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Abstract: Gait recognition, also known as walking pattern recognition, has expressed deep interest
in the computer vision and biometrics community due to its potential to identify individuals from
a distance. It has attracted increasing attention due to its potential applications and non-invasive
nature. Since 2014, deep learning approaches have shown promising results in gait recognition by
automatically extracting features. However, recognizing gait accurately is challenging due to the
covariate factors, complexity and variability of environments, and human body representations. This
paper provides a comprehensive overview of the advancements made in this field along with the
challenges and limitations associated with deep learning methods. For that, it initially examines the
various gait datasets used in the literature review and analyzes the performance of state-of-the-art
techniques. After that, a taxonomy of deep learning methods is presented to characterize and organize
the research landscape in this field. Furthermore, the taxonomy highlights the basic limitations of
deep learning methods in the context of gait recognition. The paper is concluded by focusing on the
present challenges and suggesting several research directions to improve the performance of gait
recognition in the future.

Keywords: computer vision; biometrics; gait recognition; deep learning; gait dataset; person recognition;
covariate; pattern recognition

1. Introduction

Biometrics, a process of identification that relies on unique individual trials, has gained
significant attention in recent years due to its significant applications. It basically uses physical
or physiological activity to identify individuals and can be categorized into two areas: physical
and behavioral [1]. Physical biometrics represents the investigation of physiological traits
for identification, whereas behavioral biometrics concentrates on the study of behavioral
patterns. Both kinds of biometrics have unique benefits and can be used in conjunction
with one another to strengthen security and authentication protocols. Physical biometric
methods include approaches such as retina scanning, face recognition [2], fingerprint [3] and
iris scanning [4], while behavioral biometric methods include voice recognition [5], keystroke
recognition [6], gait recognition [7–10], and signature recognition [11].

Gait, a behavioral biometric, is a new area of research that looks at how people walk to
find out important information about them [1]. Because of this, the process is used for a lot
for things such as security, surveillance, law enforcement, health, sports, and identifying
people [12].

The different sensing modalities, such as wearable sensors, are used to obtain the gait
data from the video sequences [13]. The non-wearable system basically uses an imaging
sensor to capture gait information [14]. The process is called vision-based gait recognition.
In this paper, we have focused on the present state of the art of published literature that is
based on vision-based gait recognition, and the backbone of its functionality lies in deep
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learning techniques. This review paper aims to provide a comprehensive overview solely of
the current state of the field of gait recognition based on vision-based gait recognition, with
a focus on deep architectures and their limitations. To date, different literature reviews have
mainly focused on the two methodologies for gait recognition: model-based and model-free
processes, a model-based strategy, and a holistic approach without the use of models. In
order to make a model-based method robust to noise and occlusion, it is built on extracting
dynamic information about the human anatomy from the images and tracking changes in
these structures over time, while a holistic approach considers the complete human body’s
motion pattern. It is computationally efficient and can manage low-resolution images,
making it better suited for outdoor surveillance than model-based approaches.

There are several problems with gait recognition that can make it hard for vision-based
gait recognition systems to work [15,16]. (i) First, any variation in walking speed can affect
the gait pattern and lead to false identification. (ii) Second, gait recognition can be affected
by external factors such as footwear, carrying objects, and, clothing, which can alter the
natural gait of an individual. (iii) The presence of occlusion occurs when an object obstructs
the view of the walking person, and it can also reduce the accuracy of gait recognition.
(iv) Another limitation of gait recognition is its vulnerability to spoofing attacks. Spoofing
attacks involve creating artificial gait patterns to mimic the gait of an authorized person
and gain unauthorized access. Such attacks can be carried out by using prosthetic limbs,
walking aids, or mimicking the walking style of the authorized person. Finally, (v) the
major limitation is the effect of changing environmental factors on gait recognition accuracy.
Factors such as different lighting conditions, varying camera viewpoints, and different
walking surfaces can affect the accuracy of gait recognition. Additionally, the variability of
human gait due to factors such as age [17–19], health conditions [20], and fatigue [3] can
also affect the accuracy of gait recognition.

1.1. Gait for Person Recognition

Biometric identification says that gait recognition has a number of similar features
that set it apart from other biometric modalities. For instance, gait recognition has im-
portant advantages over other biometric systems such as face [2], fingerprint [3], and iris
recognition [4]. For example, other biometric systems need access to devices that can take
pictures; however, gait information can be collected without the subject’s help because it is
not invasive. Video sequences of gait information can be taken from a distance with low
spatial resolution. So, gait recognition can identify individuals from a distance based on
their walking style, which makes it ideal for applications where it is not possible to be close
to the individual being identified [8].

Since the gait recognition system does not require closed subject interaction with
the image sensing device, this is highly expected to apply in security and surveillance
applications. As walking is one of the main processes for mobility, it is hard for the criminal
to disguise the process during walking. In this regard, where other biometric systems are
used to identify the suspect in those situations, gait can work [7]. Gait analysis is also
used for health monitoring and rehabilitation purposes. For example, gait analysis can be
used to detect abnormalities in a person’s walking pattern that may indicate an underlying
medical condition. It can also be used to track the progress of rehabilitation after an injury
or surgery [21].

In psycho-physiological studies [7,22], it was found that a person’s sex can be guessed with
80% accuracy based on how they walk. It is also revealed that any person’s emotion [23,24],
feelings, and body weight [12] can be identified using the gait feature [21]. Most of the
time, the approaches used in gait recognition are an end-to-end model, which exclude the
preprocessing steps. That is because most of the approaches used for gait recognition learn
the human body structure from the analysis of the silhouette or skeleton. Other visual
classification issues in computer vision, however, frequently depend on texture-derived
features in addition to shape and structure data [25].
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Human activity recognition and person re-identification techniques are used to learn
representations that capture individual appearance traits that are shared across multiple
cameras, such as clothing and skin tone [26]. Instead, gait recognition techniques work
to find the right ways to represent walking patterns so that they can be separated from a
subject’s appearance and then used to classify them. When gait recognition is compared
to human activity recognition techniques [27], the goal of the latter is to find a subject’s
specific movements or actions from video sequences, which are called “macro” motion
patterns. Gait characteristics, on the other hand, can be thought of as subtle “micro”
patterns that rest on top of a particular activity class, namely walking. Therefore, it is
frequently more difficult to identify such subtle discriminative information than it is to
recognize activities. Additionally, due to the subtlety of gait patterns, which make them
distinctive to various subjects, they are frequently influenced by the subject’s current mental
state, such as fatigue [21], excitement and fear [28], and even injuries [21].

1.2. Data Extraction

To acquire the published papers appropriately from online sources, we followed a
procedure by which we searched the papers that were published from 2015 to December
2022 with the keywords “gait”, “gait biometric”, “gait recognition”, “deep learning”, “deep
algorithm”, and “neural architecture”. The papers are basically searched online at different
digital libraries and Google Scholar, mainly from IEEE Xplore, CVF Library, ACM Digital
Library, ScienceDirect, MDPI, arXiv, and SpringerLink.

After obtaining the papers through the process of forward and backward searching,
we collect the ones that satisfy the aforementioned criteria. Those papers are excluded
that are not vision-based, do not mention the new results, and do not use standard as
well as private datasets to test and compare with the other methods. The same papers in
different libraries are also excluded. The number of papers collected from different sources
is presented in Figure 1.
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Figure 1. Papers collected for review from different sources. Here, the others mention the papers
collected from different journals and conferences, especially from IET, Inderscience, Wiley, and Tailor.

According to Figure 1, the papers collected from IEEE are 45%, where journal papers
are 46%, including IEEE-T-MM, IEEE-T-PAMI, IEEE-T-CSVT, IEEE-Access, IEEE-T-IFS,
IEEE-T-IP, IEEE-T-CSVT, IEEE-T-Biom, and IEEE-T-NNLS journals. The rest of the IEEE
papers are collected from different computer vision conferences, such as IEEE-CVPR, IEEE-
ICPR, IEEE-PRCV, IEEE-ICCV, and IEEE-ICPC. Papers collected from science directories
and SpringerLink are 18% and 15%, respectively. From MDPI, 4% of papers are collected,
especially from electronics, sensors, and Applied Sci.

1.3. Background and Motivation

In the COVID-19 pandemic situation, the governments of the globe were taking action
to find the virus and stop the outbreak [29]. It required people to wear masks in order to
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stop the spread, which made it challenging to recognize individuals using the existing,
pervasive networks of CCTV cameras. In such a situation, gait analysis can be considered
an effective method to identify individuals in a non-intrusive and covert fashion, utilizing
the already installed CCTV camera network.

In the last decades, the majority of studies in the literature have been published based
on vision-based gait recognition that is camera based as opposed to sensor-based or pose-
based gait recognition [30]. The previous studies mainly focused on traditional machine
learning approaches [8]. However, at the current time, the published works clearly focus on
deep learning approaches. The main region behind this is the automatic feature extraction
process from the human body representations, i.e., the silhouette or skeleton. The process
is also effective because deep learning-based gait recognition is an end-to-end learning
process that does not need feature engineering. The number of publications published
from 2019 to 2022 based on deep and non-deep gait recognition methods is presented in
Figure 2a. From the figure, it is revealed that the research is highly focused on the deep
learning-based gait recognition method. The evaluation of the gait recognition process
from 2015 to 2022 using the deep method based on the CASIA-B dataset is presented in
Figure 2b, which is the most usable dataset for validating the proposed models. From
the figure, it is revealed that deep learning-based methods improve person recognition
accuracy with time. For instance, the best accuracy of deep methods in 2019 was 84.2%,
whereas the best accuracy shown in 2020, 2021, and 2022 was 90.4%, 98.34%, and 99.93%,
respectively. The deep learning methods used for gait recognition from 2015 to 2022 are
shown in Figure 3.
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Figure 2. Number of papers published and evaluation process: (a) the number of publications
published from 2019 to 2022 based on deep and non-deep methods, and (b) the evaluation of gait
recognition processes based on the CASIA-B dataset from 2015 to 2022, where, first deep method [31]
proposed at 2015. At 2016 proposed Gaitnet [32]. BDNGait [33], CNNGait [34] and VGRNet [35]
proposed at 2017 and 2018 respectively. At 2019 proposed DisentangledGait [36], GaitSet [37] and
PoseGait [38]. At 2020 proposed partialRNN [39], GaitPart [40], 3DCNNGait [41], HMRGait [42], and
GLN [43]. GCNGait [44], AT-GCN [45], 3DCNN [29,46] and UGaitNet [47] proposed at 2021. At 2022
proposed GCN + CNN [48], MVGait [49] and ViTGait [50].



Sensors 2023, 23, 4875 5 of 36

Sensors 2023, 23, x FOR PEER REVIEW 5 of 38 
 

 

Figure 2. Number of papers published and evaluation process: (a) the number of publications 

published from 2019 to 2022 based on deep and non-deep methods, and (b) the evaluation of gait 

recognition processes based on the CASIA-B dataset from 2015 to 2022, where, first deep method 

[31] proposed at 2015. At 2016 proposed Gaitnet [32]. BDNGait [33], CNNGait [34] and VGRNet 

[35] proposed at 2017 and 2018 respectively. At 2019 proposed DisentangledGait [36], GaitSet [37] 

and PoseGait [38]. At 2020 proposed partialRNN [39], GaitPart [40], 3DCNNGait [41], HMRGait 

[42], and GLN [43]. GCNGait [44], AT-GCN [45], 3DCNN [29,46] and UGaitNet [47] proposed at 

2021. At 2022 proposed GCN + CNN [48], MVGait [49] and ViTGait [50]. 

 

Figure 3. Deep neural architecture methods were used for gait recognition from 2015 to 2022. 

