃1, ψ̃2, · · · , ψ̃kmax〉
are data-driven models. The model architecture requires a time series of a pedestrian move-
ment feature set of length 2z as the format of the input training sample. In order to learn
strong features related to the interaction between pedestrians and functional objects, the in-
put feature set includes scene-referenced movement features, object-referenced movement
features, pedestrian interaction features, and location-dependent reference values.

PORTP assumes that the source dataset contains a set of trajectory samples of sufficient
size, of which each sample is a time series of absolute positions of a pedestrian of an
arbitrary length. The training dataset is prepared by, first, subsampling every trajectory
sample into overlapping sequences of length 2z, and second, enriching the input feature
set as described below.
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3.3.1. The Scene-Referenced Movement Features

These features contain a sequence of positions sτ,z and a sequence of velocities vτ,z

derived from sτ,z. The scene is the frame of reference, and the measurements are considered
as absolute.

3.3.2. The Object-Referenced Movement Features

These features contain a sequence of positions and a sequence of velocities relative to
the functional object of the zone of control. The function location centric function π(·) maps
the scene-referenced positions to the object-referenced positions rτ,z using the location of
the functional object 〈x, y〉 f o.

rτ,z = π(sτ,z , 〈x, y〉 f o) (1)

3.3.3. The Pedestrian Interaction Features

These features represent the number of nearby pedestrians. The vicinity of the agent
is divided into an occupancy map consisting of distance-dependent zones. For the agent i
at time step τ, the neighborhood N τ is extracted as follows.

N τ = 〈〈xτ , yτ〉a | ∀a : a 6= i and 〈xτ , yτ〉a ⊂ occupancy map o f i〉 (2)

The pedestrian interaction functionOC(·) computes the pedestrian interaction features
as follows.

OC(sτ,z
i , N τ

)
(3)

Figure 4 below illustrates the occupancy map and an illustration of the features with
a scenario.
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3.3.4. The Location-Dependent Reference Values

These features represent the characteristics of the agent’s current position. To compute
these features, the following five heatmaps, which are functions of location in the scene,
are first calculated.

• MCr: the mean speed of pedestrians at the location (i.e., the cruising speed).
• MStop: the probability of a pedestrian stopped at the location.
• MSlow: the probability of a pedestrian slowed down at the location.
• MTurn: the probability of a pedestrian making a turn of 90 degrees of more.
• MUser: the probability of a pedestrian being the user of the functional object in the

same zone.

The five heatmaps are calculated from the trajectory dataset and the locations of
the function objects. Finally, the features at the agent’s position can be looked up from
the heatmaps.
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3.4. Build the Pedestrian-Object Relation Tracker

The purpose of the tracker is to determine and track the relation pri,m between a
pedestrian i and functional object m. It is called a relation tracker because the current
relation is one of the input parameters of the tracker. The other input parameters include
the trajectory sτ.z, the location and the zones of the related functional object 〈ZC,ZN ,ZF〉,
and the intent classifier ω(·). Every pedestrian is related to at most one functional object,
which can be determined by the zone of control that the pedestrian is located.

The tracking algorithm is rule-based, and an example based on the basic configuration
of the relation framework is described in Algorithm 1.

pri,m
new = γ

(
sτ,z

i , pri,m, 〈ZC,ZN ,ZF〉, ω(·)
)

(4)

Algorithm 1 Tracking of pedestrian–object relation in a zone of control

Input: The trajectory sτ.z with the latest position 〈xτ , yτ〉 of a pedestrian agent i, the current
relation pri,m with respect to the function object f om, the location and the zones of the object
〈ZC,ZN ,ZF〉, and ω(·) is the intent classifier.
Output: The updated behavior class pri,m

