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Abstract: Thermal comfort is crucial to well-being and work productivity. Human thermal comfort is
mainly controlled by HVAC (heating, ventilation, air conditioning) systems in buildings. However,
the control metrics and measurements of thermal comfort in HVAC systems are often oversimplified
using limited parameters and fail to accurately control thermal comfort in indoor climates. Traditional
comfort models also lack the ability to adapt to individual demands and sensations. This research
developed a data-driven thermal comfort model to improve the overall thermal comfort of occupants
in office buildings. An architecture based on cyber-physical system (CPS) is used to achieve these
goals. A building simulation model is built to simulate multiple occupants’ behaviors in an open-
space office building. Results suggest that a hybrid model can accurately predict occupants’ thermal
comfort level with reasonable computing time. In addition, this model can improve occupants’
thermal comfort by 43.41% to 69.93%, while energy consumption remains the same or is slightly
reduced (1.01% to 3.63%). This strategy can potentially be implemented in real-world building
automation systems with appropriate sensor placement in modern buildings.

Keywords: cyber-physical system; HVAC; thermal comfort model; artificial neural network; support
vector machine

1. Introduction

Thermal comfort has been linked with personal happiness as well as worker produc-
tivity. Many people spend most of their time indoors. Indoor climate is almost exclusively
controlled by heating, ventilation, and air conditioning (HVAC) systems. The energy cost
of HVAC systems can account for up to 40% of the total energy usage in large cities [1].
Therefore, the design of HVAC systems in buildings is one of the most important aspects in
building energy analysis.

EnergyPlus [2] and TRNSYS [3] are popular computing simulation software applica-
tions used to analyze complex building HVAC systems. These applications are preferred by
engineers and scientists due to their superior calculation speed, realistic modeling capacity,
and the convenience of rapid model development. However, even with these advanced
features, implementing advanced control algorithms is often difficult. For example, control
systems simulated in these applications are often limited to basic rule-based control, which
is not sophisticated enough to fully capture the complexities of building systems. Addi-
tionally, occupant thermal comfort satisfaction is typically oversimplified to temperature
regulation, which is not entirely accurate.

Thermal comfort is a sensation of thermal stress, mainly caused by human’s ther-
moregulatory effort of maintaining relatively constant body temperature. The modeling
of thermal comfort typically can be categorized into three types: heat balance models,
adaptive models, and data-driven models.

The most well-known heat balance model is the predicted mean vote (PMV) index,
which is the current ASHERE and ISO standard [4]. The PMV index is a static model
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that uses six independent parameters (air temperature, mean radiant temperature, relative
humidity, air speed, metabolic rate, and clothing insulation) to estimate human thermal
comfort based on the heat exchange between human body and the surrounding environ-
ment, with heat dissipation from metabolism kept in mind. When the heat transfer rate
reaches a certain level, the average thermal sensation (based on a large-scale field study)
can be computed. The result is a seven-point scale representing user satisfaction level,
which can range from −3 to +3 (too cold to too hot), where 0 is neutral.

Static heat balance models have been utilized in many thermal comfort research studies.
For instance, Boregowda and Tiwari developed a human thermal model using finite element
methods to simulate human thermal physiological responses and perception of thermal
comfort in a non-uniform thermal environment [5]. Al-Mutawa, Chakroun, and Hosni
conducted a large-scale experiment in Kuwait governmental offices to validate the existing
ASHRAE PMV model proposed for use worldwide [6]. Results revealed that people in
Kuwait felt comfortable with PMV values in the range of −0.5 to 0, which does not entirely
correspond to the ASHRAE comfort zone. Additionally, people in Kuwait preferred an
average operative temperature of 23 ◦C and relative humidity of 40%, while factors such as
gender, age, and educational background appeared to have a negligible impact on thermal
comfort preference. Farooq and Brown conducted a subjective survey to assess the thermal
comfort level of students in an auditorium-type university classroom [7]. The surveys
were analyzed using a regression method to predict the neutral temperature, preferred
temperature, and acceptable temperature range for the students. This study also enables a
comparison between thermal comfort level and energy consumption. Katramiz, Ghaddar,
and Ghali investigated system performance for an office space application concerning
thermal comfort and energy savings through the implementation of an appropriate control
strategy. The results showed that the use of intermittent personalized ventilation (IPV) and
mixed-mode ventilation (MMV) systems significantly reduced the number of AC operation
hours while providing thermal comfort [8].