According to Figure 3, the CNN architecture used the top 45%, while 3DCNN, GAN, 

LSTM, and GNN used 8%, 6%, 3% and 11%, respectively. For the hybrid structure, CNN 

+ LSTM used 9%. Moreover, DAE + GAN, DAE + LSTM, and CNN + GCN applied 3%, 

3% and 2%, respectively. From Figure 3, it is also observed that researchers focused on 

the different deep learning methods such as CNN, LSTM, 3DCNN, DBN, GAN, DAE, 

and CapsulNet, and hybrid methods such as CNN and LSTM, DAE and GAN, DAE and 

LSTM, LSTM and CapsulNet, CNN and GRU, and CapsulNet, highly in the years 2019 

and onwards. It is also observed that after 2020, the researchers were focused on the new 

deep learning methods based on the graph, i.e., the GNN for gait recognition. The fact of 

this research migration is the updating of human body representation from silhouette to 

skeleton. After the robust development of human pose algorithms such as OpenPose [51] 

and AlphaPose [52], the skeleton body representation is robustly improved and over-

comes the problems of silhouette-based body representation in gait recognition. The 

skeleton-based body representation also improved the gait recognition process. 

The number of research studies focused on the silhouette and skeleton from 2015 to 

2022 is presented in Figure 4. Figure 4 also focuses on the robust gait recognition methods 

from 2015 to December 2022. 

Review papers [16,53–58] and [59] have been published about both vision-based and 

non-vision-based ways to recognize gait. The review papers that have been written about 

gait recognition using non-vision-based methods focus on the literature up until 2018. 

Some of the vision-based review papers [7–9] look at the literature that has been pub-

lished up until 2020. Regardless of this, deep learning has recently made a number of 

significant advancements in the field of gait recognition. To our knowledge, no surveys 

have concentrated exclusively on the deep learning approach for gait recognition since 

2021. 

0

10

20

30

40

50

60

N
o

. 
P

ap
er

s

Deep Architectures

Total

Figure 3. Deep neural architecture methods were used for gait recognition from 2015 to 2022.

According to Figure 3, the CNN architecture used the top 45%, while 3DCNN, GAN,
LSTM, and GNN used 8%, 6%, 3% and 11%, respectively. For the hybrid structure,
CNN + LSTM used 9%. Moreover, DAE + GAN, DAE + LSTM, and CNN + GCN ap-
plied 3%, 3% and 2%, respectively. From Figure 3, it is also observed that researchers
focused on the different deep learning methods such as CNN, LSTM, 3DCNN, DBN, GAN,
DAE, and CapsulNet, and hybrid methods such as CNN and LSTM, DAE and GAN, DAE
and LSTM, LSTM and CapsulNet, CNN and GRU, and CapsulNet, highly in the years
2019 and onwards. It is also observed that after 2020, the researchers were focused on
the new deep learning methods based on the graph, i.e., the GNN for gait recognition.
The fact of this research migration is the updating of human body representation from
silhouette to skeleton. After the robust development of human pose algorithms such as
OpenPose [51] and AlphaPose [52], the skeleton body representation is robustly improved
and overcomes the problems of silhouette-based body representation in gait recognition.
The skeleton-based body representation also improved the gait recognition process.

The number of research studies focused on the silhouette and skeleton from 2015 to
2022 is presented in Figure 4. Figure 4 also focuses on the robust gait recognition methods
from 2015 to December 2022.
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Review papers [16,53–58] and [59] have been published about both vision-based
and non-vision-based ways to recognize gait. The review papers that have been written
about gait recognition using non-vision-based methods focus on the literature up until
2018. Some of the vision-based review papers [7–9] look at the literature that has been
published up until 2020. Regardless of this, deep learning has recently made a number of
significant advancements in the field of gait recognition. To our knowledge, no surveys
have concentrated exclusively on the deep learning approach for gait recognition since 2021.

1.4. Contributions

The paper aims to provide a comprehensive overview of the advancements and
challenges in gait recognition using deep learning methods until December 2022. The paper
highlights the potential of gait recognition for identifying individuals based on vision-based
approaches. It acknowledges the challenges associated with recognizing gait accurately
due to the complexity and variability of environments and human body representations.
The paper presents a detailed analysis of various datasets used in the literature review and
examines the performance of state-of-the-art techniques. It provides a taxonomy of deep
learning methods to organize the research landscape and identifies the limitations of these
methods in gait recognition. Finally, the paper suggests research directions to overcome
the challenges and improve the performance of gait recognition in the future. Overall, the
paper contributes to the field of gait recognition by providing a comprehensive overview
of deep learning methods and highlighting the challenges and opportunities associated
with gait recognition.

The main contributions of this review paper are as follows:

i. The paper presents a taxonomy of deep learning methods to describe and organize the
research landscape in this field. This taxonomy can help researchers and practitioners
understand the various approaches and their limitations.

ii. The paper provides a comprehensive overview of the advancements made in the field
of gait recognition using deep learning methods.

iii. The paper acknowledges the challenges associated with recognizing gait accurately
due to the complexity and variability of environments and human body represen-
tations. It also identifies the limitations of deep learning methods in the context of
gait recognition.

iv. The paper concludes by focusing on the present challenges and suggesting a number
of research directions to improve the performance of gait recognition in the future.

1.5. Organization

The organization of this paper has been structured to provide a comprehensive review
of gait recognition research. In Section 2, the dataset used in the present state-of-the-art
literature is described, which includes information on data collection and the properties of
the dataset. Next, a taxonomy of gait recognition methods is presented, which includes an
overview of different approaches and techniques used in gait recognition. Trends in gait
recognition research are analyzed, and the performance of different methods is evaluated
and compared in Section 4. Additionally, the limitations and challenges of gait recognition
are discussed in Section 5. After that, research problems and challenges in gait recognition
are identified. Finally, the main findings of the paper are summarized, and a list of potential
future research directions is presented.

2. Datasets

Gait recognition has become a popular way to identify people because it is non-
invasive and can work from a long distance. In the past, different datasets have been
used to test how well gait recognition algorithms work. These datasets are limited in
different ways, such as by the way people look, how they are seen from different angles,
and how the environment is. For training, deep structured methods need large datasets
with samples, numbers, and environmental conditions that are spread out. In the data
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preparation process, we have to face two basic problems. One of them is, we have to
capture the video or image sequences of an individual during a number of movements
within the gait cycle. Another problem is the ethical and privacy issues in public or private
spaces for each individual. In this section, we provide a detailed description of the datasets
used in gait recognition research. The summary of the datasets that are rapidly used in the
different published papers described in this section is presented in Table 1. From Table 1,
it is observed that the sequences and view angles of the entire dataset are not the same.
The highest view angle datasets are CASIA-B [33], OU-MVLP [60], CASIA-E [61], and
OU-ISIR MV [62], and the highest sequence datasets are OU-MVLP [60], OU-ISIR [63,64],
and OU-ISIR LP Bag [65].

Table 1. The summary of the available datasets for gait recognition.

Name of Dataset Presentation: Subject/Sequences: Environment: Views Covariates

CASIA-A [66] RGB: 20/240: Outdoor: 3 Walking in normal
CASIA-B [33] RGB; Silhouette: 124/13,680: Indoor: 11 Walking: Normal; Carrying—a Bag; Wearing—a Coat
CASIA-C [67] Infrared; Silhouette: 153/1530: Outdoor: 1 Three Walking Speed; Carrying—a Bag

CASIA-E [61,68] Silhouette: 1014/Undisclosed: Indoor and Outdoor: 15 Three Scenes; Walk-Normal; Carrying—a Bag;
Wearing—a Coat

OU-ISIR [64] Silhouette: 4007/31,368: Outdoor: 4 Walk-Normal
OU-ISIR LP Bag [65] Silhouette: 62,528/187,584: Indoor: 1 Carried Objects—7 variations

OU-ISIRMV [62] Silhouette: 168/4200: Indoor: 25 View—24azimuthviewsandTopview—1
OU-ISIR Speed [69] Silhouette: 34/306: Indoor: 4 walking speeds—Nine

OU-ISIR Clothing [70] Silhouette: 68/2746: Indoor: 4 Clothing—up to 32 combinations
OU-MVLP [60] Silhouette; Skeleton: 10,307/259,013: Indoor: 14 Walk-Normal

OU-MVLP Pose [71] Skeleton: 10,307/259,013: Indoor: 14 Walk-Normal
TUM GAID [72] RGB; Depth; Audio: 305/3737: Indoor: 1 Walk-Normal; Backpack; Wearing coat with shoes

2.1. CASIA-A

CASIA-A [66] is a well-known gait recognition dataset made up of data from 20 people
walking in a straight line outside. The dataset was recorded with three cameras placed
at angles of 0◦, 45◦, and 90◦. On average, each sequence has 90 frames. For each subject,
there are sequences from all three cameras on the training set. The testing set, on the other
hand, only has one sequence for each subject that one of the cameras captured. The dataset
includes videos captured from different viewpoints, including frontal (0◦), lateral (45◦),
and side (90◦), resulting in various poses and walking styles for each viewpoint. Each
sequence captures the gait of a single individual, and the sequences have varying lengths,
ranging from 4 to 12 s. To evaluate the models’ cross-view recognition performance, the
dataset uses a cross-view test protocol, where one camera’s sequence is used for testing
and the other two cameras’ sequences are used for training. This protocol ensures that the
trained model can recognize individuals from different viewpoints, making it relevant to
real-world applications.

2.2. CASIA-B

The dataset known as CASIA-B [33] is extensively utilized for gait recognition and
features multi-view gait data for 124 individuals in both silhouette and RGB forms. The
data were collected from 11 different viewing angles, with 18◦ increments, covering a range
of 0◦ to 180◦. It includes three distinct walking conditions—normal walking (NM), walking
with a coat (CL), and walking with a bag (BG)—with six, two, and two gait sequences per
individual per view, respectively. For the CASIA-B dataset, in the training phase, we utilize
the 74 individuals, and the rest of the samples are used during the testing phase.

2.3. CASIA-C

Infrared and silhouette data from 153 different subjects, taken under varying night-
time lighting circumstances, are included in the CASIA-C dataset [67]. The dataset contains
sequences where the subject is carrying a bag (BW) as well as three different walking
speeds: slow (SW), normal (NW), and fast (FW) walking. Per individual, there are 2 FW,
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2 SW, 4 NW, and 2 BW sequences. The evaluation process includes exams to identify
cross-speed walkers.