new

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

i 〈xτ , yτ〉 /∈ (ZC
m ∪ ZE

m): # pedestrian left the ZOC of the object
return None

if pri,m.phase == Unknown:
pri,m.phase← passing-by

if pri,m.intent == user:
if pri,m.phase == approaching and 〈xτ , yτ〉 ∈ ZN

m : # entered engaged locations
pri,m.phase← engaged

elif pri,m.phase == engaged and 〈xτ , yτ〉 /∈ ZN
m : # left engaged locations

pri,m.phase← passing-by
else:

pri,m.intent ← ω(sτ.z)m # changed intent
pri,m.phase← passing-by

elif pri,m.intent == nonuser:
pri,m.intent ← ω(sτ.z)m
if: pri,m.phase == user :

pri,m.phase← approaching
return pri,m

The Intent Classifier

While the related function object can be determined by the zone of control, and the
phase can be determined by rules based on the engaged locations and other conditions, the
intent, has to be estimated from pedestrian movement.

The network structure is specified by the following equations, in which pdintent is the
intent class’s probability distribution, FC is a fully connected neural network, FCSo f tmax

is one with a softmax layer at the output, and 〈 f SPM, f CR, f FPM
L , f LDR

L , f PI〉 are the feature
sets obtained from the pedestrian behavior encoder and the functional location induced
behavior encoder.

ω : sτ.z → pdintent = FCSo f tmax
(

FC
(

f SPM ⊕ f CR ⊕ f FPM ⊕ f LDR ⊕ f PI
))

(5)

f SPM = GRUPB(et,z) where et,z = θ
(
st,z, vt,z) (6)

f CR = FC
(

GRUCB
(
MCr(sτ,z )

)
⊕ GRUCR(vτ,z

t
))

(7)

f FPM
m = FC

(
GRUFPM(rτ,z)

)
where rτ,z = π

(
sτ,z , ZF

)
(8)
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f LDR
L = 〈MStop(〈xτ , yτ〉),MSlow(〈xτ , yτ〉), MTurn(〈xτ , yτ〉)〉 (9)

f PI
L = FC

(
GRUPI(OC(sτ,z

i , N τ
)) )

, where
N τ = 〈〈xτ , yτ〉a | ∀a : a 6= i and 〈xτ , yτ〉a ⊂ occupancy map o f i〉 (10)

The deep neural network architecture for the intent classifier is illustrated in Figure 5.
The target output is the probability distribution of the intent classes <user, non-user>. There
are two choices of the ground truth. The first one is the pedestrian ground truth, obtained
from the annotated relation as described in Section 3.1. The second one is the locational
ground truth, which is looked-up from the pre-computed heatmapMUser.
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3.5. Train the Specialized Trajectory Prediction Models

The generic STP models is based on the encoder–decoder architecture. The encoder
GRU uses the network structure described in the following equations to learn movement
features for a relation instance, where et,z is an embedded vector of the input movement
sequence computed by θ(·), f LDR

L is the set of stopping, slowing down, and turning features
as described before, and hτ and hτ−1 are the hidden states of the current and previous
training step.

hτ = GRUENC
(

et,z ⊕
(

FC
(

et,z ⊕ f LDB′
L

))
, hτ−1

)
(11)

et,z = θ
(
st,z, vt,z) (12)

f LDR
L = 〈MStop(〈xτ , yτ〉),MSlow(〈xτ , yτ〉), MTurn(〈xτ , yτ〉)〉 (13)
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The final hidden state at time τ is passed to the decoder side for the generation of
future movement based on the current position. Assuming that the network training is
completed, the next position is generated as follows.

ψ̃k : sτ,z → 〈xτ+1, yτ+1〉 = FC
(

GRUDEC(〈xτ , yτ〉, hτ)
)

(14)

hτ+1 = GRUDEC(〈xτ , yτ〉, hτ) (15)

Figure 6 shows a graphical representation of the deep learning architecture for training
generic STP models.
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To save the computational requirement of the data-driven approach, three alternative
hand-crafted STP models are used for simple movement patterns, including waiting, moving
slowly and steadily, and wandering slowly in a small area. These STP models are mainly
used for the engaged phase. For example, the waiting model can explain an engaged
pedestrian at an information kiosk.