Adaptive models consider the preferences of different demographic groups. Previous
research on adaptive models has examined factors such as age [9,10], gender [10–12], and
fitness level [13]. Other factors, such as GDP per capita and floor area per person, have also
been shown to influence people’s thermal sensations [14]. Typically, extensive survey or
field studies are required to obtain representative results for these factors.

Recent advancements in ubiquitous sensor networks and machine learning provide
an alternative approach to thermal comfort modeling: data-driven models [15]. In this
approach, there is no predefined model, but rather models are generated based on inputs
collected by a sensory system and feedback from users, who are the ultimate judges of
thermal comfort. This approach has several benefits: (1) it can adapt to groups as small as
one individual; (2) it is easy to incorporate into control systems; and (3) it reduces the need
for highly accurate building modeling, which can be time-consuming and impractical for
retrofitting HVAC systems.

Due to the vast number of variables and nonlinearity involved, machine-learning-
based algorithms are preferred for modeling. Fuzzy logic [16] and artificial neural networks
(ANNs) [17] have been explored for thermal comfort control, while deep learning methods
such as convolutional networks [18] and long short-term memory (LSTM) networks [19]
have been used for air quality prediction. Another supervised learning method, support
vector machine (SVM), has also gained popularity. SVM has been applied in various fields,
including building energy management [20], HVAC system diagnosis [21], and thermal
comfort prediction [22]. Zhou et al. demonstrated that the SVM model could better fit data
sampled from the ASHRAE RP-884 thermal comfort database than the PMV model [23].

The objective of this study is to enhance the performance of HVAC control by utilizing
a data-driven thermal comfort model that is adaptable to occupant variability. This study
is aimed at achieving the following research objectives:
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• Develop a co-simulation platform based on a cyber-physical system (CPS) that can
simulate building physics through specialized building simulation software while
externally implementing advanced control algorithms.

• Establish a quantitative method of generating simulated building occupants using heat
balance models and adaptive factors and determine the impact of occupant variability
on HVAC control outcomes.

• Create a data-driven thermal comfort model and evaluate the accuracy of various
machine-learning algorithms.

• Optimize the overall thermal comfort of multiple occupants in open-space office build-
ings using the proposed thermal comfort prediction model and assess its effectiveness.

2. Materials and Methods
2.1. Overview of Methods
2.1.1. Co-Simulation

To overcome the limitations of traditional building simulation programs, in this re-
search, a co-simulation of EnergyPlus and MATLAB are coupled within the middleware
Building Controls Virtual Test Bed (BCVTB) developed by Lawrence Berkeley National
Laboratory [24] and MLE+ developed by University of Pennsylvania [25].

EnergyPlus is used to simulate the realistic behavior of buildings, and MATLAB is
used to control the actuators (air conditioners) in the rooms based on the optimization of the
data generated by EnergyPlus. BCVTB and MLE+, as middleware, provide a user-friendly
interface to integrate these two different tools (Figure 1).
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Figure 1. Coupling of MATLAB and EnergyPlus in MLE+.

2.1.2. Control System

The objective of the control system is to minimize thermal comfort unsatisfaction
and potentially the energy cost of the HVAC. The control system used in this research is a
feedback closed-loop control system. The diagram is shown in Figure 2.
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Figure 2. Control diagram for system.

2.1.3. Control Strategies

The control strategy is defined as a combination of the thermal comfort model and
control algorithms. The former defines the criteria for the thermal comfort of the occupants,
and the latter decides how the predicted comfort level is used to control the physical system.
Three control strategies are defined and used in this research.

Conventional rule-based temperature control. In conventional rule-based control, the
thermal comfort objective is based purely on temperature to fulfill ventilation requirements,
with potential limitations due to humidity. The actuators in the HVAC system (vents) are
then controlled according to the set point.

Thermal comfort-based control with probability model. In the thermal comfort-based
control with probability model strategy, thermal comfort level is evaluated based on
the air temperature and relative humidity of the room using probabilistic reasoning. In
implementation, the indoor temperature at which the user is comfortable (for example,
when there is no control action for a period) is recorded in the first phase. When enough
data are collected, a probability distribution is used to predict the most comfortable setting.
Mathematically, this strategy is essentially a regression model. This method is used in some
commercial thermostat products.