2.4. CASIA-E

The CASIA-E [61,68] dataset was published in 2020 and used in the published paper
last year. It consists of the silhouettes of 1014 individuals with three different scenar-
ios: simple, complex, and complex dynamic backgrounds. Here, for each individual, we
provide 100 sequences and three walking variations. The walking variations are normal
(NM), wearing coat (CL), and carrying a bag (BG). This dataset was prepared based on the
fifteen view angles, including thirteen horizontal views focusing from 0 to 180 degrees with
15-degree intervals. The dataset also includes the two vertical views that were captured at
1.2 and 3.5 m, respectively.

2.5. OU-ISIR

The OU-ISIR dataset [63,64] includes images of 4007 subjects’ gaits taken by two cam-
eras at angles of 55◦, 65◦, 75◦, and 85◦. The subjects’ ages range from 1 to 94. In the world
coordinate system, each angle corresponds to the y-axis of the camera’s line of sight (parallel
to the walking direction). Each camera angle has a designated bin, and each subject is put
in the bin of the camera that caught them. Each subject’s silhouette or GEI features are
size-normalized in the collection.

2.6. OU-ISIR LP Bag

The OU-ISIR Bag [65] comes from videos of 62,528 people who were inside and carry-
ing things when they were caught on camera. Each individual has three sequences—two
with and one without a carried item. For training, the dataset contains 29,097 individuals
for both sequences with and without carrying objects. The remaining 29,102 disconnected
subjects are part of the test group. For splitting the test data into the probe and gallery, two
methods are used: one for cooperative situations and the other for uncooperative ones. The
probe set considers seven different carrying objects, whereas the gallery set considers no
carrying objects. Both sets are created randomly in an uncooperative way.

2.7. OU-ISIR MV

The OU-ISIR MV dataset [62] is a gait dataset with silhouettes of gaits from 168 individuals.
Individuals’ ages ranged from 4 to 75, and there were almost equally many male and female
subjects. The gait data collection contains measurements made from a number of angles,
including 24 azimuth views and 1 top view. Cross-view testing methods have made
extensive use of the dataset.

2.8. OU-ISIR Speed

The OU-ISIR Speed dataset [69] provides a special collection of gait silhouettes from
34 individuals that are perfect for testing how well gait identification algorithms stand up
to various walking speeds. The dataset contains nine different speeds, with an interval
of 1 km/h and a range of 2 to 11 km/h. The dataset is a crucial resource for creating and
testing new gait recognition algorithms because it uses cross-speed tests to assess how well
recognition techniques perform at various speeds.

2.9. OU-ISIR Clothing

A special gait dataset, the OU-ISIR Clothing dataset [70], records the gait sequences of
68 subjects wearing up to 32 different kinds of clothing. The dataset was collected inside at
two different times on the same day, so the background and lighting were different each
time. The dataset has a subject-independent test procedure that separates the data into
training, testing, and probe sets. This makes it easier to test how well gait recognition
methods work with different types of clothing. In order for the gait recognition techniques
to be tested well in hard situations, the testing and probe sets are made to cover every
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possible combination of clothing and environment. In conclusion, the OU-ISIR Clothing
dataset is a very useful tool for researchers who want to figure out how people walk in
different clothes.

2.10. OU-MVLP

A large sample size dataset [60], i.e., 259,013 was used for the gait recognition, effec-
tively reducing the overfitting problem that occurs for small samples. This dataset consists
of 10,307 individuals with ages ranging from 2 to 87, who are captured from 14 angles. In
this dataset, seven cameras are used with an interval of fifteen degrees ranging from 0 to
90 and 180 to 270 degrees. In these intervals, 28 images are captured for each individual.
For training and testing purposes, 5153 and 5154 individuals are provided, respectively.
Recent published papers consider only four view angles: 0, 30, 60, and 90 degrees, or all
view angles.

2.11. OUMVLP-Pose

The skeleton-based dataset is created from the OU-MVLP using the two pre-trained
human pose estimator algorithms, OpenPose [51] and AlphaPose [52]. The dataset contains
information about 10,307 individuals captured from 7 cameras with 14 view angles at an
interval of 15 degrees. Each individual gait sequence contains an average of 25 frames. For
training and testing purposes, 5153 and 5154 individuals are provided, respectively.

2.12. TUM GAID

The TUM GAID dataset [72] is a comprehensive gait dataset made up of RGB, depth,
and audio data that were recorded from 305 individuals. The dataset was collected from
a subset of 32 people at two separate times in the winter and summer when they were
outside. The dataset contains ten sequences for each subject and involves walking normally
(N), carrying a backpack (B), and wearing temporary shoe covers (S). The original authors
divided the data into training, validation, and test sets and gave a test protocol for the
dataset. This dataset is frequently used by researchers to conduct recognition experiments
that concentrate on the N, B, and S gait variations.

3. Taxonomy

In this section, a taxonomy is used to show a review structure based on deep learning
methods. The taxonomy gives an overview of how deep learning is used in different
publications and for different lengths of time. Many taxonomies have been proposed in the
previous review papers; however, different published papers present different perspectives,
such as in [73], where authors explain the taxonomy based on the categories of sensor,
covariate factor, and classifier. A feature-based taxonomy is presented in [74]. Another
taxonomy based on environmental issues, environmental lighting sources, imaging cameras,
and individual appearance is presented in [75]. In [8], the authors proposed a taxonomy
that highlights the different classifiers, such as deep learning-based and traditional-based.
Finally, in [9], there is a proposed taxonomy that is separated into four parts. The parts are
body representation, temporal representation, feature representation, and neural structure.
This paper draws inspiration from [9] and proposes a taxonomy of deep learning techniques
to describe and arrange the research landscape in this area. This paper also identifies
the limitations of these methods in gait recognition and provides research directions to
overcome the challenges and improve the performance of gait recognition in the future.

In the process of gait recognition, different deep learning methods use different deep
architectures, such as convolutional neural networks (CNNs) [31], long short-term mem-
ory (LSTM) [22], 3DCNN [76], Deep Belief Network (DBN) [77], Generative Adversarial
Network (GAN) [78,79], Deep Auto Encoder (DAE) [80], capsule networks (CapsNets) [81],
graph neural network (GNN) [82], and different hybrid methods, to automatically ex-
tract features from the shapes of the human body. Some of the literature uses differ-
ent deep architectures together to extract efficient features, including CNN + RNN [83],
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DAE + GAN [74,84], DAE + RNN [36,85], RNN + CapsNet [81], and CNN + GNN [48,86].
The published papers basically present the body shape in two different ways: one is
appearance-based, which is the silhouette, and another is pose-based, which is the skele-
ton: the 2D or 3D body joint representation [87].

Based on the aforementioned concept, the proposed taxonomy is split into two main
groups: uniform deep architecture and hybrid deep architecture. Each category is further
divided into two parts that are the two ways the human body shape is represented, i.e.,
silhouette and skeleton. The deep learning architecture’s performance and limitations are
focused on the human body’s shape. For example, the appearance-based representations
have state-of-the-art limitations such as silhouette images that create some disparity prob-
lems for a person’s covariate factors and viewpoint changes that degrade the performance
of the gait recognition. However, skeleton-based human body shape representation recov-
ers these issues and improves the performance of the gait recognition process with deep
architectures. Furthermore, much of the deep learning-based architecture has limitations
for skeleton-based body representation. All of these will be mentioned and explained in
the following sections. The representation of the proposed taxonomy is shown in Figure 5.
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3.1. Uniform Deep Architecture

Uniform deep architectures are the single deep architectures used uniformly to extract
the abstract features from the gait-based body representations, such as a silhouette or
skeleton, to identify the gait steps in the gait cycle. Since 2015, different deep neural
architectures have been utilized in the field of gait recognition and have achieved significant
improvements in this field. The deep architectures utilized in the different publications
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that contribute to improving the performance of gait recognition based on camera vision
are explained here.

3.1.1. Convolutional Neural Network (CNN)

Deep learning algorithms known as convolutional neural networks (CNNs) [82] are
frequently used for feature extraction in computer vision tasks, including gait recogni-
tion [88–92]. CNN performs the convolved operation on images to extract the abstract
features from the spatial dimension in a hierarchical manner [93]. In gait recognition,
CNN-type models are utilized to embed the silhouette or skeleton body shape or structure
in the spatial feature space.

CNN works best when it is set up in the best way, which is a mix of convolutional,
pooling, and fully connected layers. CNNs work by applying a set of learnable filters, also
called kernels or weights, to the input data in a sliding window fashion. These filters are
made to find certain patterns or parts in any structure, such as the shape of a body. They
also include activation functions such as ReLU [94] or Tanh [95] to increase non-linearity.
Pooling layers use non-linear down-sampling strategies, such as average or maximum
pooling, to reduce the spatial size of the feature maps and decrease network complexity.
Finally, fully connected layers transform the resulting two-dimensional feature maps into
one-dimensional vectors for further processing.

By analyzing the present CNN methods published in the different publications, it is ob-
served that researchers utilized the shallow neural network, whereas different applications
utilized the deep neural network for improving performance. For a better understand-
ing of the scenarios and why researchers utilized the shallow neural network, here, we
summarize some of the CNN architectures published in different publications based on
the convolutional layer, pooling layer, and fully connected layers. The input dimension is
also considered in the summarization. In this summarization, we only consider the CNN
structure, ignoring the other embedded architectures such as the method with CNN and
LSTM. The summary is presented in Table 2 [39].

Table 2. A summary of CNN architectures published in different publications for gait recognition.

Models Input Dimension Total Layer Conv. Layer Pooling Layer Fully Connected Layer

PF-Gait [96] 64 × 64 7 3 2 2
Gait-Part [97] 64 × 64 9 6 2 1
GEI-Gait [98] 120 × 120 11 5 4 2
Pose-Gait [99] 64 × 64 6 3 2 1
GaitSET [100] 64 × 64 5 3 2 1
MA-GAIT [31] 124 × 124 8 3 3 2

GEINet [32] 88 × 128 6 2 2 2
Ensem.-CNNs [34] 128 × 128 7 3 2 2

Gait-joint [101] 64 × 64 16 12 2 2
MGANs [102] 64 × 64 8 4 1 3
EV-Gait [103] 128 × 128 9 6 0 2
Gait-Set [37] 64 × 64 9 6 2 1

Caps-Gait [104] 64 × 64 9 6 2 1
SMPL [40] 64 × 64 5 3 1 1

Gait-RNNPart [39] 64 × 64 9 6 2 1

From Table 2, it is revealed that the highest range of layers is from six to sixteen.
However, if we carefully look at Table 2, it is observed that the significant CNN models
have six to ten layers in combination. The input dimensions of the CNN models are
64 × 64, 88 × 128, 120 × 120, and 128 × 128. In [97], the Gait-Part model shows significant
improvement for the CASIA-B dataset with an accuracy of 96.70%. This model just uses nine
layers, and the input dimension is 64 × 64. In [34], Ensem-CNNs justified the performance
of the CNN models for the different input dimensions and with the same layers. From
the literature, it is observed that the 64 × 64 input dimension shows improved results.
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The reason behind that is that the higher-dimension input models need more layers for
extracting significant features. As a result, the 64 × 64 input dimensions are widely used to
reduce computational complexity.

The main reason to use the lower layers in the CNN model is the end-to-end model.
In the gait recognition process, we fit the silhouette or skeleton image into the CNN model.
From there, the CNN models can extract the features of gait, body shape, and steps features
effectively. As the absolute human body shape is used in the CNN model, no preprocessing
is required here. As a result, the model is going to be simplified and can represent the
significant features of the human body shape, such as a silhouette or skeleton.

