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Abstract: The integration of Distributed Generators (DGs) into distribution systems (DSs) leads to
more reliable and efficient power delivery for customers. However, the possibility of bi-directional
power flow creates new technical problems for protection schemes. This poses a threat to conventional
strategies because the relay settings have to be adjusted depending on the network topology and
operational mode. As a solution, it is important to develop novel fault protection techniques to
ensure reliable protection and avoid unnecessary tripping. In this regard, Total Harmonic Distortion
(THD) can be used as a key parameter for evaluating the grid’s waveform quality during fault events.
This paper presents a comparison between two DS protection strategies that employ THD levels,
estimated amplitude voltages, and zero-sequence components as instantaneous indicators during the
faults that function as a kind of fault sensor to detect, identify, and isolate faults. The first method
uses a Multiple Second Order Generalized Integrator (MSOGI) to obtain the estimated variables,
whereas the second method uses a single SOGI for the same purpose (SOGI-THD). Both methods rely
on communication lines between protective devices (PDs) to facilitate coordinated protection. The
effectiveness of these methods is assessed by using simulations in MATLAB/Simulink considering
various factors such as different types of faults and DG penetrations, different fault resistances and
fault locations in the proposed network. Moreover, the performance of these methods is compared
with conventional overcurrent and differential protections. The results show that the SOGI-THD
method is highly effective in detecting and isolating faults with a time interval of 6–8.5 ms using only
three SOGIs while requiring only 447 processor cycles for execution. In comparison to other protection
methods, the SOGI-THD method exhibits a faster response time and a lower computational burden.
Furthermore, the SOGI-THD method is robust to harmonic distortion, as it considers pre-existing
harmonic content before the fault and avoids interference with the fault detection process.

Keywords: fault protection; total harmonic distortion; distribution system; SOGI-FLL

1. Introduction

In recent years, the integration of Distributed Energy Resources (DERs) into Distri-
bution Systems (DSs) has gained considerable attention due to the significant benefits it
offers to the overall energy system. DERs, including solar and wind power systems, can
contribute to improving energy efficiency and reliability in the distribution grid. They can
reduce the dependence on traditional fossil fuel sources, mitigate environmental impacts,
and suppsort the integration of new energy technologies, leading to a more sustainable
and resilient energy industry [1,2].

However, integrating DERs into DSs requires careful management due to the signif-
icant impact it has on the power flow direction. In conventional DSs, the power flow is
one-way, but with DER integration, it can be bi-directional, presenting a challenge for
the network operator, particularly regarding fault protection [3,4]. Fault protection is a
complex issue in DSs, especially with Distributed Generators (DGs), as power flow changes
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depending on the operational mode. As a result, short-circuit fault current values can
fluctuate, resulting in a mismatch between the protective devices (PDs) settings and the
actual fault current. This mismatch may lead to miscoordination or even failure of PDs,
which can cause equipment damage or power supply loss [5,6].

Conventional protection methods can have limitations when dealing with certain
circumstances, such as the inability to identify faults with varying fault resistance, vul-
nerability to pre-fault load conditions, and susceptibility to noise [7]. Furthermore, these
methods can require complex calculations, which could potentially lead to inaccuracies
in the fault location prediction [8]. This emphasizes the need for innovative protection
strategies that can rapidly and accurately detect and locate faults, thereby reducing power
restoration time for customers and improving network performance [9–11].

Over the past few years, significant efforts have been made to develop various ap-
proaches for detecting and locating faults in DSs with DGs. These approaches can be
categorized as conventional protection technologies [12–19], adaptive protection [20–22],
and harmonics-based protection methods [23,24]. Each method has its own strengths
and limitations.

Conventional Overcurrent Relays (OCRs) and differential relays (DRs) are widely
used for DS protection. OCRs are mainly employed to detect and prevent faults caused by
overloads or short circuits. To ensure sensitivity and selectivity for various system faults,
these relays need to be coordinated with other PDs. However, if the network’s topology
changes, the settings for OCRs must be updated accordingly [12].

Moreover, when DGs are integrated with the DSs, the fault currents can flow in both
directions, which can cause unnecessary disconnections of the circuit breakers (CBs). To
solve this issue, directional relays are employed with OCRs, as they together have good
current sensitivity and can detect bidirectional power flows effectively [13]. However,
using them in all scenarios can be challenging, and the cost of implementation can be
high due to the need for additional current transformers (CTs) and CBs [14,15]. In [16],
a communication-based directional overcurrent relay was proposed that uses Neural
Network (NN) for fast and reliable fault detection. Nevertheless, this method involves
complex computations, long training, and difficult implementation, and its reliability is
dependent on the quality of the NN training.

In [17–19], DRs are capable of detecting faults rapidly and with high sensitivity,
regardless of the direction and magnitude of the current flow. However, implementing
them can be challenging, expensive, and reliant on communication channels for comparing
current quantities. Additionally, they require additional backup protection.

In [20,21], adaptive protection was proposed to automatically adjust the protection’s
relay settings to match the power system conditions and determine the operation speed.
However, this approach can be costly to implement as it requires advanced digital re-
lays and large computational memory. In [22], another adaptive protection strategy was
proposed using both overcurrent and voltage-based methods to set current and voltage
thresholds for assessing if a fault occurred within the circuit breaker protection zone. How-
ever, this strategy may be undesirable for systems with inverter-interfaced DG where fault
current flow is minimal.

In [23,24], harmonic-based methods were proposed, mainly using the harmonic con-
tent of the voltage and current in the electrical grid to detect faults. In [23], a new harmonic-
based relay was proposed as a cost-effective solution for microgrid (MG) protection. The
relay could detect and isolate faults by injecting two different harmonic signals into the
grid during a fault, acting as a directional relay without the need for a voltage transformer.
However, this method has only been validated for three-phase faults. In [24], the harmonic
method was defined using a Fast Fourier Transform (FFT) to obtain the necessary harmon-
ics and THD for each phase of the grid voltage. However, implementing the FFT on a
digital signal processor (DSP) supposes a high computational burden, especially when
applied to each voltage line of the grid. Furthermore, this method is unable to distinguish
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between phase-to-phase and phase-to-phase-to-ground faults and exhibits slower tripping
responses compared to other methods.

Moreover, there are other methods employed for protection using different techniques
such as wavelets [25–27], fuzzy logic [28], recursive least square [29,30], differential phase
angle [31], s-transform [32], power spectral density and transform [33], deep belief net-
work [34], Hilbert-Huang transform [35]. However, these techniques require a complex
computational process and a relatively high cost of implementation.