Thermal comfort-based control with machine-learning model. The strategy of using
a machine learning model for thermal comfort-based control is somewhat similar to the
probability-based strategy. In the training phase, multiple environmental parameters,
including air temperature, humidity, radiant temperature, and user input, are collected
and used to train a personalized model for a specific occupant’s comfort. Unlike a simple
probability model that considers only temperature and humidity as parameters, this model
is derived from a standard physical heat-balanced model of the human body, known as
the PMV index, and includes consideration of adaptive factors such as gender, age, and
BMI. Once the model is trained, the predicted thermal comfort level serves as the control
variable for HVAC control. A fuzzy control set is used as the control core for the controller,
and thermal comfort is divided into five levels: cold, neutral, warm, hot, and extremely
hot. Since the output variable is the opening of the vent, which is a continuous value, the
output is evaluated and applied to a PID control.

These three strategies are summarized in Table 1.

Table 1. Control strategies.

Thermal Comfort Model Inputs Available Control Algorithms

Traditional T, RH On/Off
Probability-based T, RH On/Off, PID, Fuzzy
Machine-learning-based T, RH, Tmrt, Tcool air, vair On/Off, PID, Predictive
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2.2. Experiment Setups
2.2.1. Building Simulation

The building model is based on a real room, with a view toward calibration in later steps.
The size of the room is 6.89 m × 6.83 m × 2.44 m (or 22.6 ft × 22.4 ft × 8 ft, L ×W × H).

It has one large 8 m × 3 m window facing north. The HVAC system is a typical central
HVAC VAV box system. The air temperature varies from 16 to 22 ◦C. The heat dissipation
of occupants dynamically changes based on the sum of metabolic rates obtained from
EnergyPlus ActLevel variable in the occupant simulation. Other heat sources included
1500 W lights and 1200 W electric equipment (computers, etc.) The properties of the
building materials are listed in Table 2.

Table 2. Construction material properties in simulated building.

Construction Material Major Thermal Properties

Wall R13 Layer Thermal resistance: 2.291 m2·K/W
Roof R31 Layer Thermal resistance: 5.456 m2·K/W

Floor HW Concrete Conductivity: 1.729577 W/(m·K)
Specific heat: 836.8 J/(kg·K)

Window Glass (6 mm) Conductivity: 0.9 W/(m·K)
Transmittance: 0.81

Six cubicles were formed, each 0.61 m × 0.61 m (2 ft × 2 ft), in the middle of the room,
to mimic the layout of a typical office. Two types of boundaries were used to separate each
zone: First, the boundaries between Zones 1 to 6 and the outer space Zone 7 constitute
“air gaps”, to simulate the dynamics of each cube in a large open space while maintaining
behavior comparable to a single continuous space. Second, two boundaries between each
cube are semi-walls, which will be calibrated later.

The simulation model was drawn using SketchUp with the above parameters (Figure 3)
and imported into EnergyPlus. Figure A1 in Appendix A shows the floor plan of the
simulated room.
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For weather conditions, historical weather data from dataset Typical Meteorological
Year 2/3 provided by National Renewable Energy Laboratory [26] for four U.S. cities were
used (Table 3). To evaluate the flexibility of the system, cities from different regions were
selected. In addition, because the focus of this study is on air conditioning, most of the
cities chosen are located in the southern U.S.



Sensors 2023, 23, 4857 6 of 22

Table 3. List of cities used in the simulation experiment and their locations.

City Name Location Elevation (m) Data Sources

Phoenix, AZ N33◦25′, W112◦1′ +339 WMO Station 722780
Chicago, IL N41◦58′, W 87◦55′ +201 WMO Station 725300
College Station, TX N30◦34′, W 96◦22′ +96 WMO Station 722445
Tampa, FL N27◦58′, W 82◦31′ +6 WMO Station 722110

The influence of exterior solar radiation, especially through the window in the building,
is simulated using EnergyPlus built-in solar options, based on Horizontal Infrared Radiation
Intensity provided in the weather file. The ASHRAE Clear Sky solar model is used.

2.2.2. Occupant Simulation

The adaptive models described below are used to simulate profiles or models of
occupants. The primary objective is to generate occupants that are realistic and varied
enough to test the machine-learning model’s flexibility. As such, only a few typical adaptive
factors are considered instead of an exhaustive list of variables.

The mathematical model of each occupant is represented by the deviation of their
thermal comfort from the standard heat balance model (PMV index model is used in this
study), due to adaptive factors, in two ways: (1) shift their comfortable region (i.e., at what
kind of thermal environment they feel comfortable) and/or (2) change the range of the
region (i.e., how far away from the neutral point they will start to feel uncomfortable).

The first part can be represented by a neutral modified temperature, which means at
this specific Tm, subject feels most comfortable:

Tm,neu = Tm,neu,region + ∆Tm,neu,gender + ∆Tm,neu, f itnss

where modified temperature Tm is the equivalent temperature to factor in all the environ-
mental factors into one based on predicted mean vote (PMV) model.