3.1.2. Generative Adversarial Networks (GAN)

Generative adversarial networks (GANs) are a type of deep learning algorithm made
up of two neural networks: a generator and a discriminator [79]. The generator makes fake
samples that look like the real data, and the discriminator learns to tell the difference between
the real and fake samples. Through this adversarial process, both networks learn and improve
their abilities to generate and distinguish between real and fake samples [78,105].

GANs have been recently applied to gait recognition [40,74,102,106–109], where they
are used to generate synthetic gait data to augment the training dataset. This is particularly
useful when the available dataset is small or imbalanced, as GANs can generate diverse
and realistic synthetic data to balance the dataset. In addition, GANs can also be used
to generate data from different viewpoints or under different conditions, allowing for
better generalization of the model. In this regard, GAN is applied in the gait recognition
process, where body representation is a silhouette. As GAN has the ability to handle
viewpoint changes and manage the disparity between the different human appearance
representations, it would be a suitable choice for gait recognition.

However, there are also limitations to using GANs for gait recognition. One of the
main challenges is the quality of the generated data, which may not always be realistic or
diverse enough to improve the model’s performance. In addition, GANs require a large
amount of computational resources and may be difficult to train and fine-tune for optimal
performance. Nonetheless, GANs have shown promise in improving the performance of
gait recognition models and are an area of active research.

In the recently published papers, different GAN architectures are utilized for gait
recognition [40,77,79,102,104–109]. One of them is MGGAN [102], which is the multi-
task GAN focus for overcoming the limitation of cross-view gait recognition in different
environmental conditions. Here, CNN architecture is applied to extract the human view of
specific body representation features in the spatial space; after that, one view to another is
transformed using a transform layer, and the process learns the temporal information of
gait steps. The network is learned by pixel-wise loss and multi-task adversarial techniques.
Another GAN-based method, namely DIGGAN [74], is used for gait recognition. Here,
the GEI is transferred to a different perspective to identify the gait information. For that,
two discriminators are utilized. TSGAN [106] is proposed for gait recognition with cross-
view angles. The TSGAN is used here to change the perspective of the GEI’s temporal
viewpoints. The two streams of GAN learn the temporal and spatial features from the
GEI automatically.

3.1.3. Deep Belief Networks (DBN)

Deep Belief Networks (DBNs) have also been used for gait recognition. In a study [77],
a DBN was trained to learn a hierarchical representation of gait features, which was
subsequently used to identify individuals from gait sequences. The DBN was composed of
a stack of Restricted Boltzmann Machines (RBMs) [81], which were trained in a layer-wise
manner to learn increasingly complex representations of the gait data. The resulting deep
features were then fed into a classifier for person recognition.

DBNs are better than traditional shallow networks because they can learn more
abstract and complex representations of data [110]. This may be helpful for gait recognition,
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where it can be hard to pick up on small differences between people’s steps. However, DBNs
require more data and computational resources for training than shallow networks, and
they may also suffer from issues such as vanishing gradients during training. Many DBNs
are utilized for person identification using gait [110,111]. The research presented in [110]
focused on extracting fitting body parameters and shape features from the silhouette. These
features were then learned by Deep Belief Networks (DBNs) to extract more discriminative
gait features. Similarly, in [111], gait was represented as motion and spatial components,
which were then used to train two separate DBNs. Finally, the extracted features from each
DBN were concatenated to form the final feature representation for gait recognition.

3.1.4. Capsule Networks (CapsNets)

Capsule networks (CapsNets) are a relatively new type of neural network that has
shown promise for many computer vision tasks, including gait recognition [112–114]. In a
paper [81], Hinton et al. introduced CapsNets. In CapsNets, the basic processing unit is
called a capsule, which can be thought of as a group of neurons that represent a specific
instantiation parameter, such as pose or deformation. Capsules are organized in layers,
and each layer can be thought of as a set of capsules that vote to determine the properties
of higher-level capsules in the next layer. In gait recognition, CapsNets have been explored
as an alternative to CNN-based approaches. One advantage of CapsNets is that they can
capture the spatial relationships between different parts of a silhouette or skeleton image,
which can be useful for recognizing complex patterns such as gait [81,112].

CapsNets have been applied to gait recognition in various ways. For example, Cap-
sNets were used to learn the spatial relationships between body parts in gait videos. More-
over, a CapsNet was trained to learn the 3D structure of the human body from RGB-D data
and use this information for gait recognition. Compared to traditional CNNs, CapsNets
have shown advantages in dealing with viewpoint changes and data variability, and they
have the potential to capture richer spatial relationships between body parts. However, the
high computational cost of CapsNets remains a limitation for real-time applications [115].
However, one limitation of CapsNets is that they can be computationally expensive and
may require more training data compared to CNNs. Additionally, the interpretability of
CapsNets can be challenging, as the outputs are represented as vectors of probabilities
rather than feature maps. The benefits of CapsNets are adopted for recognizing individuals
based on the gait analysis [112–114]. In [112], we proposed a method to recognize a person
based on gait. For that, initially, we apply the CNN to the GEI to extract the properties of
templates. After that, the dynamic routing of the CapsNet is applied to retain the temporal
information between the templates and extract robust spatial–temporal features. In [113],
we proposed a method to focus on extracting discriminative features from the GEI image
with different covariate factors. Here, two capsule networks are utilized. The first one is
used for extracting the bottom layer’s features by matching with another capsule network.
A second capsule network is used to extract the features from the middle layers. This
method shows effectiveness for cross-view angles, cross-walks, and clothing. In [114], the
researchers present another capsule network for gait recognition where a pair of GEIs is
used. Here, the gait features are extracted using the CNN and provide an effective output
feature by using the similarity of the image pair through the capsule network.

3.1.5. Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) [116] are a type of neural network architecture
that can process sequential data by retaining information in its hidden state. RNNs have
been used for gait recognition as well, where the sequence of gait data is fed into the
network and the hidden state of the network is updated at each time step based on the
current input and the previous hidden state. The hidden state thus retains information
about the previous inputs in the sequence and allows the network to learn temporal
dependencies between different frames.
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In gait recognition, RNNs have been used to process different types of gait data,
such as silhouette, joint angles, and acceleration signals [15,60,78,102,111,117,118]. For
example, an RNN can be used to process the silhouettes of different gait cycles, and the
learned features are then used for classification. Moreover, an RNN can also be used to
process joint angles of different gait cycles, and the learned features were used for gender
classification [87,119]. It can be used to process acceleration signals from wearable sensors,
and the learned features are used for activity recognition. RNNs have the advantage of
being able to capture long-term temporal dependencies in the gait data, making them
suitable for tasks such as activity recognition or gait analysis over a longer time span. One
limitation of using RNNs for gait recognition is that they can suffer from the vanishing
gradient problem, which can make it difficult to learn long-term dependencies [15,120].
Additionally, RNNs can be computationally expensive, making them less suitable for
real-time applications.

For overcoming these problems, different structural LSTM [111] and GRU [15] are
used. These are the ways the RNN process can maintain the relationship among the gait
sequences with memory and learnable function. The LSTM network [22] uses cells that
have a shared cell state to hold long-term dependencies using input and forget gates all the
way down the chain of LSTM cells. These gates give the network the ability to determine
when to discard the previous state or add new data to the current state. An output gate
controls each cell’s secret state, or output, which is calculated based on the most recent cell
state. On the other hand, unlike the LSTM, the GRU [15,121] is a kind of RNN that does
not employ the output activation functions. It has an update gate that allows the network
to modify its present state in response to fresh data. The output of the gate, also referred to
as the reset gate, only keeps links with the cell input.

RNNs can be used in one of three ways to recognize gaits. The first way, which is
typical for skeleton representations and is shown in Figure 6a, is to use RNNs to learn
from how the locations of joints change over time. RNNs are combined with other neural
architectures, especially CNNs, in the second method (illustrated in Figure 6b) [15,118],
which will be covered in more detail in the hybrid section, to learn both spatial and temporal
information. The third strategy—adopted lately in studies such as [39] and [115]—involves
using RNNs to repeatedly learn the connections between partial representations drawn
from a single gait template, such as GCEM [39].
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representations in gait templates, (b) CNNs and RNNs are merged, and (c) RNNs directly learn from
the movement of joint positions [9].

3.1.6. Three-Dimensional Convolutional Neural Networks (3DCNN)

Three-dimensional convolutional neural networks (3DCNNs) have been recently
applied to gait recognition due to their ability to capture both spatial and temporal feature
information over the full gait cycle [41,76,117,122–124]. In 3DCNNs, the convolutions are
performed along the spatial as well as the temporal dimensions, which enable them to
learn spatiotemporal patterns directly from video sequences [29]. The process is more
robust for vision-based viewpoint changes and disparity issues in the subject’s appearances.
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One of the challenges of using 3DCNNs for gait recognition is the high dimensionality of
the input data, which requires significant computational resources. However, this issue
can be addressed by using techniques such as early fusion, in which spatial and temporal
information are combined before feeding the data into the network. Another limitation
of 3DCNN is its inflexibility in processing varying-length sequences for gait detection.
These limitations are addressed in [41]. The problem is overcome by introducing the hybrid
3DCNN for integrating temporal discriminative features on different scales. In [76], a
research study suggested 3DCNN architecture for recognizing gaits. The network had two
completely connected layers, 13 3D convolution filters, and pooling layers. The standard
3D pooling layer was changed in another approach described in [124]. The process is
accomplished by combining global and partial 3D convolutional layers with local clips to
aggregate temporal information.

3.1.7. Deep Auto Encoders

Deep Auto Encoders are a type of neural network architecture that has been used for
gait recognition [80,125,126]. The process involves training the network to encode input
gait data, such as images or motion sequences, into a lower-dimensional representation
or code. This code can then be used as a feature for classification or clustering tasks. It is
basically an encoder–decoder process, where the encoder represents the bottleneck feature
in latent space and the decoder represents the original input data through the opposite
operation, which is the stack of convolutional layers.

One of the advantages of using Deep Auto Encoders for gait recognition is that they
can learn useful and discriminative features without requiring labeled data. This can be
particularly useful in scenarios where obtaining labeled data is challenging or expensive.
Additionally, the lower-dimensional representation learned by the network can often be
more robust to variations in the input data, such as changes in clothing or lighting [126].
However, Deep Auto Encoders also have some limitations when used for gait recognition.
For example, the quality of the learned features can be highly dependent on the architecture
and hyper-parameters of the network as well as the quality and quantity of the training
data. Additionally, they may not be as effective at capturing the temporal dynamics of gait
as other types of neural networks, such as RNNs or 3DCNNs. Some DAE methods are
used for gait recognition [60,80,125,126]. According to the process presented in [125], latent
features are estimated using the DAE architecture through the four consecutive convolution
layers. To reverse the convolutional input, four de-convolutional layers are utilized. To
extract the robust gait feature from DAE, seven linked convolutional layers are used in [80].
Another method used by Google LeNet is the inception module [60]. Here, in the decoder,
the multi-scale discriminative and covariate features are estimated. These features then fit
into the decoder with de-convolutional layers to recreate the temporal template.