To overcome the previous issues, two THD-based protection techniques for detecting
and isolating different types of faults (symmetrical and unsymmetrical) in MV DSs were
presented in [36,37]. The methods are based on the measurement of the THD levels of the
grid voltages, defined as THDabc, the estimated amplitude voltages Ãabc, and the zero-
sequence components Vabc0. Figure 1 depicts the conceptual diagram of the methods. The
first approach in [36] calculates these variables using an MSOGI approach, considering only
the fundamental and the triple-n harmonics of the grid voltages: the third, sixth, and ninth
harmonics. The second approach in [37] uses a SOGI with a few additional math operations
to obtain the variables, which was implemented into a DSP from Texas Instruments with a
low computational burden.
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The purpose of this paper is to assess the effectiveness of these techniques together with
traditional overcurrent and differential protections across a range of scenarios. Specifically,
the objectives of this study can be summarized as follows:

− The MSOGI-THD and SOGI-THD protection methods are explained and modeled
using Matlab/Simulink to automatically detect symmetrical and unsymmetrical fault
events in DSs;

− A robust fault detection algorithm for the SOGI-THD is proposed. This approach
increases the system’s reliability and accuracy and speeds up the protection system’s
response in the event of a fault, regardless of the harmonics present in the grid before
the fault. This approach is also computationally efficient;

− A finite state machine has been used to locate and isolate faults in different locations,
detect permanent faults, and ignore temporary faults;

− A comparison study between the two THD-based approaches and the conventional
methods is proposed under various conditions, such as changing the fault types,
DG penetration, fault resistances, and fault locations in the network. Moreover, the
study assesses the robustness of these methods against communication delays and
the presence of harmonics before fault events. Additionally, the paper evaluates
the computational burden of the different THD methods when implemented on a
digital processor.
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The rest of the paper is structured as follows: Section 2 presents the MSOGI-THD and
SOGI-THD approaches. Section 3 presents the proposed fault classification algorithm and
the FSM in detail. Simulations and comparisons with OCR and DR systems are carried out
to validate the performance of each method in Section 4. Finally, the conclusion is provided
in Section 5.

2. THD Measurement Methods

The THD is a crucial indicator for evaluating the quality and performance of the
power grid. This study utilizes THD as an indicator of system faults and develops fast and
sensitive fault protection methods that are both cost-effective and minimize the need for
complex equipment. By relying on THD to detect faults, the efficiency and effectiveness
of the protection system could be improved while minimizing the risk of costly and time-
consuming equipment failures. Overall, this study offers valuable insights into the potential
of THD as a fault detection mechanism.

To calculate THD, the square root of the sum of the harmonic components of a signal,
squared and divided by the fundamental component, is used. This is per the standard
definition outlined in references [38,39] and given by:

THD =

√
∑h|Ah|2

A1
·100, (1)

where h and Ah are the harmonic order and the amplitude of the h-th-harmonic component,
respectively, for h 6= 1, and A1 is the amplitude of the fundamental component. In this
study, the MSOGI-THD and SOGI-THD methods are employed to acquire the harmonics
required for determining the THD.

2.1. MSOGI-THD

The method described in [36] is used to obtain the harmonic components of the grid
in order to calculate the THD. In [36], an MSOGI is employed together with a Frequency
Locked-Loop (MSOGI-FLL) to obtain the fundamental and the 3rd, 6th, and 9th harmonics
of the grid voltages. The MSOGI uses multiple SOGIs operating in parallel and a cross-
feedback cancellation network to remove the unnecessary components from the input
signal, ensuring that each SOGI receives only the necessary component. Figure 2 illustrates
this configuration, where the input voltage signal is vin, the error is e, and the estimated
angular frequency is ω̃.

The MSOGI system uses an FLL to track the operative frequency of the grid. The
FLL is linked to the first SOGI, which provides the fundamental component. The FLL
delivers ω̃ to the paralleled SOGIs. The MSOGI can be affected by faults, which distort
the estimated ω̃ and cause further distortions to the system. Then, a saturation block is
applied to the FLL output to limit the distortion in ω̃ to be restricted within ±1 Hz of the
grid’s nominal frequency. In the MSOGI-FLL, the parameter ξ is set to 1/

√
2 to achieve

an optimal relationship between rejection to harmonic distortion and transient response
speed [40].

In [36], the THD is calculated using the triple-n harmonics (i.e., the 3rd, 6th, and 9th)
since these harmonics are typically present only in the power inverter’s AC-side neutral
point [41]. This ensures that the THD is not influenced by other harmonics that might exist
in the grid prior to the fault. When a fault occurs in the grid, there is a sudden drop in
the voltage phases, exciting almost all harmonic components. Consequently, the triple-n
harmonics are also excited, leading to a sharp pulse in the THD. This allows fast detection
despite the presence of other harmonics in the grid before the fault. Therefore, during
normal operation without faults, the presence of harmonics in the grid does not affect the
THD calculation because they are not considered in the computation.
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The MSOGI-FLL is used for each phase of the grid voltage and used to determine the
fundamental and 3rd, 6th, and 9th amplitudes of the harmonic components by using the
in-phase and quadrature-phase outputs of each SOGI as follows:

Ãh ≈ Ah =
√

v2
dh + v2

qh, (2)

where h is the index of the harmonic component. To calculate the THD for each phase of
the grid, the formula in (1) is used, which involves basic mathematical operations such
as summing the squared harmonic components, taking the square root, and dividing,
as shown in Figure 3. The resulting THD is denoted as ṽTHD. It should be noted that
multiplication by 100 is only necessary to convert the value to a percentage scale, while
saturation is applied to prevent a potential division by 0 during the initial stages of the
system. Additionally, a 2nd-order low-pass filter is designed to achieve a balance between
the transient response speed and the levels of distortion in the THD signal.
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2.2. SOGI-THD

The method for measuring THD outlined in [37] is employed in this paper, in which
the SOGI approach is used to obtain the harmonic components required for calculating
THD [42,43]. The technique described in [37] uses the definition of THD outlined in [38,39],
which is calculated using Equation (1). A SOGI-FLL is employed for 1 of the 3 phases of the
grid voltage, while only a SOGI is utilized for the remaining two phases, as ω̃ is provided
to them by the FLL stage of the 1st SOGI.