The base Tm,neu,region is decided by the region that the occupants come from. In this
study, it is assumed from the US [27], which is 25.6◦.

The female feels colder within the same temperature than the male. In addition to
different mean neutral points, the female tends to have slightly wider variance in terms of
their preference [10–13]. Table 4 lists the equations adopted in this research.

Table 4. Influence of gender on neutral modified temperature deviation.

Gender ∆Tm,neu,gender

Female −0.5 ± 1.3
Male 0.4 ± 1.4

Deviations from neutral temperature for different fitness level based on BMI (body
mass index) [13] are listed in Table 5.

Table 5. Influence of fitness on neutral modified temperature deviation.

Fitness (BMI) ∆Tm,neu,fitness

Thin (<20) 0.3
Normal (20–24) 0

Fat (>24) −0.5

For comfortable region range, the relationship from [28] is used to calculate the com-
fortable range of young and elderly people:

Young: Com f ort_region = [Tneu − (1.0± 0.4), Tneu + (0.8± 0.4)]
Elderly: Com f ort_region = [Tneu − (2.2± 1.2), Tneu + (1.9± 0.5)]
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The minimum comfort region size is considered 0.5 ◦C modified temperature. Any
generated data that are less than this will be expanded in both directions until the minimum
is reached. Figures 4 and 5 below show data for 500 subjects randomly generated using the
above rules.
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Once the occupants are generated, a total of six occupants are selected. The comfort
level can be interpolated from the comfortable region above using the three fixed points:
Tm,neu and the lower and upper bounds, with current modified temperature, Tm.
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Tm is calculated using environmental inputs. In short, Tm is the temperature that will
give the same PMV value when all the other heat balanced factors are set as standard value.
It can be calculated by recursively solving the following equation:

PMV(Tm, Tm, RHstd, fcl,std, Wstd, Mstd, Va,std) = PMV(Ta, Tmrt, RH, f cl , W, M, Va)

On the left, both air temperature and mean radiant temperature use modified temper-
ature Tm (i.e., assuming they are the same). The other parameters are fixed as standard
values: relative humidity RHstd = 0.4; clothing factor fcl,std = 0.6 clo; external mechanical
work Wstd = 0 W/m2; metabolic rate Mstd = 1 Met; mean radiant temperature Tmrt = Tair;
and air velocity Va,std = 0.1 m/s.

The environmental inputs used are listed in Table 6.

Table 6. Environmental inputs for occupant thermal comfort model.

Parameter Unit Lower Limit Upper Limit

Room temperature ◦C 20 28
Mean radiant
temperature

◦C 20 28

Relative humidity (n/a) 10% 90%
Air speed m/s 0 0.3

2.3. Procedures

The overall simulation procedure is described below and depicted as a flowchart in
Figure 6.
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1. Randomly generate six subjects to use, following the rules above. The features (gender,
age, and fitness level) are uniformly chosen.

2. Assign each subject to a cubicle in the simulated building.
3. The building physical model is simulated in EnergyPlus, with the environmental data

pipelined to MATLAB.
4. The simulation period spans 6 months, from 1 May to 31 October. The corresponding

weather data are provided by the EnergyPlus database, which is the average historical
data for each location.

5. For the probability model and machine learning model, the first few days are used as
training phases. The thermal comfort level of each subject represents their “votes.”

6. After the model is trained, the predicted level from the thermal comfort model is
used as an input to the control algorithm. The values of the control variables at the
conclusion of each cycle are pipelined back to EnergyPlus as settings for the actuators
(set point, volume flow rate of each vent in each cube) for the next cycle.

7. For the machine-learning-based modeling methods, the trial is repeated 500 times for
each city with different random seeds.

3. Results
3.1. Experimental Calibration of the Simulation Model

The thermal properties of the partition walls between cubes were calibrated using
experiments (Table 7).

Table 7. Results of calibration.