3.1.8. Graph Convolutional Networks

Graph Convolutional Networks (GCNs) [82] are a type of neural networks that are
designed to work with graph-structured data. In the context of gait recognition, the
human skeleton can be represented as a graph, where joints correspond to nodes and the
connections between them correspond to edges. One of the advantages of using GCNs for
gait recognition is their ability to model the spatial relationships between the joints in the
skeleton. They can also take temporal information into account by processing sequences of
graphs. This makes GCNs a suitable choice for recognizing gaits with varying speeds and
styles [49,127,128].

However, a limitation of GCNs is that they require the graph structure to be known
in advance. This can be problematic in scenarios where the data are noisy or incomplete.
Another limitation is that GCNs may not perform well when dealing with large graphs, as
the computation and memory requirements can become prohibitively high [44,129].

Despite these problems, GCNs have shown promise for recognizing gait, with a
number of studies showing state-of-the-art performance on benchmark datasets. The GCN
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methods are used to overcome the limitations of silhouette-based body representations.
Several methods are used starting in 2019, when the human pose estimation process is
performed robustly. As such, the literature [104] builds a spatiotemporal graph from the
viewable video frames in order to extract gait characteristics. Using a joint relationship
learning method, the features are mapped onto a more discriminative subspace with respect
to the human body structure and walking behavior.

3.2. Hybrid Deep Architecture

Hybrid networks for gait recognition use different kinds of neural networks to do gait
recognition tasks better. By taking advantage of the best parts of different neural network
architectures, hybrid networks can navigate around some of the problems with single
networks and make gait recognition more reliable and accurate.

Combining CNN and RNN architectures is an example of a hybrid network used for
gait recognition. CNNs are good at learning spatial features from image data, while RNNs
are great at figuring out how events in a sequence depend on each other in time [83]. By
combining the two, the hybrid network can learn both spatial and temporal features for gait
recognition. Another instance is that by combining a DAE network and CNN architecture,
the DAE network extracts bottleneck features from the input gait data, which are then used
as input to the CNN. The CNN then learns spatial features from the bottleneck features
extracted by the DAE network. Hybrid networks for gait recognition can offer several
advantages, such as improved performance, better generalization to different conditions,
and more robust feature extraction. However, designing and training hybrid networks can
be more complex and time consuming than individual networks, and the resulting network
architecture may be more difficult to interpret.

For improving the accuracy and overcoming the limitation of uniform architecture,
several hybrid deep architectures are utilized for recognizing the person using gait analysis.
The hybrid deep structures are: CNN + RNN (CNN + LSTM; CNN + GRU), DAE + GAN,
DAE + RNN (DAE + LSTM), RNN + CapsNet (CNN + GRU + CapsNet; LSTM + CapsNet),
and CNN + GNN.

3.2.1. CNN + RNN:CNN + LSTM and CNN + GRU

CNN + RNN hybrid networks have shown promising results in gait recognition tasks
by leveraging both spatial and temporal information [130]. The convolutional layers extract
spatial features from each frame of the gait sequence, while the recurrent layers process the
temporal dependencies between frames. The CNN + LSTM network is proposed for gait
recognition, where the CNN layers extract spatial features from each frame of the gait se-
quence and the LSTM (long short-term memory) layer captures the temporal dependencies
between frames [131]. The final output of the network was fed into a fully connected layer
for classification. The CNN + GRU network is proposed, where the CNN layers extract
spatial features and the GRU layer processes temporal dependencies [39]. The output of
the GRU (gated recurrent unit) layer was fed into a fully connected layer for classifica-
tion. Overall, the combination of CNN and RNN allows for better feature extraction and
modeling of temporal dependencies, resulting in improved gait recognition performance.

LSTM and GRU are commonly used instead of traditional RNNs for gait recognition
because they can better handle the problem of vanishing gradients that is common in
training RNNs [39]. The vanishing gradients problem happens when the gradients used to
update the weights in back-propagation become very small. This makes the network learn
slowly or not at all. LSTM and GRU networks, which use gates to regulate information
flow through the network, provide a solution for this issue. These gates give the network
the ability to choose what information to remember or forget over time. This lets them
model long-term dependencies in the input sequence. This is especially helpful for gait
recognition because it lets the network see the temporal patterns and dependencies in the
gait data over time. This makes recognition more accurate.
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A deep gait detection system is proposed in [83] that utilizes LSTM and eight distinct
CNN architectures to extract spatiotemporal features from image sequences. Another
method based on silhouette is proposed in [130], where the silhouette image is divided into
four horizontal parts. Then, each part is fed to a separate CNN with ten layers. The output
of frame-level attention ratings for each sequence of CNN features was then produced by an
attention-based LSTM. The final step was to multiply the CNN features by their respective
weights in order to concentrate only on the key frames for gait recognition. In [39], an eight-
layer CNN was used to train convolutional maps from gait frames. The GCEM templates
were created by combining the convolutional maps and splitting them into horizontal
segments. An alert bi-directional GRU learned these incomplete features (horizontal bins)
in order to take advantage of the relationships between these embedding components.

3.2.2. DAE + GAN

Deep Auto Encoder (DAE) and Generative Adversarial Networks (GANs) have been
used together for gait recognition in some recent works [74,84,109,132]. In this approach,
DAE is used to learn compressed representations of gait sequences, and GAN is used to
generate new samples based on these compressed representations. For instance, a gait
recognition framework based on DAE and GAN is utilized. In this work, the DAE was
used to learn a low-dimensional representation of gait sequences, which was then used to
train a GAN to generate new samples. The generated samples were used to augment the
training data, which improved the performance of the gait recognition system. Overall, the
combination of DAE and GAN has shown promising results for gait recognition, especially
for data augmentation and cross-view recognition. However, there are still some challenges
in training these models, such as finding the right balance between reconstruction error
and adversarial loss, and avoiding mode collapse in the GAN training. In [74] and [84],
two approaches are presented, namely GaitGAN and GaitGANv2, with the encoder and
decoder architectures for discrimination as well as identification of fake and real. That
ensured the generated gait images were realistic and contained discriminative information.
Another name for this method is alpha-blending GAN, i.e., AbGAN [109]. It creates gait
templates using an encoder and decoder network as a generator without original object
information. Furthermore, cycle consistent attention-based GAN, i.e., CA-GAN [132], is
introduced to synthesize the gait view. Here, the encoder and decoder structures present
two branches for exploiting the global and partial discriminative features simultaneously.

3.2.3. DAE + RNN: DAE + LSTM

The combination of Deep Auto Encoders (DAEs) and recurrent neural networks
(RNNs) has been explored in gait recognition research [36,85,133]. In this approach, the
DAE is used to extract bottleneck features from the gait sequence, which are then fed
into an RNN for temporal modeling and classification. The RNNs used are typically long
short-term memory (LSTM) or gated recurrent unit (GRU) networks, which can capture
long-term temporal dependencies and handle variable-length input sequences.

By using this method, it is clear that the DAE is used to extract features from each
gait cycle of a walking sequence, and an LSTM is used to learn the temporal dynamics of
the sequence in order to classify it. The results showed that the approach outperformed
other state-of-the-art methods on a benchmark gait recognition dataset such as [133] and
showed excellent performance on the CASIA-B [33] and OU-MVLP [60] datasets. Another
DAE + GRU hybrid network for gait recognition may apply, where the DAE is used to
extract bottleneck features, which are then fed into a GRU network for temporal modeling
and classification. The GRU network was designed to capture both the short-term and
long-term dynamics of the gait sequence. Overall, the DAE + RNN approach has shown
promising results in gait recognition and has the potential to capture both spatial and
temporal information in a gait sequence for improved recognition accuracy.

The strategy involved separating gait features, such as identity information from
appearance, and canonical features that hold irrelevant information for gait recognition
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using a deep encoder–decoder network and novel loss functions. Once the temporal
dynamics had been captured by the resulting gait features, they were fed into a multi-layer
LSTM to be aggregated for identification reasons [36,133].

3.2.4. RNN + CapsNet:CNN + GRU + CapsNet and LSTM + CapsNet

Gait recognition using RNN + CapsNet involves using a recurrent neural network (RNN)
to capture the temporal dynamics of gait sequences and a Capsule Network (CapsNet) to
extract pose and spatial relationship information [81]. In a hybrid RNN-CapsNet network for
gait recognition, the output of the RNN is fed into the CapsNet to obtain the final classification
result. The CapsNet is used to extract more discriminative features, and its dynamic routing
mechanism helped to model the spatial relationships between different body parts during
walking [114]. The process achieves promising results on benchmark datasets, demonstrating
the effectiveness of using both RNN and CapsNet for gait recognition with different view and
appearance changes. Additionally, CapsNet, which can function as an attention module, gives
more attention to the important characteristics features.

Combining convolutional neural networks (CNNs) with recurrent neural networks
(RNNs) and capsule networks (CapsNets) has shown promise for gait recognition [115].
In the gait recognition process, a CNN is used to extract spatial features from the gait
silhouette, which are then fed into a gated recurrent unit (GRU) to capture temporal
information. The output from the GRU is then passed through a CapsNet to obtain the
final gait recognition results.

In another way, an LSTM is used instead of a GRU to capture the temporal dynamics
of gait features. The LSTM’s output is then fed into a CapsNet to obtain the final results for
recognition. Overall, these studies suggest that combining CNNs with RNNs and CapsNets
can effectively capture both spatial and temporal information in gait sequences, leading to
better recognition performance.

In the research described in [115], a CapsNet was used to store the partial representa-
tions of a convolution template that were learned over and over again as capsules. This
made it possible to learn the coupling of weights between partial features. This method
made it easier to generalize to gait views that were not seen during testing. It did this
by using relationships between partial features while keeping their positional features.
While this was going on, [134] took advantage of the spatial and structural connections
between body parts using a capsule network with dynamic routing. Before being put into
the capsule network, the recurrent features were taken from a series of gait frames using an
LSTM network.

3.2.5. CNN + GNN

CNN + GNN, also known as the graph convolutional neural network (GCNN), is
a deep learning architecture that combines the power of convolutional neural networks
(CNNs) and graph neural networks (GNNs) [48,86,91]. This architecture is used for gait
recognition and has shown promising results in recent studies. In this context, a CNN
is used to extract spatial features from gait images, while a GNN is used to model the
spatiotemporal relationships between the extracted features. Specifically, the gait sequence
is first represented as a graph, where the nodes represent the extracted spatial features from
the gait images and the edges represent the relationships between these features. The GNN
is then used to propagate information between the nodes and aggregate the features in a
way that captures the spatiotemporal relationships between them. Finally, a fully connected
layer is used to classify the gait sequence.

The benefit of using CNN + GNN to recognize a person’s gait is that it can record both
the location and timing of the sequence of steps. The CNN is good at pulling out spatial
features from gait images, while the GNN can model how the features relate to each other
in space and time. However, the hardest part of using CNN + GNN is coming up with
a graph structure that can show how the features are related to each other. The hybrid
representation of CNN and GNN can reduce the problems with CNN that occur during its
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uniform use. For instance, CNN treats the skeleton as a grid-shaped structure, whereas the
skeleton is a non-Euclidian distance graph-shaped structure.