Consider a grid voltage composed of a fundamental and harmonic component as follows:

vin(t) = A1 sin(ωit) + ∑h Ah sin(hωit + ϕh), (3)

where ωi and ϕh represents the grid frequency and the phase angle of the h-th-harmonic
component, respectively. A SOGI filter is used for each phase to extract its fundamental
component, A1, by using its in-phase and quadrature-phase outputs and (2), while the rest
of the harmonic components are given through its error signal, e(t). Thus, by squaring e(t)
and applying trigonometric identities, it is found that the dc component is equivalent to half
the sum of the square of the amplitude of the harmonic components. The dc component can
be extracted by applying a low-pass filter with an appropriate cut-off frequency, resulting
in the average value of e(t) as follows:

LPF
(

e2
)
= ∑h

A2
h

2
, (4)

Now, the THD is obtained, by multiplying (4) by 2 to remove the 1/2 gain and by
taking the square root, as:

THD =

√
2

A2 LPF(e2)·100 =
√

2·LPF(µ)·100, (5)

where µ = e2/A2. Figure 4 depicts the THD’s block diagram. The THD output is denoted
as ṽTHD. Note that multiplication by 100 is used to show the value on a percentage scale,
and saturation is employed to prevent an eventual division by 0. The low-pass filter is
designed to achieve a balance between speed transient response and distortion levels in the
THD signal.
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The zero-sequence component is calculated as follows:

Vabc0 =
1
3
(va0 + vb0 + vc0), (6)

And, Figure 5 illustrates the block diagram used to obtain the 0-sequence component.
Note that in the SOGI-THD method, only the in-phase voltages of the SOGI used in each
phase of the voltage grid are necessary, i.e., va0, vb0, and vc0. For the case of the MSOGI-THD,
only the 1st SOGI of the scheme in Figure 2 is used to achieve the 0-sequence component.

The measurement of THD using the MSOGI-THD and SOGI-THD methods will be
able to detect faults since they suppose a sudden sharp change in grid voltages that excites
all harmonic components. Therefore, the THD obtained using these methods can be used
for a fast of faults, which is the core of the proposed detection algorithms.
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Figure 5. Block diagram for the zero-sequence component measurement, Vabc0.

As the behavior of THDabc, Ãabc, and Vabc0 will differ depending on the type of fault,
it is essential to have a fault classification algorithm to accurately identify the type of fault.

3. Fault Classification Algorithm

An algorithm has been developed for identifying and detecting faults at each PD
location. This algorithm uses measurements of the THDabc, Ãabc, and Vabc0 of the three-
phase voltage signals to determine the type of fault. For identifying phase-to-phase faults,
Vabc0 will be used.

3.1. Proposed System

Figure 6 illustrates a single-line diagram of the DS used for testing the methods, and
the system parameters are provided in Table 1. The diagram consists of a main grid and
multiple DGs connected to various buses. The high-voltage (HV) grid has a rated voltage
of 66 kV and a rated power of 25 MVA, and it is connected to three Distribution Lines (DLs;
DL1, 2, and 3) through a step-down HV/MV transformer. This transformer is configured in
a star/delta (YNd11) setup, which means its ground connection can significantly impact the
short-circuit current in the network and, therefore, the behavior of the protection system.
To overcome this issue, a zig-zag transformer is used to create an isolated neutral in the
power system. This common configuration provides a balanced and stable system even
in the presence of ground faults. In this work, the zig-zag transformer is connected to
the delta side of the voltage transformer, which is grounded through zig-zag at Bus 2,
as shown in Figure 6 [44]. Each DL has two PDs located on either side of the line, with
an FSM intended for fault isolation. The PDs contain a fault detection relay and circuit
breaker that trip and isolate the line based on a message from the FSM when a fault occurs.
Different local loads (L1 to L3) are connected to the end of each DL. Two DGs (DG1 and
2) are connected, through an MV/LV transformer, to different locations of the system.
Loads and DGs are connected to the low-voltage side using a delta/star grounded (Dyn11)
configuration [44]. Communication channels are employed between the PDs and the FSM,
and between the FSMs themselves, for transmitting trip signals to coordinate and isolate
faulted locations. The proposed approach’s behavior will be tested under various scenarios
in different locations, defined as F1 and F2, in Figure 6.

3.2. Fault Classification Algorithm Stages

In this work, the algorithm uses three stages to perform a rapid and secure decision to
detect and identify types of faults that may occur in the grid.
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Table 1. Parameters of the system.

Main Grid HV/MV Transformer
(YNd11) Distribution Lines (DLs) MV/LV Transformer

(Dyn11) DGs Rating

Rated voltage: 66 kV
Short circuit power:

360 MVA

Rated power:
20 MVA

Rated Voltage:
66/20 kV

Usc (%): 11

Resistance: 0.16 Ω/km
Reactance: 0.109 H/km

Capacitance: 0.31 µF/km
Length of line: 2 km

Rated power:
400 kVA

Rated Voltage: 20/0.4 kV
Usc (%): 4.5

Rated power:
6 MVA

Rated Voltage:
400 V

3.2.1. Pre-Processing Stage

This stage involves measuring the three-phase voltages, vabc, at each PD in the time
domain. From these measurements, the THDabc, Ãabc, and Vabc0 are calculated using the
MSOGI-THD and SOGI-THD approaches, as previously explained.

3.2.2. Fault Detection Stage

1. MSOGI-THD

In this case, the fault is detected using a threshold, αMSOGI . The transient response
induced by the fault in THDabc is compared with αMSOGI , and the detection is activated
when THDabc > αMSOGI . αMSOGI is set to 5%, which is the recommended level for voltage
harmonic distortion for DS in the IEEE standard 519-2014 [45].

2. SOGI-THD

In this case, the fault is detected using the THDabc transient response and low-pass
filtering of THD, noted as σLPFabc , which allows the detection of faults even when there is
harmonic distortion in the grid. The design of this proposal is illustrated in Figure 7.

The detection is done based on the difference between THDabc and σLPFabc . at the
precise instant a fault occurs. This difference is known as αabc:

αabc = THDabc − σLPFabc , (7)

where αabc represents the difference calculated for each phase. The presence of a fault is
detected when αabc exceeds a predefined threshold, αabc ≥ αo. In this case, αo was set to 25%
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to ensure a sufficient margin for avoiding false triggering caused by unexpected transients.
The σLPFabc was obtained by applying a low-pass filter with an appropriate cutoff frequency
to THDabc, thus obtaining its average.
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Figure 7. Adaptive SOGI-THD fault detection scheme using 𝑇𝐻𝐷𝑎𝑏𝑐 and 𝜎𝐿𝑃𝐹𝑎𝑏𝑐
. Figure 7. Adaptive SOGI-THD fault detection scheme using THDabc and σLPFabc .