4. Experiments and Results

PORTP has been implemented using python 3 with pytorch. Refer to the above figures
for the dimension of the two data-driven models. The optimizer is RMSprop, the learning
rate is 0.001, the dropout rate is 0.5, and the number of training epochs is 1000. The
GTX-3090 GPU has been used to support the model training.

4.1. Dataset

The experiment is based on the trajectory dataset collected by 3D range sensors
installed in and around the Asia and Pacific Trade Center (ATC) in Osaka, Japan [51]. The
ATC is a shopping center, transportation hub, and conference center rolled into one. The
scene of the dataset is a walkway connecting a railway station to a large forum; the full
dimension measures over 140 m × 60 m.

The original dataset contains 92 days’ worth of daily observations of over 10 h each
day, so a subset has been selected for the experiment. The data between 24 October 2012
and 28 October 2012, three functional objects, and their zones of control are included in the
experiment, including the ticket office and the escalator about the forum on the western
end and the information kiosk on the eastern end. After the resampling, the trajectory
length 2z = 24.

Figure 7 shows the extracted scenes near the three selected functional objects and
the training trajectory samples for each object. The locations of the functional objects are
also indicated. Much of the walking space is occupied by the trajectory samples. Most
trajectories do not touch the objects, suggesting that most samples are non-users (consistent
with Table 1). In the scenes of the information kiosk and escalator, the users’ trajectories are
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more visible as they enter the regions in red (the engaged locations). However, the users
and non-users are harder to distinguish in the scene of the ticket office.
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also indicated (in red). The unit of both axes is millimeters.

Table 1. Key statistics of the raw and the training dataset.

Information
Kiosk Ticket Office Escalator

Original Dataset
Approximated Size of the ZOC 59.25 m2 294.00 m2 400.00 m2

Average Trajectory Length (SD) 101.6 s (21.7 s) 191.2 s (39.2 s) 66.9 s (38.9 s)
Total # Trajectories/# Pedestrians 1188 9357 26,076
Annotated user 1789 70 980
Annotated non-user 10,092 9287 25,096
Average Speed of user 0.834 m/s 0.937 m/s 0.783 m/s
Average Speed of non-user 1.089 m/s 0.916 m/s 0.968 m/s
After Resampling and Annotation
Training Sample # 442,575 1,161,550 993,464
Annotated user 63,398 55,969 14,721
Annotated non-user 379,177 1,105,581 978,743

Figure 8 illustrates the densities of trajectories of the users and the non-users of
the three functional objects. For example, most non-users moved along the walkway
bordering the kiosk in the information kiosk scene. The users were mainly found next to
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the information kiosk, along the near side of the walkway, and where the brochures were
displayed (on the left). The patterns of the users of the ticket office and escalators are also
clearly visible.
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Figure 8. The density of trajectories of users ((top) row) and non-users ((bottom) row) of the three
functional objects. Red indicates high density, and blue indicates low density. The two rows of the
color-coded visualization are on different scales.

The differentiation of movement patterns between users and non-users can be minimal.
Figure 9 demonstrates this with selected samples from the dataset of the information kiosk.
Their trajectories share similarities, but they were one user and two non-users.
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𝑧
∑ ‖𝒔𝜏+𝑧.𝑧

𝑡 – �̂�𝜏+𝑧,𝑧
𝑡‖

2𝑧

𝑡=𝑧+1

 (16) 
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Figure 9. The trajectory of a user of the information kiosk is on the left, and the trajectories of two
non-users are in the center and on the right. All of them move from right to left along the cyan line.

4.2. Evaluation and Metrics

The measurements used in the experiments include the average displacement error
(ADE) and the final displacement error (FDE). The former computes the mean error over



Sensors 2023, 23, 4882 15 of 22

the entire predicted trajectory, and the latter measures the discrepancy at the final step. The
following computes the ADE and the FDE for one predicted trajectory.