Wall Resistance
(m2·K/W)

Correlation R2

Average Zone 4 Zone 6

0.01 0.67 0.57 0.62
0.043 (best) 0.87 0.86 0.90

0.1 0.74 0.79 0.69

A physical setup identical to the simulation model was built in an office space, with
temperature and humidity sensors placed in each cubicle to record data. The temperature
and humidity readings from one zone (5) were fixed in the simulation, and readings from
the other zones were compared with experimental results (Figure 7). The resistance of the
partition wall is repeatedly adjusted to achieve the best fit. To prevent overfitting, only data
from Zone 4 and 6 are used in the calibration process.
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After the calibration experiment, the virtual wall resistance was determined to be
0.043 m2·K/W (indicated in bold in Table 7)

3.2. Thermal Comfort Level

Four different regressors were tested for prediction of continuous comfort level: least
squares (LS), binary decision tree (BDT), artificial neural network (ANN), and support
vector machine (SVM). The parameter settings for each method are described in Table 8.
The training dataset size varied from 50 to 200. The upper limit of dataset size is selected
based on preliminary results to ensure it achieves sufficient prediction accuracy without
overfitting. Two lower values are selected to examine the quality of the regression when
samples are few, since shorter training data collection time is desired in practice. Each
model was hyperparameter-optimized using a small trial set of data. L2 regularization was
also applied to the least squares method.

Table 8. Parameter settings for open-space regression methods.

Method Abbreviation Parameters

Linear (least squares) LS L2 regularization applied
Regularization: ridge

Binary decision tree BDT Min leaf size: 2
Max number splits: 30

Artificial neural network ANN

Backpropagation algorithm:
Levenberg–Marquardt
Hidden layer size: 10
Validation dataset ratio: 20%

Support vector machine regression SVM

Kernel function: Gaussian
Kernel scale: 6.68
Box constraint: Inf
Epsilon: 0.008
Standardized
Outlier fraction: 20%

3.2.1. Training and Validation

Metrics used included training computing time, resubstitution mean squared error
(MSE), and resubstitution coefficient of determination (R2) for training; these were evalu-
ated for all regressors.

The SVM regression model outperformed all the other models in terms of accuracy
(Table 9). It had significantly lower MSE when using small (50 or 100) data sets. The ANN
model reached similar levels of performance when the size of the data set increased to
200. Both the SVM and ANN models can reach around 0.99 R2 with only 50 data points.
Statistically, the difference between the two is not significant.

Table 9. Training resubstitution coefficient of determination R2.

Train Set Size Least Squares
Binary

Decision
Tree

Artificial
Neural

Network

Support
Vector

Machine

50 0.7947 0.9092 0.9715 0.9897
100 0.8924 0.9366 0.9913 0.9970
200 0.9309 0.9499 0.9983 0.9987

The performance of the BDT model is relatively poor compared to the ANN and SVM
and does not improve much when the size of the dataset is increased (Figures 8 and 9).
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Figure 10 shows that SVM’s complexity hurts its efficiency, as its computing time is
hundreds of times longer than that of the other algorithms. When dataset size increased
to 200, the SVM model required 438 times more computing time than the least squares
algorithm and 39 times more than artificial neural network.
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On the other hand, the ANN algorithm shows great potential. Its accuracy is on par
with that of the SVM when the training dataset size is 200, while the computing time is
only a fraction of that of the SVM. This is due to the different underlying principles of the
two algorithms: the backpropagation ANN is more suitable for regression problems; the
SVM regression is less efficient, as it is based on classification.

3.2.2. Prediction Test Performance

After the training, 3000 more data points were used to test the performance of the
models. Mean squared error (MSE) and coefficient of determination (R2) again were used
to evaluate the results.

Results are listed in Table 10. One obvious difference is that the BDT algorithm had
a substantially worse outcome. This suggests that the previous training model had an
overfitting issue. The other algorithms performed similarly in both the test and training
sessions. The ANN had better MSE and R2 with 200 training data points than the SVM, but
the difference is small.

Table 10. Prediction test performance of regression models.

Training
Dataset Size

Least Squares Binary Decision Tree ANN SVM
MSE R2 MSE R2 MSE R2 MSE R2

50 1.7189 0.7700 4.1075 0.6330 0.8143 0.9117 0.4321 0.9643
100 1.1663 0.8852 1.7640 0.7233 0.4622 0.9773 0.2574 0.9815
200 0.4868 0.9267 1.3835 0.7896 0.0289 0.9962 0.0592 0.9935

3.2.3. Hybrid Thermal Comfort Model

The efficiency difference between the SVM and ANN algorithms inspired us to build
a hybrid model that can leverage both the rapid computing time of the ANN and the high
accuracy of the SVM when using small training sets (Figure 11).
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Additionally, data-driven models are limited in that they are not operational until
training is complete. In this research, a predicted mean vote (PMV) model is used as a
placeholder for the thermal comfort model until enough data points are acquired.

Table 11 shows the average thermal comfort across three different periods within the
beginning of the simulation. As expected, the hybrid shows good results in all periods,
giving the best or very close to the best result.

Table 11. Average resub-MSE on cold-start in August in College Station, TX.