Figure 8 depicts the behavior of the THD for phase “b” during a fault at 0.2 s, and
simultaneously, there is a fifth harmonic with a 5% amplitude distortion in the grid voltage.
Prior to the fault, the harmonic had been there for a sufficient duration to make the output
of the LPF equal to the input, so αb = 0. When a fault occurs, a sudden, sharp peak-pulse
waveform is produced in THDb that disappears over time, following an exponential decay
pattern. This transient is filtered by the low-pass filter (σLPFb ) which has a much slower
response than the THDb and takes a lot of time to be observed at its output. However, at
the moment of the fault, σLPFb . remains close to the THDb level that existed prior to the
fault. Thus, the difference, αb, closely corresponds to the difference between the actual
THDb and the past THDb level that the grid had at the moment of the fault. Therefore, the
utilization of the low-pass filter in this manner allows for the detection of sudden changes
in THDb caused by faults, regardless of the prior harmonic distortion levels that might be
present in the grid voltage. Upon detection, the algorithm reads and records the value of
σLPFb , referred to as σLPFmb , which will be used later for the identification process.
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Figure 8. An example of the behavior of 𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏 and 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏  during a fault of phase “b” with the pro-
posed fault detection algorithm. 
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3.2.3. Fault Identification Stage

In this stage, the identification process, in case of using any of the two THD approaches,
is done based on the behavior of Ãabc and Vabc0, depending on the fault case.

The MSOGI-THD approach uses a threshold named ∆v for comparing with Ãabc. ∆v
is set to 7.5%, which is the acceptable range for grid voltage drop at the medium voltage
level as recommended by the technical requirements in the Spanish grid code for reliable
energy integration [46]. In contrast, the SOGI-THD approach employs two thresholds
for identifying faults, σLPFmabc for comparing with THDabc, which should be verified as
THDabc > σLPFmabc upon detection, and ∆v, for comparing with Ãabc. In this case, ∆v is
also set to 7.5% [46].

In both THD approaches, during a fault event, a sudden drop in Ãabc is produced
due to the fall in the voltages of the faulted phases, which makes any of the estimated
phases be below the threshold, i.e., Ãabc < (1− ∆v) pu. Then, this condition is considered
a fault event. At this point, Vabc0 is used by both methods (THD approaches) to differentiate
between a phase-to-phase (2PH) and phase-to-phase-ground (2PH-G) fault, as the initial
conditions for both types of faults are the same. In the event of a 2PH fault, the zero-
sequence voltages are zero, while they are non-zero in the case of a 2PH-G fault [47].
Therefore, Vabc0 is utilized to determine the type of fault and adopt a decision. The faults
were grouped into 11 categories, numbered from zero to 10, see Figure 1. Figure 9 depicts
the fault classification algorithm structure.
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4. Finite State Machine

In the grid-line diagram of Figure 6, three FSMs have been defined to locate and isolate
faults in different locations of the DS. Fault isolation refers to the process of disconnecting a
faulted part of a system, in this case, DL, while keeping the rest of the system operational
by maintaining power to the rest of the DLs and the corresponding loads they serve [47].
This allows for repairs to be made to the faulted section without disrupting power to the
entire system or loads. Fault isolation is an important aspect of power system protection
and helps to minimize the impact of faults on the system and the customers.

In addition, the FSMs are designed to detect permanent faults and ignore temporary
faults, thus avoiding unnecessary tripping of protection devices, which can save time and
resources. Note that a permanent fault is expected to persist, while a temporary fault is
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expected to clear on its own without any protection action. The duration of a temporary
fault is usually less than 100 ms [48,49].

In this system, each FSM is allocated to a DL with its two PDs and comprises six
distinct states, as depicted in Figure 10. The figure provides a description of the FSM
for the two THD approaches, where the blue color denotes the MSOGI-THD, the red
color represents the SOGI-THD, and the green color signifies the common conditions of
both approaches.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 25 
 

 

S0
Start State 

S1
Normal  Operation 

S2
Fault 

Detection

S3
Waiting for the fault 

to be Permanent

S5
Grid

Reconnection

S4
Fault

Isolation

S6
Holding non faulted 

FSMs

Td ≤ 10ms

Tw ≥ 100ms

10ms< Td < 100ms

TH
D

ab
c>

 α
M

SO
G

I

α a
bc

> 
α˳

  
Ã a

bc
<

 (1
−∆

v)
  

TH
D

ab
c<

 α
M

SO
G

I

| α
ab

c| 
< 

 α
˳ 

Ã a
bc

<
 (1

−∆
v)

  

Tc ≥ 100ms

T
ri

pp
in

g 
th

e 
C

B
s 

an
d 

re
st

 T
c

THDabc< αMSOGI

| αabc| <  α˳  
Ãabc inside (1±∆v)  

Tc and Tw are internal timers
Td is the communication delay

Fault timer reach its 
maximum count: 
permanent fault

Fault massage 
received after a 
delay less than 

100ms  

No fault

Fault disappeared 
before Tc reach its 
maximum count 

of 100ms   

 
Figure 10. Scheme of the proposed FSM. 

4.1. State S1. Normal Operation 
The FSM typically begins in state S1 and stays there, while the system operates within 

a boundary of 1 ± ∆𝑣𝑣 pu around nominal values and𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  <  𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 for the MSOGI-
THD and |𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎| < 𝛼𝛼𝑜𝑜 for the SOGI-THD. Therefore, at S1, the FSM is waiting for a fault. 

4.2. State S2. Fault Detection 
When a fault occurs, the PD in charge of a DL detects it by observing 𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  >

 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  and 𝐴̃𝐴𝑎𝑎𝑎𝑎𝑎𝑎  <  (1 − Δ𝑣𝑣) pu for the MSOGI-THD or 𝛼𝛼𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 𝛼𝛼𝑜𝑜  for the SOGI-THD, 
and 𝐴̃𝐴𝑎𝑎𝑎𝑎𝑎𝑎  <  (1 − Δ𝑣𝑣)pu. At this point, a Wi-Fi protocol communication [50] is initiated 
between the PD and the FSM of a faulted DL to send a fault message to the FSM. Upon 
receiving the message, the FSM transitions to state S2. 

It is important to mention that the detection time of a fault by the algorithm inside the 
PD of a DL is influenced by the distance between the PD and the fault location. Specifically, 
the PD closest to the fault is expected to detect the fault in the shortest time. On the other 
hand, the Wi-Fi communication delay for a fault message to be transmitted will be small 
enough, less than 1 ms [51]. This gives the FSM a chance to have a high level of responsive-
ness to quickly locate the fault and adopt the decision to start the isolation process. 

In the event of a communication failure, the PD located at the other end of the faulted 
DL is responsible for transmitting the fault message to the FSM. This is because it is the 
second-fastest PD to detect the fault. As a result, the FSM of the faulted DL that is closest 
to the fault will generally locate the fault more quickly than the other FSMs. This feature 
is utilized to achieve faster and more efficient fault isolation, thereby minimizing the im-
pact of the fault. 