In [86], two stream-based gait recognition methods are presented, namely graph
and image-like representations. The graph-like representation is used in the GCN, and
the image-like representation is used in the CNN to extract the features for the event
stream. These two streams are called EV-Gait-3D-Graph and EV-Gait-IMG. In another
study [91], the authors focused on reducing the problem of the hard sample issue, where
the same pedestrian shows a distinct silhouette, and a different silhouette can show the same
pedestrian. For that, memory-augmented progressive learning (Gait-MPL) is used to tackle
the hard sample issue. Gait-MPL is composed of two processes: dynamic reweighting
for progressive learning and a globally structured aligned memory bank. Because the
silhouette and skeleton are both effective ways of representing gait appearance, in [48],
he proposes a new method where features from both models are extracted by CNN and
GCN, respectively. In GCN, a new fully connected GC operator is used. However, the
performance of this operator is not satisfactory yet. Later, the STC-ATT module is used for
extracting spatial, temporal, and channel-wise information simultaneously.

4. Trends and Performance Analysis

This section presents an overview of current gait recognition trends, focusing on
the effectiveness of various deep methods and datasets used in various studies in the
literature. The analysis is based on publications related to body shape and emphasize recent
developments. The description is performed according to our taxonomy and presented in
Table 3.

Table 3. Deep architectures are presented based on the proposed taxonomy.

Reference Published Year Publisher Venue Body Shape Deep Methods Datasets

[135] 2015 IEEE IEEE-T-MM Silhouette CNN CASIA-B
[31] 2015 IEEE IEEE-CISP Silhouette CNN CASIA-B
[15] 2016 IEEE IEEE-ICPR Skeleton LSTM CASIA-B
[32] 2016 IEEE IEEE-ICB Silhouette CNN OU-ISIR
[76] 2016 IEEE IEEE-ICIP Silhouette 3DCNN CMU Mobo; USF HumanlD

[136] 2016 IEEE IEEE-ICASSP Silhouette CNN OU-ISIR
[131] 2016 Journal BMVC Skeleton CNN + LSTM CASIA-B; CASIA-A

[110] 2017 Inderscience IndS-Int. J. Biom. Silhouette DBN CASIA-B
[137] 2017 ScienceDir SD-CVIU Silhouette CNN CASIA-B
[34] 2017 IEEE IEEE-T-PAMI Silhouette CNN CASIA-B; OU-ISIR

[138] 2017 MDPI Applied Sci. Silhouette CNN OU-ISIR
[139] 2017 IEEE IEEE-T-CSVT Silhouette CNN OU-ISIR
[140] 2017 IEEE IEEE-BIOSIG Silhouette CNN TUM-GAID
[141] 2017 Journal MM Silhouette CNN OU-ISIR
[142] 2017 IET IET-CCBR Skeleton CNN + LSTM CASIA-B
[74] 2017 IEEE IEEE-CVPRW Silhouette GAN CASIA-B
[80] 2017 ScienceDir SD-NC Silhouette DAE CASIA-B; SZU RGB-D

[122] 2018 Journal Elect. Imaging Silhouette 3DCNN CASIA-B
[83] 2018 IEEE IEEE-Access Silhouette CNN + LSTM CASIA-C

[117] 2018 SpringerLink SL-Neuroinform Silhouette 3DCNN OU-ISIR
[35] 2018 IEEE IEEE-DIC Skeleton CNN CASIA-B

[143] 2018 IEEE IEEE-Access Silhouette CNN + LSTM CASIA-B; OU-ISIR
[123] 2018 IEEE IEEE-ISBA Silhouette 3DCNN CASIA-B
[132] 2018 IEEE IEEE-ICME Silhouette DAE + GAN CASIA-B
[144] 2018 ScienceDir SD-JVCIR Silhouette CNN CASIA-B; OU-ISIR
[145] 2018 SpringerLink SL-CCBR Skeleton CNN + LSTM CASIA-B
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Table 3. Cont.

Reference Published Year Publisher Venue Body Shape Deep Methods Datasets

[118] 2019 ScienceDir SD-PRL Skel.; Silh. LSTM CASIA-B; TUM-GAID
[38] 2019 IET IET-Biom. Silhouette CNN CASIA-B; TUM; OU-ISIR
[36] 2019 IEEE IEEE-CVPR Skel.; Silh. DAE + LSTM CASIA-B; FVG

[146] 2019 ScienceDir SD-J. Sys. Arch. Silhouette DAE + GAN CASIA-B; OU-ISIR
[101] 2019 ScienceDir SD-PR Silhouette CNN CASIA-B; SZU
[102] 2019 IEEE IEEE-T-IFS Silhouette GAN CASIA-B; OU-ISIR
[147] 2019 ScienceDir SD-PRL Silhouette CNN CASIA-B; OU-ISIR
[103] 2019 IEEE IEEE-CVPR Silhouette CNN CASIA-B; OU-ISIR LP Bag
[106] 2019 ScienceDir SD-NC Silhouette GAN CASIA-B; OU-ISIR
[107] 2019 IEEE IEEE-IJCNN Silhouette GAN CASIA-B

[125] 2019 IEEE IEEE-T-IFS Skeleton DAE OU-ISIR LP Bag;
TUM-GAID

[148] 2019 Conf. ICVIP Silhouette CNN CASIA-B
[149] 2019 IEEE IEEE-T-MM Silhouette CNN + LSTM CASIA-B; OU-ISIR
[108] 2019 IEEE IEEE-IJCNN Silhouette GAN CASIA-B

[150] 2019 SpringerLink SL-NCAA Silhouette CNN CASIA-B; CASIA-A;
OU-ISIR

[68] 2019 ScienceDir SD-PR Silhouette CNN CASIA-B
[151] 2019 SpringerLink SL-NCAA Silhouette CNN CASIA-B; OU-ISIR
[112] 2019 ScienceDir SD-JVCIR Silhouette CapsNet CASIA-B
[37] 2019 SpringerLink SL-AAA Silhouette CNN CASIA-B; OU-MVLP

[113] 2019 ScienceDir SD-JVCIR Silhouette CapsNet CASIA-B; OU-ISIR

[85] 2020 IEEE IEEE-Access Skeleton DAE + LSTM Walking Gait
[152] 2020 ScienceDir SD-PR Skeleton CNN CASIA-B; CASIA-E
[133] 2020 IEEE IEEE-T-PAMI Silh; Skel DAE + LSTM CASIA-B; FVG

[130] 2020 IEEE IEEE-T-IP Silhouette CNN + LSTM CASIA-B;
OU-MVLP; OU-LP

[109] 2020 ScienceDir SD-PR Silhouette GAN OULP-BAG; OU-ISIR
LP Bag

[153] 2020 SpringerLink SL-MTAP Silhouette CNN CASIA-B
[134] 2020 ScienceDir SD-KBS Silhouette LSTM + Capsule CASIA-B; OU-MVLP
[154] 2020 Journal JINS Silhouette CNN + LSTM CASIA-B; OU-ISIR

[155] 2020 IEEE IEEE-T-CSVT Silhouette CNN CASIA-B;
OU-MVLP; OU-ISIR

[124] 2020 arXiv arXiv Silhouette 3DCNN CASIA-B; OU-MVLP
[156] 2020 SpringerLink SL-MTAP Silhouette CNN CASIA-B; OU-ISIR
[104] 2020 arXiv arXiv Skeleton GCN CASIA-B
[157] 2020 SpringerLink SP-MTAP Silhouette CNN CASIA-B; OU-ISIR
[158] 2020 Journal J-JIPS Silhouette CNN CASIA-B; OU-ISIR
[159] 2020 SpringerLink SL-MTAP Silhouette CNN CASIA-B

[160] 2020 SpringerLink SL-SC Silhouette CNN CASIA-B;
OU-ISIR; OU-MVLP

[114] 2020 IEEE IEEE-ITNEC Silhouette CapsNet CASIA-B; OU-ISIR
[40] 2020 IEEE IEEE-CVPR Silhouette CNN CASIA-B; OU-MVLP

[126] 2020 IEEE IEEE-CVPR Silhouette DAE CASIA-B; OU-ISIR LP Bag
[71] 2020 IEEE IEEE-T-Biom Skeleton CNN + LSTM OUMVLP-Pose

[161] 2020 Conf. C-ACCVW Silhouette CNN CASIA-E
[162] 2020 Conf. C-ACCVW Silhouette CNN CASIA-E

[115] 2020 IEEE IEEE-ICPR Silhouette CNN + GRU + Cap-
sNet CASIA-B; OU-MVLP

[39] 2020 IEEE IEEE-T-Biom. Silhouette CNN + GRU CASIA-B; OU-MVLP
[163] 2020 IEEE IEEE-Access Silhouette CNN CASIA-B
[164] 2020 IEEE IEEE-ICASSP Silhouette CNN CASIA-B; OU-MVLP
[165] 2020 IEEE IEEE-IJCB Silhouette DAE + GAN CASIA-B; OU-ISIR
[42] 2020 CVF ACCV Silh; Skel CNN + LSTM CASIA-B; OU-MVLP
[41] 2020 ACM ACM-MM Silhouette 3DCNN CASIA-B; OU-ISIR
[43] 2020 SpringerLink SL-ECCV Silhouette CNN CASIA-B; OU-MVLP

[166] 2020 ScienceDir SD-NC Sleleton CNN UPCV; KS20; SDU

[167] 2021 SpringerLink SL-ES Skeleton 3DCNN CASIA- B
[44] 2021 SpringerLink SL-VC Skeleton GCNN CASIA- B

[168] 2021 SpringerLink SL-ACPR Skeleton GAN CASIA-B; OU-ISIR
[45] 2021 ScienceDir SD-PR Skeleton GCN TUM Gait
[97] 2021 SpringerLink SL-JBD Silhouette CNN Market dataset

[169] 2021 SpringerLink SL-CIS Image CNN CASIA- B

[98] 2021 SpringerLink SL-SC Silhouette CNN CASIA- B,
OU-ISIR, OU-MVLP
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Table 3. Cont.