ADE =
1
z

2z

∑
t=z+1

‖ sτ+z.z
t − ŝτ+z,z

t ‖ (16)

FDE =‖ sτ+z.z
2z − ŝτ+z,z

2z ‖ (17)

The performance of PORTP is evaluated using five-fold stratified cross-validation. For
the intent classifiers, the user class is augmented to overcome the representation problem of
a small class.

4.3. Quantitative Evaluation

The functional object defined in this paper is a new notion in the research area of
pedestrian trajectory prediction. PORTP is unique as a method that analyzes the movement
patterns resulting from the interaction between a pedestrian and a functional object. In
evaluating PORTP, PoPPL [32] is chosen as the baseline for the following reasons. First, both
PORTP and PoPPL address the role of the environment, specifically LOIs, in microscopic
pedestrian movement. In addition, both operate on the microscopic level in a continuous
movement space. Finally, PoPPL has achieved state-of-the-art performance and even
significantly outperformed the models that have taken social interactions into account.

The GRU-only model is based on encoder–decoder architecture, one of the baseline
models selected in many studies in pedestrian trajectory modelling. It represents the
scenario that the functional object is not part of the formulation.

Table 2 summarizes the ADE and FDE of testing the three models against three subsets
of test cases, including the whole original set, only the users, and the pedestrians near the
function object. PORTP gave the best performance in predicting users of functional objects,
outperforming the baselines significantly in all the functional objects. Among the three
functional objects, the escalator scene brought out the best performance of PORTP, which
gave better accuracies than the baselines. In the scene of the information kiosk, PORTP
performed marginally better in the all-test-cases scenario. However, PORTP did not have
any advantage over the rivals in the scene of the ticket office (except the user scenario).

Table 2. Performance comparison of PORTP, the baselines GRU only and PoPPL.

Information
Kiosk

Ticket
Office Escalator

Whole Set

GRU Only FDE (m) 0.544 0.456 0.660
ADE (m) 0.359 0.323 0.414

PoPPL FDE (m) 0.555 0.456 0.670
ADE (m) 0.369 0.326 0.410

PORTP FDE (m) 0.538 0.458 0.637
ADE (m) 0.362 0.335 0.393

Only Users

GRU Only FDE (m) 0.665 0.486 0.850
ADE (m) 0.423 0.340 0.512

PoPPL FDE (m) 0.685 0.425 0.633
ADE (m) 0.439 0.313 0.389

PORTP FDE (m) 0.644 0.398 0.591
ADE (m) 0.420 0.294 0.373

Within 3 m of the
Functional Object

GRU Only FDE (m) 0.644 0.544 0.801
ADE (m) 0.426 0.355 0.489

PoPPL FDE (m) 0.661 0.541 0.825
ADE (m) 0.440 0.361 0.485

PORTP FDE (m) 0.640 0.543 0.785
ADE (m) 0.429 0.368 0.468
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The next part of the evaluation is on the effectiveness of the principal components
in PORTP. Table 3 shows the prediction accuracy of the intent classifier. P represents the
user class, and N represents the non-user class. The baseline models include the PoPPL
classifier, of which pedestrian movement is the only input feature. With the input features
relevant to the function objects, PORTP outperformed PoPPL significantly in the scenes of
all three functional objects.

Table 3. Performance comparison of various architectures for training the intent classifier.

Information
Kiosk Ticket Office Escalator

PoPPL

Recall 0.723 0.758 0.480
Precision 0.726 0.616 0.734
F1 0.725 0.680 0.581
TN FN 13,692 570 59,248 570 38,405 1311
TP FP 1487 561 1785 1111 1211 439

PORTP

Recall 0.761 0.782 0.627
Precision 0.813 0.777 0.809
F1 0.786 0.780 0.707
TN FN 13,739 523 59,191 627 38,922 794
TP FP 1665 383 2250 646 1335 315

Table 4 compares two different ground-truth specifications used to train the intent
classifier. Again, the default of using locational ground truth gave significantly better
prediction accuracy than using the pedestrian ground truth.