Now, once the faulted DL’s FSM enters S2, after receiving a fault detection message 
from the PD in charge, a timer named 𝑇𝑇𝑐𝑐 is started inside to measure the fault duration. 
Additionally, a new fault signal is sent to the other FSMs via communication links, advis-
ing them of the event and allowing them to stop their processes. For example, if a fault 
occurs at DL1, FSM1 will detect the fault faster than the other FSMs. 

Figure 10. Scheme of the proposed FSM.

4.1. State S1: Normal Operation

The FSM typically begins in state S1 and stays there, while the system operates within
a boundary of 1 ± ∆v pu around nominal values and THDabc < αMSOGI for the MSOGI-
THD and |αabc| < αo for the SOGI-THD. Therefore, at S1, the FSM is waiting for a fault.

4.2. State S2: Fault Detection

When a fault occurs, the PD in charge of a DL detects it by observing THDabc > αMSOGI
and Ãabc < (1− ∆v) pu for the MSOGI-THD or αabc ≥ αo for the SOGI-THD, and
Ãabc < (1− ∆v) pu. At this point, a Wi-Fi protocol communication [50] is initiated between
the PD and the FSM of a faulted DL to send a fault message to the FSM. Upon receiving the
message, the FSM transitions to state S2.

It is important to mention that the detection time of a fault by the algorithm inside the
PD of a DL is influenced by the distance between the PD and the fault location. Specifically,
the PD closest to the fault is expected to detect the fault in the shortest time. On the other
hand, the Wi-Fi communication delay for a fault message to be transmitted will be small
enough, less than 1 ms [51]. This gives the FSM a chance to have a high level of responsive-
ness to quickly locate the fault and adopt the decision to start the isolation process.

In the event of a communication failure, the PD located at the other end of the faulted
DL is responsible for transmitting the fault message to the FSM. This is because it is the
second-fastest PD to detect the fault. As a result, the FSM of the faulted DL that is closest to
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the fault will generally locate the fault more quickly than the other FSMs. This feature is
utilized to achieve faster and more efficient fault isolation, thereby minimizing the impact
of the fault.

Now, once the faulted DL’s FSM enters S2, after receiving a fault detection message
from the PD in charge, a timer named Tc is started inside to measure the fault duration.
Additionally, a new fault signal is sent to the other FSMs via communication links, advising
them of the event and allowing them to stop their processes. For example, if a fault occurs
at DL1, FSM1 will detect the fault faster than the other FSMs.

The variability in the transmission time of a fault message between FSMs can be
attributed to the communication technology employed and additional delays, referred
as Td. This system utilizes the IEC 61850 protocol, which is estimated to have a delay of
10 ms [52]. As a result, this protection system is reliant on a communication delay between
the FSMs to coordinate and operate effectively. However, delays between 10 ms and 100 ms
can occur, which may cause an FSM to receive a fault message during its process. In cases
where the delay exceeds 100 ms, the FSM may make an independent decision, potentially
resulting in the tripping of breakers.

Meanwhile, in S2, if the fault disappears, as in a temporary fault, then THDabc < αMSOGI
for the MSOGI-THD, or |αabc|< αo for the SOGI-THD, and Ãabc will return to its normal
value. The FSM will then return to its normal operation state (S1). Additionally, if the FSM
receives a fault message from the other FSMs, it will transition to state S6, which is used to
hold non-faulted FSMs.

The THDs exhibit a spike when a fault occurs, which gradually decreases over time
and eventually disappears. Therefore, whenever THDabc < αMSOGI for the MSOGI-THD,
or |αabc|< αo for the SOGI-THD, while Ãabc < (1− ∆v) pu still holds, the FSM enters state
S3 to check for the permanence of the fault. This peak behavior that exponential decay can
be observed in the figures presented in the results section of the paper.

4.3. State S3: Waiting for the Fault to Be Permanent

In this state, the timer Tc continues to count up, and once it reaches 100 ms, the FSM
transitions to state S4 for fault isolation. However, if the fault disappears, i.e., Ãabc returns
to its normal value before Tc reaches 100 ms, the FSM returns to S1 (normal operation)
without tripping the circuit breakers. In the event that the FSM receives a fault message
during state S3, and Tc is less than 100 ms, it transitions to state S6, indicating that the fault
is not located within the FSM’s protection area.

4.4. State S4: Fault Isolation

The FSM enters this state only when Tc reaches 100 ms, indicating that the fault is
permanent. Therefore, the FSM sends an active trip signal to the nearest circuit breaker to
isolate the fault. Furthermore, if any of the non-faulted FSMs also enter state S4, this implies
that they did not receive a fault message from the faulted FSM due to a communication
loss. After the tripping, Tc is reset to 0, and the FSM goes to state S5.

4.5. State S5: Grid Reconnection

In this state, the FSM waits for the grid operator or maintenance personnel to reconnect
the line and return the FSM to its normal operation state (S1).

4.6. State S6: Holding Non-Faulted FSMs

Finally, the FSM transitions to this state upon receiving a fault signal from a faulted
FSM in any of the S1, S2, or S3 states. At S6, the FSM keeps waiting until the fault either
disappears or is isolated. This waiting action is accomplished using a count-up timer called
Tw. When Tw reaches 100 ms, the FSM returns to its normal operating state (S1).
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5. Results

In this section, a comparison is conducted first between the MSOGI-THD and SOGI-
THD protection methods and then with other conventional protection methods. The
goal is to evaluate the performance and effectiveness of each method in detecting and
isolating faults in the proposed DS (see Figure 6). The methods are analyzed using MAT-
LAB/Simulink software under various scenarios, including changes in DG penetration,
fault type, fault resistance, and location, as well as in case of pre-existing harmonics and
additional communication delay. The parameters of the network in Figure 6 are shown
in Table 1.

5.1. DG Penetration Protection Test

In this section, the two protection methods are evaluated in the event of a fault
occurring at 0.2 s with varying levels of DG penetration. The conditions used in the
evaluation are given in Table 2.

Table 2. Some of the cases utilized in testing the protection methods.