Period Static PMV Model SVM Only ANN Only Hybrid (Proposed)

First day 0.482 0.928 1.708 0.484
Second day 0.466 0.332 0.606 0.336

Day 3–5 0.462 0.200 0.366 0.202
First work week average 0.47 0.278 0.468 0.244

3.2.4. The Influence of Noise and Delay in Data Sensing

To realistically simulate the behaviors of sensors, including low fidelity, time delay
and inaccuracy caused by poor placement, a layer of noise was added to the measured
environmental data from EnergyPlus.

The noise consists of two parts:

1. Distortion up to a certain percentage X is added to the temperature and humidity
values before they are fed into the thermal comfort prediction model. The probability
model of the distortion is a two-sided truncated normal distribution with mean equal
to 0 and sigma set to X/2 (Figure 12).

2. A time delay between the moment the sensing data is measured and the moment the
data is used to build the thermal comfort model.

The test was repeated for noise levels X = 5% to 20% and time delays of reading = 6 or
12 min, applied to both temperature and humidity readings.

The result is summarized in Table 12. The significance is based on an independent
two-sample T-test on the mean of MSE, where the control group is without noise.

A small percentage of error (less than 5%) in environment readings is acceptable and
will not change the accuracy of thermal comfort prediction significantly until it exceeds 10%.
For temperature, 5% typically means around 1 ◦C. Most sensors today, even lower quality
ones, can easily reach <0.2 ◦C accuracy, so this is not a significant concern for applications.

On the other hand, a time delay in reading could have substantial effect on the
modeling. Even a one cycle delay (6 min) causes significant decline in accuracy of the
modeling. One interesting observation is that the effect of time delay is relatively constant
rather than being proportional to the length of the delay (Table 13). This is likely because
changes in temperature and humidity in a room are relatively slow and stable.
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Table 12. Average accuracy drops in model training due to noise.

Maximum Noise Percentage Accuracy Drop in R2 Accuracy Drop in MSE Significant? (p < 0.01)

5% 1.22% 1.01% No
10% 2.02% 2.49% Yes
15% 4.88% 4.10% Yes
20% 15.50% 19.00% Yes

Table 13. Average accuracy drops due to time delay.

Time Delay (Min) Reduction in
Training R2

Reduction in
Training MSE

Significant?
(p < 0.05)

Accuracy Drop in
Temperature

Reading

Accuracy Drop in
Humidity
Reading

6 3.03% 3.65% Yes 2.88% 3.14%
12 4.03% 3.80% Yes 3.20% 3.56%
18 4.11% 3.99% Yes 3.70% 3.88%

The last two columns show the equivalent error introduced by the time delay in two
readings, which follow a similar trend.

3.3. Control Performance

After the thermal comfort model was finalized, the main simulation was conducted
with the variables shown in Table 14.

Table 14. Summary of simulation variables in main batch.

Batch Thermal Comfort Model Control Strategy City Trial (Total) Note

1–4 (T and RH) Rule-based 4 cities 4 Conventional
5–8 (T and RH) Fuzzy-PID 4 cities 4 Probability-based

9–12 SVM-only Fuzzy-PID 4 cities 2000
13–16 Hybrid Fuzzy-PID 4 cities 2000 Proposed
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Three thermal comfort models were used: a model based on conventional temper-
ature and humidity, an SVM (the most performant algorithm in thermal comfort model
evaluation), and the proposed hybrid model.

For control strategy, rule-based control was achieved by using the built-in thermostat
feature in EnergyPlus. The fuzzy-PID control is the proposed control strategy utilizing
predicted thermal comfort level in an external MATLAB program. Each batch of the
simulation ran for 500 trials, except for T- and RH-based control, which is deterministic.

3.3.1. Overall Thermal Comfort Level and Energy Cost

The proposed system was compared with a baseline (conventional rule-based control
based on temperature control). Figures A2–A5 in Appendix A show the trend of energy
saving percentage and mean absolute thermal comfort level (the lower, the better) reduction
percentage for four US cities (Chicago, IL; Phoenix, AZ; College Station, TX; and Tampa,
FL). The data show significant thermal comfort improvement in all four cities. The energy
cost remains the same or is slightly improved.

The monthly data are summarized in Table 15. On average, 43.41% to 69.93% reduction
in thermal comfort level (i.e., increase in comfort) was achieved. The energy cost change is
small by comparison, ranging from 3.63% to 1.01%.

Table 15. Mean absolute thermal comfort level and energy cost in cooling in different models.