Table 4. A comparison between the two targets of locational ground truth and pedestrian ground
truth for training the intent classifier.

Information Kiosk Ticket Office Escalator

PORTP
(locational ground truth,
probability distribution)

Recall 0.761 0.782 0.627
Precision 0.813 0.777 0.809
F1 0.786 0.780 0.707
TN FN 13,739 523 59,191 627 38,922 794
TP FP 1665 383 2250 646 1335 315

PORTP
(pedestrian ground
truth, binary)

Recall 0.701 0.439 0.312
Precision 0.780 0.297 0.878
F1 0.738 0.355 0.460
TN FN 13,580 682 58,717 1101 36,518 3198
TP FP 1598 450 861 2035 1448 202

Table 5 compares the accuracy of the intent classifier in three different scenarios based
on the pedestrians’ distance from the functional objects. The general observed trend is that
the prediction accuracy is higher when closer, but the changes are not the same among the
objects. The classifier for the escalator displayed the largest variations, meaning that few
learnable features could differentiate between users and non-users when they are far away
from the object.

The evaluation of the performance of the STP models is shown in Table 6. The
PORTP models, augmented with the location dependent reference values, generally gave
better ADE and FDE than the GRU encoder–decoder models. The exception scenario is
non-user, passing-by model for the ticket office. The probability of pedestrians stopping,
slowing down, and turning at a location helped improve the trajectory prediction near the
information kiosk and the escalator.
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Table 5. The performance of the intent classifier (the full architecture of PORTP and locational based
ground-truth) predicts cases at different distances from the functional objects.

Information
Kiosk Ticket Office Escalator

Far-range
(>6 m)

Recall 0.785 0.610 0.545
Precision 0.757 0.574 0.725
F1 0.771 0.591 0.622
TN FN 4776 29 42,367 389 30,528 553
TP FP 106 34 608 451 662 251

Mid-range
(3 m to 6 m)

Recall 0.795 0.677 0.619
Precision 0.755 0.748 0.873
F1 0.774 0.711 0.724
TN FN 7201 193 12,167 183 5723 186
TP FP 746 242 383 129 302 44

Near-range
(<3 m)

Recall 0.730 0.887 0.831
Precision 0.884 0.879 0.933
F1 0.799 0.883 0.880
TN FN 1762 301 4564 148 2652 74
TP FP 813 107 1164 161 365 26

Table 6. Performance comparison of the STP models.

Information
Kiosk

Ticket
Office Escalator

The non-user, passing-by model (GRU-Only) FDE (m) 0.520 0.455 0.691
ADE (m) 0.349 0.324 0.454

The non-user, passing-by model (PORTP) FDE (m) 0.509 0.459 0.674
ADE (m) 0.347 0.335 0.424

The user, approaching model (GRU-Only) FDE (m) 0.547 0.331 0.404
ADE (m) 0.374 0.273 0.290

The user, approaching model (PORTP) FDE (m) 0.522 0.305 0.395
ADE (m) 0.363 0.252 0.285

4.4. Qualitative Evaluation

Examples of predicted trajectories of selected agents who are users of functional objects
are shown in Figure 10. PORTP did well in the scenes of the information kiosk and escalator.
The kinds of characteristic movements and the locations of their appearance are consistent
with the ground truth.

The GRU-Only model’s predictions are momentum-based, and therefore most pre-
dicted trajectories are lines of tangents emerging from the observed trajectories. This
behavior is evident in the escalator scene (as shown in the top-right plot). The PoPPL’s
predictions include some characteristic movements, but the locations of their emergence
are less accurate than PORTP.