Fault Type Location Defined as Contribution of DG Extra Communication Delay Harmonics Previous to the Fault

3PH-G DL1 F1 DG1 = 6 MW
DG2 = 6 MW 25 ms No Zero

2PH DL3 F2 DG1 = Zero
DG2 = Zero Zero Yes 5% of 5th Harmonic

5.1.1. Three-Phase Fault (3PH-G) at F1

Figures 11 and 12 depict the behavior of the MSOGI-THD and SOGI-THD protection
methods, respectively, during a 3PH-G with 2 DGs at F1; see Figure 6. Notice in both
figures how THDabc increases abruptly at 0.2 s while Ãabc drops toward 0 pu due to the
low fault resistance (r = 0.001 Ω). In Figure 11, the fault is detected at 0.2065 s when
THDabc > 5%. At 0.209 s, the condition Ãabc < 0.925 is met; therefore, the fault is identified
as an (ABC) fault.

In Figure 12, the fault is detected at 0.204 s when αabc > 25 and σLPFabc is read and stored
in memory (σLPFmabc ). At 0.206 s, the conditions Ãabc < 0.925 and THDabc > σLPFmabc are
met; therefore, the fault is identified as an (ABC) fault. In both methods, once PD2 detects
and identifies the fault, a fault message is sent to FSM1 using wireless communication
channels. It is worth noting that if PD2 fails for any reason, or in the case of communication
problems, PD1 will be the second fastest to be in charge of detecting the fault.

When FSM1 receives the fault message from PD2, it immediately moves to S2 and
sends a fault message to other non-faulted FSMs while starting a count-up on its own Tc
timer. In this fault-case scenario, an extra delay of 25 ms has been intentionally added to
the FSM’s communication links to show its effect on the protection system. As a result,
the non-faulted FSMs detect the fault and move to S2 before receiving the message. For
instance, in Figure 11, FSM2 and 3 detect the fault (i.e., move to S2) after 23 ms due to the
distance between the fault location and the PDs of DL2 and 3.

Once the FSMs receive the message, 25 ms later due to the delay, they transition from
S2 to S6 (hold state), and Tw starts counting up to wait for the fault to be isolated. The
THDabc’s behavior in FSM1 has a peak that decays exponentially to zero after a short time.
Then, when THDabc returns to be below 5% in Figure 11 or when the absolute value of αabc
is less than the threshold αo (|αabc| < αo) in Figure 12, while Ãabc < 0.925 pu still holds,
FSM1 transitions from S2 to S3, and Tc continues counting up. Upon reaching Tc = 100 ms,
the fault is declared permanent, and FSM1 moves from S3 to S4, causing the circuit breakers
in DL1 to trip and isolate the fault. Additionally, Tc is reset to 0, and FSM1 transitions from
S4 to S5 to wait for actions to reconnect DL1 to the grid. Note that in FSM1, a momentary
disruption in the grid occurs when transitioning from S3 to S4 due to DL1 disconnection,
causing THDabc to spike again. However, this does not affect the FSM since it is in state S4
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and does not consider THD. In non-faulted FSMs, once Tw reaches 100 ms, they return to
S1 (normal operation).
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Figure 11. MSOGI-THD protection method behavior during a 3PH-G fault with 2DGs at F1. Upper: 
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Figure 11. MSOGI-THD protection method behavior during a 3PH-G fault with 2DGs at F1. Upper:
THDabc. Lower: Ãabc.
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Figure 13a,b shows the grid currents (iabc) during a 3PH-G fault with 2DGs at DL1 for
the MSOGI-THD and SOGI-THD protection systems, respectively. Note in Figure 13a that,
due to the tripping signal sent by FSM1, both PD1 and PD2 of DL1 are tripped at 0.309 s. In
Figure 13b, note that the PDs trip at 0.306 s.
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5.1.2. Phase-to-Phase Fault (2PH) at F2

Figures 14 and 15 demonstrate the behavior of the MSOGI-THD and SOGI-THD
protection methods, respectively, during a 2PH event between phases b and c in the absence
of DGs at F2, as shown in Figure 6. During this test, a 5th harmonic distortion was
introduced in the grid before the fault. Figure 14 indicates that THDabc remains unaffected
by the 5th harmonic distortion because the MSOGI-THD design does not consider this
harmonic in his scheme. In contrast, Figure 15 shows that the SOGI-THD detected the 5th
harmonic distortion. However, since αabc < 25, it will not be considered a fault, and the
algorithm will not trigger any protective action.

It is worth noting that, at the time of the fault (0.2 s) in both Figures, only THDbc
increases abruptly, whereas THDa remains at 0%. Whereas Ãbc drops towards 0.5 pu due
to the absence of the ground connection and fault resistance (r = 0.1 Ω), while Ãa remains
unaffected (1 pu). In Figure 14, the fault is detected at 0.2055 s when THDbc > 5%. At
0.2085 s, the condition Ãbc < 0.925 is met and Vabc0 is checked to be zero, leading to the
identification of the fault as a (BC) fault.

Figure 15 shows that the fault is detected at 0.204 s when αbc > 25 and σLPFbc is read
and stored in memory (σLPFmbc ). At 0.2065 s, the algorithm identifies the fault as a (BC)
type since the Ãbc < 0.925, THDbc > σLPFmbc , and Vabc0 = 0 conditions are met. It is worth
mentioning that, in both protection methods, after PD6 detects the fault, a fault message is
transmitted wirelessly to FSM3.
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Figure 15. SOGI-THD protection method behavior during a 2PH fault without DGs at F2. Upper:
THDabc. Lower: Ãabc.

Upon receiving the fault message from PD6, FSM3 enters state S2 and sends a no-
tification to the other non-faulted FSMs while initiating the countdown on its Tc timer.
These FSMs receive the message after 10 ms due to the normal delay of the communica-
tion links and move from S1 to S6 (hold state), and Tw starts counting up. The THDabc’s
behavior of FSM3 suffers from a peak that decays exponentially to zero in a short time.
Then, when THDbc returns to THDbc < 5% in Figure 14 or when |αbc| < αo in Figure 15
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while Ãbc < 0.925 pu still holds, FSM3 goes from S2 to S3, and Tc continues counting up.
Whenever Tc reaches 100 ms, the fault is considered permanent, and FSM3 moves to the
fault isolation state (S4), sending a signal to trip the circuit breakers in DL3. Then, Tc is
reset, and FSM3 moves to S5, where it waits for reconnection actions. While FSM3 is in state
S4, all THD signals experience a spike resulting from DL3 disconnection, which causes
an abrupt change in the grid voltages. However, since FSM3 is in S4, this does not affect
its operation. At the non-faulted FSMs, the timer Tw continues counting up, and once it
reaches 100 ms, they return to the normal operation state (S1).

Figure 16a,b shows the grid currents (iabc) during a 2PH fault without DGs at DL3 for
the MSOGI-THD and SOGI-THD protection systems, respectively. It can be observed that a
fifth harmonic of 5% is present before the fault. Note in Figure 16a that, due to the tripping
signal sent by FSM3, both PD5 and PD6 of DL3 are tripped at 0.3085 s. In Figure 16b, note
that the PDs trip at 0.3065 s.
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and (b) SOGI-THD.