City Month
Monthly Mean Absolute Thermal Comfort

Level Monthly Cooling Energy Cost (MJ)

Baseline Proposed Reduction Baseline Proposed Reduction

Chicago, IL

May 0.235 0.203 13.84% 64.628 61.624 4.65%
June 0.236 0.081 65.79% 155.881 149.508 4.09%
July 0.194 0.066 65.74% 266.506 259.994 2.44%
Aug. 0.230 0.073 68.40% 164.487 158.317 3.75%
Sept. 0.301 0.140 53.70% 88.348 85.282 3.47%
Oct. 0.460 0.375 18.46% 19.718 17.217 12.69%

Ave/Sum 0.276 0.156 43.41% 760.568 732.942 3.63%

Phoenix, AZ

May 0.181 0.102 43.63% 276.985 269.030 2.87%
June 0.158 0.069 56.12% 487.225 480.375 1.41%
July 0.154 0.074 51.66% 525.389 523.556 0.35%
Aug. 0.169 0.080 52.44% 484.505 481.204 0.68%
Sept. 0.224 0.105 52.98% 315.150 314.920 0.07%
Oct. 0.272 0.132 51.64% 173.904 171.283 1.51%

Ave/Sum 0.193 0.094 51.37% 2264.158 2241.368 1.01%

College
Station, TX

May 0.199 0.073 63.21% 232.391 224.570 3.37%
June 0.221 0.050 77.56% 296.316 284.955 3.83%
July 0.149 0.043 70.85% 425.060 416.939 1.91%
Aug. 0.199 0.051 74.56% 394.577 387.364 1.83%
Sept. 0.238 0.071 70.13% 197.880 190.579 3.69%
Oct. 0.368 0.129 64.92% 136.967 129.460 5.48%

Ave/Sum 0.229 0.069 69.65% 1684.191 1634.867 2.93%

Tampa, FL

May 0.180 0.069 61.56% 295.717 286.487 3.12%
June 0.173 0.047 72.94% 328.932 318.950 3.03%
July 0.173 0.046 73.62% 401.569 390.060 2.87%
Aug. 0.177 0.043 75.86% 382.716 374.504 2.15%
Sept. 0.200 0.057 71.57% 305.316 301.425 1.27%
Oct. 0.230 0.082 64.47% 199.123 195.800 1.67%

Ave/Sum 0.189 0.057 69.73% 1914.373 1868.226 2.41%

In the hybrid model, the thermal discomfort increases at the beginning of the model-
building process but is limited to the first one to three days. The length of the poor
performance period is noticeably longer in Chicago, IL, which is likely due to the relatively
cool climate. If the air conditioner is not actively engaged, it is difficult to influence the
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thermal comfort level of the occupants. Cooler climate also has a detrimental effect on
model training: a more moderate outdoor climate means that the difference between indoor
and outdoor is not as dramatic as in hotter climates. Without a wide variety of input and
output ranges, the training process is prolonged.

For reasons described above, the overall result in Chicago fluctuates more in compari-
son with the other cities, and the improvement is relatively low in May and October due to
less demand for air conditioning. Figure 13 highlights the difference in cooling demand
between the four cities.
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3.3.2. Effect of Thermal Comfort Models

To test how the thermal model affects control performance, the proposed hybrid model
was compared with the SVM-R only prediction model, together with the probability model
based on temperature and humidity. All these models were paired with the same fuzzy-PID
control system. Baseline rule-based control data are also listed for comparison purposes.
Both baseline and the probability cases have no random number involved in simulation,
so the data are presented as is. The models based on machine learning (ML) were run
500 times with mean and standard deviation listed.

Table 16 reveals that all three models (basic probability-based model, ML model with
the SVM-R algorithm, and ML model with the proposed hybrid model) showed significant
improvement in thermal comfort over the baseline conventional strategy. The probability-
based model, which utilized temperature and humidity alone, brought the thermal comfort
level from 0.2217 to 0.1451. The machine-learning-based model reduced thermal comfort
level to 0.1003 with the SVM-R and 0.0942 with the hybrid model.

Table 16. Comparison of different thermal comfort models.

Metric Item Baseline
(Conventional Control) Probability-Based ML:

SVM-R Only ML: Hybrid

Comfort level
Mean 0.2217 0.1451 0.0949 0.0943

SD (N/A) (N/A) 0.0053 0.0030

Monthly cooling
energy cost (MJ)

Mean 275.970 268.035 270.178 269.987
SD (N/A) (N/A) 4.001 3.086

In addition, the cooling energy costs (last row in Table 16) remained relatively stable.
This is likely because the capacity of the HVAC system is constant (the sizing of compressor,
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cool air temperature, and total air flow rate remain the same); the new control strategy sim-
ply allows better cooling distribution between the cubes, rather than an overall reduction
of cooling effort.