Reference Published Year Publisher Venue Body Shape Deep Methods Datasets

[129] 2021 IEEE IEEE-ICIP Skeleton GCNN CASIA- B
[86] 2021 IEEE IEEE-T-PAMI Skeleton GCN + CNN CASIA- B

[170] 2021 IEEE IEEE-PRCV Skeleton GCN OUMVLP-Pose
[46] 2021 IEEE IEEE-ICCV Silhouette 3DCNN CASIA- B; OU-MVLP

[171] 2021 CVF CVF-CVPR Silhouette CNN OUMVLP
[99] 2021 IEEE IEEE-ICCV Skeleton CNN CASIA- B; OU-MVLP

[100] 2021 IEEE IEEE-T-PAMI Silhouette CNN CASIA- B; OU-MVLP
[29] 2021 ScienceDir SD-ESWA Silhouette 3DCNN CASIA- B; OULP
[73] 2021 IEEE IEEE-T-CSVT Silhouette CNN CASIA- B; OULPOU-MVLP

[172] 2021 ScienceDir SD-NC Silhouette CNN CASIA- B; OU-MVLP
[88] 2021 IEEE IEEE-T-BBIS Silhouette CNN CASIA- B; OU-MVLP

[173] 2021 IEEE IEEE-ICPC Silhouette CNN CASIA- B; OU-MVLP
[47] 2021 IEEE IEEE-T-IFS Silhouette ANN CASIA-BTUM-GAIT

[96] 2022 ScienceDir SD-DSP Silhouette CNN CASIA-B, OUMVLP
[174] 2022 CVF CVF Silh; Skel CNN CASIA-B; OUMVLP
[49] 2022 IEEE IEEE-Access Skeleton GCNN CASIA-B
[48] 2022 ScienceDir SD-CVIU Silh; Skel GCN + CNN CASIA-B

[175] 2022 Wiley Wiley-Expert
system Skeleton DCNN CASIA-A; B, C

[89] 2022 ScienceDir SD-PR Silhouette CNN CASIA-B
[127] 2022 IEEE IEEE-CVPR Skeleton GCN CASIA-B; OUMVLP-Pose
[128] 2022 ScienceDir SD-PRL Skeleton GCN CASIA-B; OUMVLP-Pose
[90] 2022 IEEE IEEE-T-NNLS Silhouette CNN CASIA-B; OUMVLP
[75] 2022 MDPI Electronics Skeleton CNN CASIA-B

[176] 2022 Taylor Taylor-CS Skeleton GCN CASIA-B
[50] 2022 MDPI Sensor Silhouette ViT CASIA-B; OU-ISIR OU-LP
[91] 2022 IEEE IEEE-T-IP Silhouette CNN CASIA-B; OUMVLP
[92] 2022 ScienceDir SD-PR Silhouette CNN CASIA-B; OUMVLP

4.1. Body Shape

The shape of the body is an important part of gait recognition because it can tell
a lot about how a person walks. These informational features can change the way a
person walks and can also be used to tell one person from another. The present state-of-
the-art methods used body shapes in two basic categories: silhouette-based or skeleton-
based representations for gait recognition, where the silhouette is the appearance and the
skeleton is the model-based representation. From the analysis of Table 3, it is observed
that at the early stage of the deep methods, researchers utilized the silhouette-based body
shape; however, after 2020, researchers focused on the skeleton-based representation.
The percentage of silhouette and skeleton body shapes used in different publications is
presented in Figure 7.
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From Figure 7, it is observed that until the year 2020, most of the publications chose
silhouette-based body representation; after 2020, skeleton-based body representation is
used. The reason is the limitation of silhouette-based body shape for gait recognition
processes and the advancement of human pose estimation processes such as OpenPose [51]
and AlphaPose [52]. As a result, from 2021 on, the majority of model-based gait recognition
methods have focused on skeleton based deep neural network architectures.

From Table 3, it is revealed that 70% of publications used silhouette-based body
representation and 24% of publications used skeleton based-body representation. Moreover,
it is also observed that 7% of publications used both silhouette and skeleton-based body
representation. While skeleton-based body shape representation overcomes the limitations
of silhouette-based body shape representation and achieves significant improvements in
recent years, the skeleton also has limitations, such as occlusion, that are recovered by the
silhouette-based representation. For that reason, we anticipate that in the future, models
based on the combination of silhouette and skeleton would gain popularity.

Datasets

According to Table 3, the frequently used datasets for gait recognition are CASIA-B [39],
OU-ISIR [63,64], OU-MVLP [60], TUM-Gait [72], and OUMVLP-Pose [71], which are 79%,
21%, 23%, 6%, and 4%, respectively. The other datasets, such as CASIA-A [66], CASIA-
C [67], OU-MVLP-Bag [65], and CASIA-E [61,68], are used for 10%. The percentage of
the dataset used for gait recognition is presented in Figure 8. From Table 3, it is observed
that as of 2021, the significant number of published papers used the CAEA-B, OU-MVLP,
and OU-MVLP-Pose datasets to validate their methods, with a percentage of 91%, 38%,
and 7%, respectively. Since the year 2020, the CASIA-E dataset has gained popularity
due to its diversity. However, the dataset is only used in the literature where body shape
representation is in silhouette. We anticipate that this dataset (CASIA-E) will become
the standard benchmark dataset for silhouette and OU-MVLP as well as CASIA-B for
skeleton-based gait recognition in the future.
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4.2. Performance of Deep Methods on Datasets

To present the performance of the published deep architectures, we only consider the
two datasets CASIA-B [33] and OU-MVLP [60], as these datasets are mostly used from
the year 2021. The performance of the literature validated with the CASIA-B dataset is
presented in Table 4. On the CASIA-B dataset, paper [90] shows the best recognition rate
until the year 2019. At the present state of the art, paper [50] shows the best recognition
result. However, the paper does not show the performance for Normal walk; Carrying
bag; or Walk with wearing coat individually; it just provides the average recognition
accuracy. Based on the overall performance evaluation, the literature [41] shows the best
result for the year 2020, which is 90.40%. Some methods [29,45,47,100], and [173] produced
outstanding results for gait recognition on CASIA-B in 2021. However, the paper [45]
shows superior performance. The recognition accuracy of this paper is 98.07%, which is the
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best accuracy on the CASIA-B dataset based on the overall performance evaluation. The
performance result of the present literature based on the OU-MVLP is presented in Table 5.
The best performance of deep methods on the OU-MVLP until 2020 was 89.18%. Some
methods [73,88,98] produced outstanding results for the gait recognition rate on OU-MVLP
in 2021. Among the methods, ref. [98] shows the best performance on the OU-MVLP
dataset, which is 98.00%. Ref. [90] shows a better result in in 2022, which is 96.15%. The
method [90], however, does not outperform the method [98] published in 2021.

Table 4. The performance of the state-of-the-art literature based on CASIA-B.

Information Performances
Reference Year Publisher Venue NM BG CL Avg.

[135] 2015 IEEE IEEE-T-MM 78.90 - - -
[110] 2017 Inderscience IndS-Int. J. Biom. 90.80 45.90 45.30 60.70
[34] 2017 IEEE IEEE-T-PAMI 94.10 72.40 54.00 73.50
[35] 2018 IEEE IEEE-DIC 83.30 - 62.50 -

[68] 2019 ScienceDir SD-PR 75.00 - - -
[102] 2019 IEEE IEEE-T-IFS 79.80 - - -
[101] 2019 ScienceDir SD-PR 89.90 - - -
[36] 2019 IEEE IEEE-CVPR 93.90 82.60 63.20 79.90
[103] 2019 IEEE IEEE-CVPR 89.90 - - -
[38] 2019 IET IET-Biom. 94.50 78.60 51.60 74.90
[118] 2019 ScienceDir SD-PRL 86.10 - - -
[37] 2019 SpringerLink SL-AAA 95.00 87.20 70.40 84.20

[133] 2020 IEEE IEEE-T-PAMI 92.30 88.90 62.30 81.20
[130] 2020 IEEE IEEE-T-IP 96.00 - - -
[155] 2020 IEEE IEEE-T-CSVT 92.70 - - -
[163] 2020 IEEE IEEE-Access 95.10 87.90 74.00 85.70
[115] 2020 IEEE IEEE-ICPR 95.70 90.70 72.40 86.30
[39] 2020 IEEE IEEE-T-Biom. 95.20 89.70 74.70 86.50
[40] 2020 IEEE IEEE-CVPR 96.20 91.50 78.70 88.80
[126] 2020 IEEE IEEE-CVPR 94.50 - - -
[43] 2020 SpringerLink SL-ECCV 96.80 94.00 77.50 89.40
[42] 2020 CVF ACCV 97.90 93.10 77.60 89.50
[41] 2020 ACM ACM-MM 96.70 93.00 81.50 90.40

[44] 2021 SpringerLink SL-VC 97.03 90.77 89.90 92.57
[46] 2021 IEEE IEEE-ICCV 98.30 95.50 84.50 92.77
[47] 2021 IEEE IEEE-T-IFS 97.70 94.80 95.30 95.93
[100] 2021 IEEE IEEE-T-PAMI 96.10 90.80 70.30 96.10
[173] 2021 IEEE IEEE-ICPC 96.20 92.90 87.20 92.10
[29] 2021 ScienceDir SD-ESWA - - - 98.34
[45] 2021 ScienceDir SD-PR 99.40 95.40 99.40 98.07

[49] 2022 IEEE IEEE-Access - - - 98.86
[48] 2022 ScienceDir SD-CVIU 97.70 93.80 92.70 94.73
[75] 2022 MDPI Electronics 94.00 95.00 97.00 95.33
[50] 2022 MDPI Sensor - - - 99.93
[91] 2022 IEEE IEEE-T-IP 97.50 94.50 88.00 93.33
[92] 2022 ScienceDir SD-PR 96.70 92.40 81.60 90.23

NM = Normal walk; BG = Carrying bag; CL = Walk with wearing coat.
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Table 5. The performance of the state-of-the-art literature based on OU-MVLP.

Information

Reference Published Year Publisher Venue Performances

[37] 2019 SpringerLink SL-AAA 83.40
[164] 2019 IEEE IEEE-ICASSP 57.80

[155] 2020 IEEE IEEE-T-CSVT 63.10
[130] 2020 IEEE IEEE-T-IP 84.60
[115] 2020 IEEE IEEE-ICPR 84.50
[39] 2020 IEEE IEEE-T-Biom. 84.30
[40] 2020 IEEE IEEE-CVPR 88.70
[43] 2020 SpringerLink SL-ECCV 89.18

[46] 2021 IEEE IEEE-ICCV 90.90
[100] 2021 IEEE IEEE-T-PAMI 87.90
[73] 2021 IEEE IEEE-T-CSVT 94.92
[88] 2021 IEEE IEEE-T-BBIS 96.40

[173] 2021 IEEE IEEE-ICPC 89.90
[98] 2021 SpringerLink SL-SC 98.00

[90] 2022 IEEE IEEE-T-NNLS 96.15
[91] 2022 IEEE IEEE-T-IP 90.50
[92] 2022 ScienceDir SD-PR 89.30

5. Limitations and Challenges

Gait recognition has received significant attention in recent years due to its potential
applications in various fields, including surveillance, healthcare, and biometric identifica-
tion [48,127]. However, despite the growing interest and advancements in gait recognition,
there are still several challenges and limitations that need to be addressed. One of the main
challenges is the significant variation in gait caused by individual differences, clothing,
carrying conditions, and walking speeds [49,174,177]. Additionally, the quality of the input
data, such as the resolution, illumination, and occlusion, can significantly affect the perfor-
mance of gait recognition systems. Furthermore, the ethical and legal considerations related
to the use of gait recognition, such as privacy violations and misidentification, should be
considered [8]. Therefore, developing robust and accurate gait recognition systems that can
overcome these challenges and limitations is crucial for the successful implementation of
gait recognition in real-world applications. The different covariate issues that affect gait
recognition accuracy are presented in Figure 9.

The gait recognition model basically represents two ways: model-free, which basically
focuses on silhouette, and model-based, which focuses on skeleton. The limitations and
challenges of gait recognition methods are explained below.