5.2. Comparison with Different Protection Methods

The system presented in Figure 6 was used to test the effectiveness of the conventional
overcurrent and differential protections [53] and compare them with the MSOGI-THD and
SOGI-THD methods. Recent research shows that integrating DGs into the power grid
poses a threat to conventional protections, particularly in complex systems with multiple
protection devices. As a result, coordinating the Overcurrent Relays (OCRs) can be difficult,
leading to false tripping and unnecessary service interruptions [54].

The Differential Relay (DR) is a commonly employed protection that depends on
the differential current value to address the issue of bidirectional power flow in a DS.
Nevertheless, if the current transformers are saturated or not properly configured, the DR
may experience tripping problems. Moreover, the settings of both the OCR and DR must
be updated due to the grid’s changing circumstances [55–57].
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5.2.1. Fault Detection Performance Analysis for the Protection Approaches

A 3PH-G (ABC) fault with 2DGs located at DL1 in F1 is considered in this section at
0.2 s with a fault resistance of 0.001Ω to compare the performance of the OCR and DR with
the results of the proposed THD methods presented in Section 5.1.1. Tables 3 and 4 show
the settings used for the OCR and DR, respectively. It’s worth noting that the OCR was
designed with the IEEE extremely inverse curve, which ensures the fastest disconnection in
comparison with the other curves [58].

Table 3. OCR Settings.

Parameter Value

Pick up current (pu) 1
Time dial (TD) 0.5

Current transformer ratio (CT) 500:1

Table 4. DR Settings.

Parameter Value

Differential current (pu) 1.08
Biased characteristic (K) 0.5

Current transformer ratio (CT) 500:1

The performance of the OCR and DR protection methods is shown in Figure 17. The
OCR and DR had been designed to take action after a delay of 100 ms of the fault detection
for simplicity of comparison.
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Table 5 shows the fault detection and clearing times for each method. Note that the 
DR and OCR of DL1 had cleared the fault at 0.315 s and 0.4750 s, respectively, which, 
considering the 100 ms, means that the DR takes 15 ms to detect the fault, whereas the 
OCR takes 175 ms. Figure 17 indicates that utilizing the OCR protection method is not 
advisable, as it allows the fault to continue for several cycles, posing a risk of equipment 

Figure 17. iabc currents for the grid during a 3PH-G fault with 2DGs at DL1 using (a) OCR and
(b) DR.

Table 5 shows the fault detection and clearing times for each method. Note that the
DR and OCR of DL1 had cleared the fault at 0.315 s and 0.4750 s, respectively, which,
considering the 100 ms, means that the DR takes 15 ms to detect the fault, whereas the
OCR takes 175 ms. Figure 17 indicates that utilizing the OCR protection method is not
advisable, as it allows the fault to continue for several cycles, posing a risk of equipment
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damage. It can be inferred that the DR, MSOGI-THD, and SOGI-THD methods can rapidly
isolate the faulted DL in the system. Nevertheless, the SOGI-THD protection approach
demonstrated the fastest response, clearing the fault at 0.306 s, meaning that it takes only 6
ms for detection, as shown in Figure 13b.

Table 5. Fault detection and clearing times of the protection approaches with a 3PH-G fault at F1.

Approach Fault Detection Time (ms) Fault Clearing Time (s)

SOGI-THD 6.0 0.3060
MSOGI-THD 9.0 0.3090

DR 15.0 0.3150
OCR 175.0 0.4750

5.2.2. Different Fault Resistance Protection Tests

Changing the fault impedance can pose a challenge in detecting faults in distribution
networks for many protection techniques. Therefore, this section explores the behavior of
the protection methods when an unsymmetrical 1PH-G fault with the 2DGs occurs at the F2
location in DL3 at 0.2 s; see Figure 6. The fault resistance is changed to r = 6 Ω. Figure 18
shows the performance of the DR, MSOGI-THD, and SOGI-THD methods during the fault.
It can be observed that the SOGI-THD is the fastest at clearing the fault. The SOGI-THD,
MSOGI-THD, and DR clear the fault at 0.3068 s, 0.3092 s, and 0.316 s, respectively.
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Figure 18. 𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 currents for the grid during a 1PH-G fault with 2DGs at DL3 using (a) SOGI-THD, 
(b) MSOGI-THD, and (c) DR protection methods. Figure 18. iabc currents for the grid during a 1PH-G fault with 2DGs at DL3 using (a) SOGI-THD,

(b) MSOGI-THD, and (c) DR protection methods.
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The protection methods were tested under various fault resistances, types, locations,
and DG penetrations. The results consistently showed that in all scenarios, the SOGI-THD
method cleared the fault faster than the other ones, as seen in Figure 19.
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5.2.3. Different THD Methods Computational Burden Assessment

The THD protection method explained in [24] is compared with the SOGI-THD and
MSOGI-THD methods to validate and emphasize the advantages of the proposed ap-
proaches. In [24], a Fast Fourier transform (FFT) was used to achieve the required harmonics
and THD for each phase of the voltage signal and define the protection algorithm.

According to [36,43], the SOGI-FLL and FFT methods were implemented into a DSP,
and the computational burden was computed in the number of processor cycles (c) used
to compute the SOGI, the FLL, and the FFT blocks. In [43], it was reported that the SOGI
needs 149c, the FLL 49c, and the FFT 7019c per phase. Table 6 shows the number of SOGIs
and the processor cycles required for executing each method. It can be seen from Table 6
that the SOGI–THD method requires the lowest number of SOGIs and processor cycles
when it is executed in the DSP. This justifies the fact that it is much more computationally
affordable without affecting the THD calculation or the operation of the protection system.

Additionally, the THD protection techniques proposed in this study are compared
alongside other methods in similar conditions. Table 7 compares the methods based on their
response speed, accuracy, cost of implementation, the use of inverter-based systems, com-
munication needs, and the grid configuration used for testing. Table 8 presents a summary
of the tripping times of these methods and their respective advantages and drawbacks. It
can be concluded that the SOGI-THD approach may be a feasible solution for ensuring
reliable and fast protection under various conditions when using communication lines.

Table 6. Number of SOGIs and cycles required to compute the THD of the three-phase system in
each method.

Method Number of SOGIs Number of Cycles (c)

SOGI-THD 3 447
MSOGI-THD 12 1788

FFT-THD Not applicable 21,057
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Table 7. Comparison of different protection approaches operating under similar conditions.