In statistical analysis, an ANOVA test of the means of the two tested ML models
shows that the lowering of (dis-)comfort level is significant between the two treatments (p
< 0.05), but not between the energy costs (Figure 14 and Table 17). It should be noted that
improvement is present, but the difference is small.
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Table 17. SVM-only and hybrid treatment ANOVA test.

Metric (between Groups) Df F-Value p-Value Significant?

Average comfort level 1 5.84 0.0159 Yes
Energy cost 1 0.69 0.4054 No

3.3.3. Variances in Zones and Subjects

The parameters of the six subjects generated in the main experiment batch are listed
in Table 18 below.

Table 18. Parameters of six subjects picked in main simulation.

No. Zone Gender BMI Region Age

1 1 Male High

United States

Young
2 2 Male Low Elder
3 3 Male Low Young
4 4 Female High Elder
5 5 Female High Young
6 6 Female Low Elder

Table 19 shows the average behavior of the six occupants in the College Station, TX
batch with the proposed system. The manual action time means the simulation step where
the ground truth of the occupants’ thermal comfort is far enough away from the neutral
point to cause them to adjust the thermostat.
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Table 19. Occupants’ perception and action in College Station, TX.

No.

Mean No. of
Manual Actions

Taken during
Training Period

Thermal Comfort
Level in Training

Thermal Comfort
Level after Training Reduction

1 5.9 0.102 0.060 41.6%
2 10.3 0.130 0.086 33.8%
3 8.1 0.120 0.071 40.8%
4 10.1 0.150 0.104 30.7%
5 13.5 0.193 0.084 56.5%
6 20.3 0.258 0.161 37.6%

Average 11.4 0.159 0.094 40.7%

In general, the trend of the manual action time is consistent with average thermal
comfort level: the lower the comfort level, the less likely it is that a particular occupant is
going to adjust their settings.

The overall reduction in thermal discomfort before and after training is relatively
stable, except for subject No. 5, who shows much greater improvement than the others.
This can be attributed to her “comfort region” being relatively wider.

The average comfort level for subject No. 6 after training is 0.161, which is much higher
than the average 0.094. This is caused by the fact that her neutral modified temperature
is much higher than others. Because the cubes are close together, and the air exchange
between them is high, optimizing for the average of the six objectives results in her staying
in a relatively “cool” local climate. This is the only limitation of the system in this research.

While not actively maintained or monitored, as an observation, the humidity of the
six zones is relatively uniform in the simulation. Mostly they stay within a 5% RH window
around 38%. Because the cubes ventilate cool air directly into the space, the temperature
drops relatively quickly when the vent is opened.

4. Conclusions

In this study, a novel data-driven thermal comfort model and HVAC control system
were implemented in an open-space office room. An adaptive occupant simulation model
was utilized to evaluate the results.

The evaluation of the thermal comfort prediction model revealed that the SVM and
ANN algorithms were competitive, achieving a convergence of 0.99 R2 in both training
and testing. However, the SVM required a longer training time, making it less suitable
for low-power controllers. In addition, data-driven models performed poorly in cold-start
scenarios, leading to the construction of a multi-stage hybrid model that transitioned from
a PMV model to SVM and then to ANN as the number of data points increased. This model
demonstrated promising results in cold-start scenarios.

The model’s prediction was then used as a control objective in a 6-month simulation
of a full control system in four cities. The model reduced thermal discomfort by 43.41%
to 69.73% across all cities and resulted in energy savings of 1.01% to 3.63%. Additionally,
three thermal comfort models were compared, with the hybrid PMV-SVM-ANN model
showing a statistically significant improvement over the SVM-only model. Both models
outperformed the basic temperature-and-humidity-based probabilistic model. Finally, the
variance between occupants was investigated, and the system’s limitations in open-space
settings were discussed.

The system is relatively simple to set up, and the computing cost for running the
system is minimal. The initial training can be performed using a computer. Afterwards, the
model and control algorithms can be integrated into typical commercial building energy
management systems using embedded microcontroller add-ons or smart thermostats via
an API.
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Future directions for this research include implementing more advanced control
algorithms such as predictive control, as well as online learning in modeling, to further
enhance the performance of the HVAC control system. The authors have already fitted
the system into an office room to conduct experimental analysis of the proposed work’s
effectiveness, and plan to expand it to large open-space buildings. A comparison with
conventional CFD models in building simulation is also planned.
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