5.1. Model-Free-Based Limitations and Challenges

A model-free approach focused on silhouette shape and the dynamic information that
is required for gait pattern matching. The silhouette is independent of video quality, which
makes the recognition system capable from a distance in a non-invasive and non-intrusive
manner. These properties make the system capable of working in the surveillance system.
The main limitation of this approach is the covariate facts. In gait recognition, the main
challenge is to identify the unknown covariate that has the most impact on the training and
testing of a specific person.
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The main covariate factors that affect the accuracy of gait recognition are presented here.

5.1.1. Carrying Conditions

Carrying objects during mobility may change the walking pattern as well as the
person’s body structure. During mobility, carrying an object may change the walking
pattern. So, in those situations, the gait recognition method is not able to provide the
accuracy needed.

5.1.2. Clothing Variations

People wear different types of clothing in different environments and seasons. As a
result, the body shape with different clothes, such as T-shirt, coat, or shirt, will be different.
Moreover, tight and bulky clothing may change the person’s mobility and have an impact
on gait recognition. Furthermore, heavy dresses also affect the walking pattern.

5.1.3. Viewpoint Variations

Viewpoint variations are a common vision-based problem. The reason is that any
object image’s orientation depends on the camera’s orientation and position. This is also a
common problem for gait recognition systems because during the capture of the walking
sequences, if the orientation and position of the imaging device are varied for individuals,
the captured sequences will be different, which makes it difficult to identify the individuals.

5.1.4. Occlusion and Noise

There are two types of techniques for recognizing gait in defiance of occlusion:
reconstruction-free and reconstruction-based methods. Gait Energy Images (GEIs), one
feature extracted from gait cycle silhouettes by reconstruction-free methods, offer greater
accuracy. These techniques are not applicable to low degrees of occlusion, where it is chal-
lenging to determine gait cycles. Reconstruction-based approaches, on the other hand, seek
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to restore occluded people. These techniques work with numerous gait periods that have
some frames partially obscured. However, using this strategy becomes difficult when every
frame in a series is highly obscured. The primary disadvantage of reconstruction-based
methods is that they frequently make it harder to distinguish between different people
because of restored silhouette sequences.

5.1.5. Cross-View Conditions

It is a technique for identifying any person based on their walking pattern. The system
can be categorized in three ways. The first way is the three-dimensional representation
of gait, which required a different camera to manage. This system is not ideal for public
monitoring. The second way only considers the view-invariant gait pattern; however, this
process can work only for formal poses, not for other or different poses. In the third way,
the person is trained in the transformation model from both viewpoints.

5.1.6. Speed Variations

The speed of the mobility of a person can change the person’s walk. This can change
the phase of gait cycle and joint angle movement.

5.1.7. Unconstrained Environment

Gait recognition under unconstrained conditions is still a challenging task. In real-
world scenarios, there are various challenges that need to be addressed, such as noise,
clutter, different lighting conditions, and occlusions. These challenges make it difficult to
obtain accurate and reliable gait features, which may affect the performance of gait recogni-
tion systems. Hence, developing gait recognition systems that can handle unconstrained
conditions is still an active area of research.

5.1.8. Spatial and Temporal Situations

A Gait Energy Image (GEI) can be used to record information about space (spatial);
however, it can be hard to obtain good information about time (temporal), which can make
human recognition less accurate. In terms of temporal situations, recognizing gait over
long periods of time can be challenging due to the need for continuous and reliable data
capture as well as the potential for changes in an individual’s gait pattern over time due
to aging or injury. Furthermore, recognizing gait in real-time scenarios requires efficient
and faster processing techniques that can operate on the available computing resources
in a timely manner. These spatial and temporal challenges highlight the need for further
research and development in gait recognition technology to address these limitations and
improve its reliability and effectiveness in real-world applications.

5.1.9. Ethical Concerns

The use of gait recognition systems in public spaces raises privacy concerns, as indi-
viduals may not want their gait patterns to be recorded or analyzed.

5.2. Model-Based Limitations and Challenges

Pose-based gait recognition methods fall into one of two groups of model-based ap-
proaches. These models analyze gait patterns using the body’s joint angles; however, they
need superior gait segments and a multi-camera system. Since this method includes calcu-
lating important points for each frame, it is more expensive than model-free approaches.

5.2.1. Extracting Skeleton Data

Extracting accurate skeleton data from RGB or depth images is still a challenging
task, especially in complex scenarios where multiple individuals or occlusions are present.
Additionally, due to differences in camera viewpoints and body orientations, the skeleton
data may have variations in scale, rotation, and translation.
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5.2.2. Interdependency

The gait recognition process based on the skeleton depends on the other methods to
estimate the pose. After estimating the pose, the gait recognition method utilized that pose
information for gait recognition. So, the complexity of the gait recognition method will
increase if the pose estimation process is not working well.

5.2.3. Spatial and Temporal Situations

The representation and modeling of the temporal dynamics of gait patterns from
skeleton data are not straightforward, especially when the number of skeleton joints is
large. This makes it challenging to capture the spatiotemporal dependencies and dynamics
of gait effectively.

5.2.4. Hard Sample Issue

Gait recognition with skeleton data may face identity ambiguity issues where different
individuals may have similar gait patterns, which is called the hard sample. Here, the same
pedestrian has a distinct skeleton representation and vice versa.

5.2.5. Viewpoints and Positioning

Using skeleton data for gait recognition can be sensitive to changes in the camera’s
point of view, which can cause big changes in the skeleton data that were captured.

5.2.6. Unconstrained Environment

The accuracy of the skeleton-tracking algorithm used to extract the joint positions from
the input video data can be affected by factors such as occlusions, a cluttered background,
and lighting conditions, leading to missing or erroneous joint positions.

6. Problem Identification and Discussion

Deep architecture for gait recognition faces several challenges. One of the challenges is
the limited availability of labeled data for training deep networks. Deep networks typically
require large amounts of labeled data to avoid overfitting and to generalize well to unseen
data. However, gait datasets with labeled data are limited and expensive to acquire, which
makes it challenging to train deep networks for gait recognition. Another challenge is
the difficulty of designing effective deep network architectures for gait recognition. The
architecture should be able to capture both spatial and temporal information effectively
and efficiently, which is not trivial. Additionally, designing a deep network architecture
that is robust to variations in gait due to changes in clothing, carrying conditions, and other
environmental factors is also challenging. Finally, the interpretability of deep networks is
also a challenge, as they are often seen as black boxes, making it difficult to understand
how they arrive at their decisions.

6.1. Problems with Silhouette Images Overcome by Skeleton Structure

For different covariates, silhouette images can lose fine-grained spatial and appearance
information in complex scenes. However, specific deep architectures can overcome the spe-
cific gait recognition problems. Such skeleton body representation overcomes the problem
of silhouette images. The covariate factors of the silhouette image create disparity issues;
however, the skeleton data, which are the raw data extracted from the pose estimation
algorithms, can overcome these types of limitations.

6.2. Problems of Deep Neural Architecture for Processing Skeleton Data

For the feature extraction process, the skeleton data are used in the deep neural
architectures. However, the following problems occur during the feature extraction process.

• Deep structures (CNNs) treat the skeleton as grid-shaped structural data, whereas the
skeleton is graph-shaped structural data, thus resulting in limited representation and
difficulties with generalization.
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• Gait patterns are extracted from specific body parts. However, the deep structure lacks
the attention mechanisms to emphasize the significant body regions.

• Deep structures (CNNs) are rotationally invariant. For viewpoint changes, we need to
be rotationally equivariant.

• Deep structures may struggle to handle gait data captured from different angles
and perspectives, which can impact gait accuracy. However, CapsNet can handle
this problem.

• As the gait skeleton is composed of a number of non-Euclidean graphs, it is unable to
reveal the latent spatial connections in the joints of the skeleton.

Gait recognition is a sequence-based problem, and GNNs are specifically designed
to handle structured data. GNNs process data in the form of graphs, where each node
represents a feature and edges represent relationships between features. By modeling the
gait sequence as a graph, GNNs can capture the relationships between the steps in the
sequence and use that information to make gait predictions. GNN allows for the capture of
more complex relationships in gait data compared to traditional neural networks, either
holistically or partially.

7. Conclusions

In recent years, gait recognition has drawn a lot of interest from the research commu-
nity because that has become a non-invasive and promising method of biometric identi-
fication. Deep learning methods have shown great potential in automatically extracting
discriminative features for gait recognition. However, recognizing gait accurately is still a
challenging task, which is mainly due to the variability and complexity of environments
and human body representations. This paper provided a comprehensive overview of the
recent advancements in this field, analyzed the performance of state-of-the-art techniques,
and presented a taxonomy of deep learning methods used for gait recognition. The limita-
tions and challenges of deep learning in gait recognition were also discussed, and several
research directions are suggested to improve the performance of gait recognition. Overall,
this paper provides valuable insights into the current state-of-the-art and future research
directions in gait recognition using deep learning methods.

8. Future Directions

Even though the area of gait recognition has made substantial progress, more study
is still required. Although there are now a lot of gait datasets accessible, their use is com-
plicated by their limitations. A lot of data can be produced when taking into account
multi-view and multi-angle situations. These datasets, however, are frequently restricted
to specific environmental circumstances and are only helpful for single individual detec-
tion. As gait recognition technology gains popularity, it has become possible to identify
numerous people moving across a crowd in real time. This has given researchers fresh
areas to explore. In order to enhance gait recognition, new algorithms must be created that
concentrate on the spatiotemporal aspects of movement in a model-free manner. In the
future, studies on recognizing gender using gait patterns may also aid in the improvement
of gait recognition [7–9].

The following list contains a few research directions for future gait recognitions:

• Multi-modal gait recognition: In this method, gait recognition can be combined with
other types of data, such as facial recognition, voice recognition, or biometric data
from wearable sensors. This can help make gait recognition systems more accurate
and reliable, especially in tough situations where gait recognition alone might not
be enough.

• Deep learning techniques: Deep learning models can learn complex features and
patterns from large amounts of data, which can potentially improve the accuracy of
gait recognition systems. This approach can also help reduce the need for manual
feature engineering, which can be time-consuming and challenging.
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• Robustness to environmental factors: In real-world scenarios, gait recognition sys-
tems may encounter various environmental factors such as changes in lighting, weather
conditions, and terrain. Developing methods that can handle these variations can im-
prove the accuracy and reliability of gait recognition systems in practical applications.

• Privacy-preserving gait recognition: Privacy concerns have been raised regarding
the use of full-body images in gait recognition systems. Developing methods that can
recognize gait while preserving individual privacy can address these concerns and
increase the acceptance and adoption of gait recognition technology.

• Long-term tracking: Gait recognition systems that can track individuals over longer
periods, such as days or weeks, can provide valuable information for security and
surveillance applications. Developing methods that can handle variations in gait
due to changes in clothing or footwear can improve the accuracy and reliability of
long-term tracking systems.

• Cross-domain gait recognition: Gait recognition models trained on one dataset may
not generalize well to other datasets with different conditions and populations. Devel-
oping methods that can adapt to different datasets can improve the performance and
applicability of gait recognition systems across different domains.

• Real-time gait recognition: In many real-world scenarios, gait recognition systems
need to operate in real time with low computational requirements and fast processing
times. Developing real-time gait recognition methods can address these requirements
and increase the applicability and adoption of gait recognition technology.
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