In the scene of the ticket office, all the models did poorly when the pedestrian was
further away from the object. The predicted trajectories were more consistent with those of
the non-users. The error is due to the misclassification of the intent.
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Figure 10. The comparison of the observed (ground-truth) trajectories (in cyan) and the predicted
trajectories (in blue) of the users of the three functional objects. The agent moved from right to
left in the information kiosk and ticket office scenarios. The agent moved from left to right in the
escalator scene. All the predicted trajectories originated from the same observed trajectory, but at
subsequent locations.

5. Discussion

An important finding from the results of the experiments is the significance of func-
tional objects to pedestrian movements. In general, the models that consider functional
objects can explain the nearby trajectories better than those that do not include functional
objects in the formulation. Additionally, the better models are those trained with more
homogeneous training datasets and utilized features engineered from a functional object.

The differentiation of users and non-users is pivotal to the relation modelling in the
PORTP method. The exploitation of distinguished trajectory features is important to the
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intent classification as well as the STP models. It can be seen from Figures 7 and 8 that
such distinguished features are visible in the escalator and information kiosk scenes. The
non-users appear to form a massive flow that moves past the objects at some distance. The
users in the escalator scene preferred to select the four routes that converge before entering
the engaged locations of the object. The users of the information kiosk demonstrated
unique patterns, including stopping and turning. However, the trajectories of the users
and the non-users of the ticket office are hardly differentiable.

When the scenes are examined more closely, there appears to exist a certain critical
perimeter around every functional object. Inside the perimeter, the trajectories between
users and non-users are different; outside the perimeter, the users and non-users are very
similar in how they move. For example, the perimeter of divergence lies around 3 m to
5 m from the object for the information kiosk and the escalator scenes. However, the ticket
office’s perimeter is exceptionally close to the object. In other words, there are hardly
any differences between the users and non-users in their entire trajectories, except for the
last meter.

As PORTP was designed to exploit features that differentiate different relation types,
such as the users and non-users of an object, the method is more suitable for the informa-
tion kiosk and escalator scene than the ticket office scene. The experiment results of the
intent classifiers and the ADE and FDE of trajectory predictions were found to support
this hypothesis.

In the training of the intent classifier, the use of the positional ground truth is based
on the above observation that the intent is often uncertain, and the degree of uncertainty
depends on the location. For example, the intent is often most uncertain when the pedes-
trian is outside the perimeter of divergence. The pedestrian ground truth is derived from
the evidence of engaging with the functional object in one part of the original trajectory.
However, other parts in the trajectory often lack the features that substantiate the pedes-
trian ground truth. Therefore, the models trained with positional ground truth performed
significantly better than those trained with pedestrian ground truth.

Any feature in the trajectory that represents the intent to engage a function object may
emerge at a long distance. As illustrated in Figure 9, there is a long trajectory between the
information kiosk and the location where the pedestrian turned towards the functional
object. The data-driven nature of PORTP is dependent on a training dataset that has
recorded rich pedestrian–object interactions and long observations of pedestrian movement.
Among the publicly available datasets, the ATC dataset [51] adopted in the experiment can
satisfy the requirement. The datasets of short observation spans are likely to have missed
the critical features in the trajectories for the model training. The long-term tracking of a
large number of pedestrians is costly and technically challenging, but such resources are
imperative for further research in this topic.

6. Conclusions

This study represents one of the first attempts at including functional objects in
pedestrian trajectory modelling. It suggests a definition of functional objects, and the
relation between pedestrians and objects explains the heterogeneous movement patterns
observed near functional objects in urban scenes. A method of tracking pedestrian–object
relation and, based on the relation, using specialized trajectory prediction models has been
presented. The results of the experiments indicate that the prediction models specifically
trained for functional object features are generally better than those that do not.

The findings of the experiments offer a reasonable baseline for future work. Pedes-
trians’ intent is often uncertain, especially when they are some distance from a nearby
functional object. Furthermore, the intent often changes while moving [50], or their mind
is not made up. To improve the accuracy of the intent classifier, a model or a class for
uncertain pedestrians can be considered. In addition, the trajectories of the uncertain
pedestrians may be annotated and used for training a STP model.
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