References Protection Strategies Parameter Used Speed Accuracy Cost Inverter Based Communication Grid
Configuration

[25] Wavelet individual entropy and fuzzy
inference system Current High High Low Yes Not Required Radial

[28] fuzzy logic technique Current High Medium Low No Not Required Radial/Ring

[26] Wavelet transform and support
vector mechanism Voltage Medium High High No Not Required Radial/Ring

[29] Statistical morphology, recursive least
square methods and Butterworth filter Current High High High Yes Required Ring

[31] Differential phase angle criteria Voltage High High High Yes Required Ring

[32] S-transform Current and Voltage Medium Medium High Yes Required Radial

[33] Power spectral density and transform. Current High High High Yes Not Required Radial

[34] Deep belief network, time-time
transform and PUM Current Low High High Yes Required Radial/Ring

[27] Traveling wave and wavelet analysis Current High High High No Required Radial

[30] Least square Adaline algorithm and
modified support vector mechanism Current Medium High High Yes Not Required Radial/Ring

[35] Hilbert-Huang Transform
differential relay Current High High High Yes Required Ring

[37] SOGI-THD Voltage High High Low Yes Required Radial
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Table 8. Comparison of the THD approaches with other methods operating under similar conditions.

References Protection Strategies Trip Time Advantages Disadvantages

[59] Centralize Controller and
Linear Programming 421 ms Relay settings can be obtained instantly

without requiring any training

Possibility of communication failures,
the complexity grows with a higher

number of buses

[60] Multi-Agent System
and OCR 300 ms No central controller Possibility of communication failures

[61] OCR >200 ms Variable fault resistance and DG
penetration

Not adaptable for network
modifications

[62] Dual settings OCR >100 ms Variable fault resistance and DG
penetration Offline calculation

[63] Multi-Terminal DR 90 ms Fast, variable fault resistance and DG
penetration Possibility of communication failures

[23] THD 20–50 ms Fast, no need for a voltage transformer Possibility of communication failures,
validated only for three-phase faults

[64] Deep neural network 20–30 Fast, variable fault resistance and DG
penetration

Possibility of communication failures
and inflexibility in the case of network

modifications

[16] OC and ANN 14 ms Fast, variable fault resistance and DG
penetration

Possibility of communication failures,
a complex training process, and

inflexibility in the case of network
modifications

[36] MSOGI-THD 7–10 ms

Fast tripping, variable fault location
and types, variable fault resistance and

DG penetration, affordable
computational burden.

Possibility of communication failures

[37] SOGI-THD 6–8.5 ms

The same merits of the MSOGI-THD.
In addition, it is faster and more

reliable with a higher THD threshold,
requires fewer SOGIs, and has a lower

computational burden.

Possibility of communication failures.

6. Discussion

This study aims to compare the effectiveness of two THD-based protection methods,
MSOGI-THD and SOGI-THD, against traditional overcurrent and directional protection
methods in a radial distribution system (DS) that includes distributed generation (DG)
connections. The analysis takes into account various fault scenarios, types of faults, fault
resistances, DG penetrations, and fault locations. The impact of communication delays and
the presence of distorting harmonics on the effectiveness of these protection methods have
also been examined.

The results indicate that both MSOGI-THD and SOGI-THD protection methods are
highly effective in detecting faults in distribution systems with varying levels of DG
penetration and fault resistance. In addition, these methods are capable of differentiating
between actual faults and harmonic distortions that may exist in the system prior to a
fault, which helps prevent unnecessary protective actions. Moreover, the results showed
that communication delays had little impact on the performance of the protection process,
which points out that the THD-based protection methods may be well suited for use in
large-scale power grids where communication delays are common.

In addition, the comparison found that the THD-based protection methods performed
better than traditional OCR and DR protection methods in terms of response time and
efficiency in isolating faulted sections of the distribution system. The OCR protection
method takes longer to detect faults, which can delay the clearing of the fault and increase
the risk of equipment damage.

Finally, the work also tried to compare the performance of an FFT-THD-based pro-
tection method with the MSOGI-THD and SOGI-THD methods. An FFT-THD method is
found to be more computationally expensive and requires a significant number of processor
cycles. In contrast, the SOGI-THD method is found to significantly reduce fault detection
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time and provide accurate fault detection while requiring a low computational burden,
making it a possible option to be used for improving the reliability and safety of power
grids with DGs.

7. Conclusions

A comparative study of two THD protection techniques for DS has been proposed
in this paper. These techniques are based on the THD of the grid voltages, the estimated
amplitude voltages, and the zero-sequence component to define an algorithm to detect,
identify, and isolate faults in the grid. The first method employs an MSOGI-THD to
obtain the estimated variables, whereas the second method employs a SOGI-THD for the
same purpose.

The simulation results in Section 5 showed that, when compared to MSOGI-THD and
traditional OCR and DR protection methods, the SOGI-THD technique is the fastest in
detecting and isolating faults. The method proved to be effective under various circum-
stances, including different fault types, DG penetration levels, fault resistances, and fault
locations within the studied network.

The study findings demonstrate that the SOGI-THD protection method achieves a
faster fault detection response in the protection system. The time response of the SOGI-
THD method has been measured to be between 6 and 8.5 ms across all cases examined.
In contrast, the MSOGI-THD method showed a fault detection time response that was
between 7 and 10 ms. The DR approach exhibited a longer fault detection time, exceeding
15 ms. The OCR approach was found to be undesirable, given its fault detection time of
more than 150 ms.

In terms of fault detection accuracy, the SOGI-THD approach outperforms OCRs and
DRs. The SOGI-THD has a high detection threshold and the ability to operate regardless
of the harmonic distortion of the grid at the moment of the fault. Conversely, OCRs have
limited accuracy and may not accurately detect faults under certain conditions, such as
high impedance faults. While DRs are more accurate than OCRs, they may require more
complex algorithms and higher computational resources.

Compared to other methods, the SOGI-THD approach requires the least computational
burden from digital processors. It employs only three SOGIs and 447c for execution,
involving few mathematical operations to obtain the estimated variables. In contrast, the
MSOGI-THD requires 12 SOGIs and 1788c for execution, while the FFT-THD needs 21057c.
This indicates that SOGI-THD is the most computationally efficient method.

Furthermore, the practical advantages of the SOGI-THD method were demonstrated
in terms of the trip time response speed of the PD when compared to other protection
methods that operate under similar conditions.

In future work, the method’s findings can be verified experimentally to ensure their
reliability. Moreover, the feasibility of implementing the methods in more complex DSs,
such as ring DS, that feature varying high voltage levels can be investigated. Furthermore,
further research could be directed toward minimizing the communication requirements
within the system.
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