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Abstract: In the field of single-image super-resolution reconstruction, GAN can obtain the image
texture more in line with the human eye. However, during the reconstruction process, it is easy to
generate artifacts, false textures, and large deviations in details between the reconstructed image and
the Ground Truth. In order to further improve the visual quality, we study the feature correlation
between adjacent layers and propose a differential value dense residual network to solve this problem.
We first use the deconvolution layer to enlarge the features, then extract the features through the
convolution layer, and finally make a difference between the features before being magnified and the
features after being extracted so that the difference can better reflect the areas that need attention.
In the process of extracting the differential value, using the dense residual connection method for
each layer can make the magnified features more complete, so the differential value obtained is
more accurate. Next, the joint loss function is introduced to fuse high-frequency information and
low-frequency information, which improves the visual effect of the reconstructed image to a certain
extent. The experimental results on Set5, Set14, BSD100, and Urban datasets show that our proposed
DVDR-SRGAN model is improved in terms of PSNR, SSIM, and LPIPS compared with the Bicubic,
SRGAN, ESRGAN, Beby-GAN, and SPSR models.

Keywords: image reconstruction; super resolution; generative adversarial network; differential value
dense residual network; joint loss function

1. Introduction

Super-resolution (SR) reconstruction of images is a technique for obtaining high-
resolution images from single or multiple low-resolution images. In real life, limited
by factors such as digital imaging equipment and hardware storage capacity, the image
resolution obtained cannot meet people’s needs, especially in some specific fields such as
surveillance, remote sensing, military, medicine, and so on. Using super-resolution image
reconstruction technology to restore and reconstruct low-resolution images can efficiently
improve image details and image quality.

Image reconstruction methods can be roughly divided into three categories, which
are interpolation-based [1], reconstruction-based [2], and learning-based [3]. With the
development of the times, the two methods based on interpolation and reconstruction
have some shortcomings, such as reconstructing the image blur, insufficient computational
power, and serious detail loss. In recent years, the development of deep learning has
made the learning-based image reconstruction technology gradually become a research
hotspot, and interpolation-based and reconstruction-based technologies are usually used
to preprocess images.

In recent years, with the rapid rise of artificial intelligence, image super-resolution
reconstruction methods based on the convolutional neural network (CNN) and gener-
ative adversarial network (GAN) have been widely used because their reconstruction
performance far exceeds that of traditional algorithms. Dong et al. [4] proposed the super-
resolution convolutional neural network (SRCNN), which uses three convolutional layers
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for reconstruction and greatly improves the speed of reconstruction compared to traditional
methods. Kim et al. [5] studied SRCNN and constructed a reconstruction model with deep-
level networks, which used VGG network architecture to construct a deep convolution
network with 20 layers and greatly improved the network convergence speed via a very
high learning rate during the training process. Jiang et al. [6] proposed a new differential
network in image super-resolution reconstruction to increase the image reconstruction
effect and used the multi-path supervised reconstruction blocks to monitor the reconstruc-
tion process, making the network more stable. Lim et al. [7] proposed an enhanced depth
super-resolution network (EDSR), which removes unnecessary batch normalization (BN)
layers in the residual blocks, resulting in a significant performance improvement in the
reconstruction. Zhang et al. [8] proposed RCAN, which constructed channel attention to
focus on improving the PSNR value. Hu et al. [9] proposed Meta-SR to achieve the effect of
up-sampling images to arbitrary sizes. Li et al. [10] proposed a feedback framework for
gradually refining the super-resolved results.

The CNN models have achieved excellent results in traditional detection, but they rely
too much on the objective function that minimizes the mean square error (MSE). In this way,
the PSNR is high, but the reconstructed images are too smooth, and the high-frequency
details of the high-resolution images are missing. As the depth of the training network
increases, convergence becomes slower and slower, resulting in disappearing gradients,
instability, etc. The performance of the generative adversarial network [11] model in
image reconstruction surprised researchers. Huang et al. [12] and Goodfellow et al. [13]
discussed and compared the importance of GAN models and their variants in generating
samples. Creswell et al. [14] provided a survey summary of GAN evaluation methods
and training problems. Ledig et al. [15] first applied a generative adversarial network to
the field of image super-resolution reconstruction and proposed a generative adversarial
network super-resolution reconstruction model (SRGAN), which uses perceptual loss and
adversarial loss to jointly recover texture details of images. Bulat et al. [16] designed a
GAN based on a High-to-Low network to obtain more natural LR images from HR images
to simulate real low-resolution data. Based on SRGAN, Wang et al. [17] proposed an
enhanced super-resolution generative adversarial network (ESRGAN) under the condition
of improving the network architecture, adversarial loss, and perceptual loss. The network
uses dense residual blocks instead of residual blocks in the original generator and uses the
relative discriminator to further improve the quality of the reconstructed images. Zhang
et al. [18] believed that the process of constructing sample images via down-sampling
HR lost the details and accuracy of the original data, so they proposed a super-resolution
reconstruction method for real scenes, which has an important impact on subsequent
super-resolution reconstruction methods. The SRFlow method proposed by Lugmayr
et al. [19] learns image super-resolution through normalized flow and can generate several
different SR images from LR images. Rad et al. [20] made adjustments to the composition of
perceptual loss and proposed adjusting a target perceptual loss based on object, background,
and boundary labels. In particular, Li et al. [21] considered that one-to-one supervision
was not the most reasonable way and thus proposed the Beby-GAN with one-to-many
supervision. Ma et al. [22] believed that the structure information is very important in
the super-resolution problem and proposed implementing an additional gradient branch
network. This network generates a high-resolution gradient map as an additional structure
prior, making the generated images clearer.

However, most existing networks ignore the feature correlation of adjacent layers
and the utilization of some low-frequency information, which leads to the insufficient use
of features at different levels. In view of the problems of artifacts and insufficient detail
processing in existing algorithms, we propose a differential value dense residual block as
the basic unit of the generator to solve the above problems on the basis of improving the
generator network structure. At the same time, we use the relative discriminator rather than
the standard discriminator, which can further enhance the performance of the generator.
Additionally, the average absolute error loss, adversarial loss, and the new joint perceptual
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loss function are used to train the generator so that the reconstruction performance of the
network can reach the best.
The main contributions of this paper are itemized as follows:

1.  The use of the traditional convolutional neural networks for image reconstruction
neglects the utilization between adjacent layers of the network, which leads to poor
image quality. In order to solve this problem, we propose a differential value dense
residual network to improve the utilization between adjacent layers of the network;

2. Inorder to make the training process of the GAN stable and the perceptual quality of
reconstructed images better, we introduce a joint perceptual loss function. The loss
function uses different layers of the VGG network to extract information with different
concerns and fuses high-frequency information and low-frequency information to
more effectively guide the network training;

3. To verify the validity and wideness of the proposed method in this paper, we used the
proposed model to conduct quantitative and qualitative studies under four datasets
and to perform relevant ablation studies.

2. Methods

Based on ESRGAN, we propose a differential value dense residual super-resolution
reconstruction network model (DVDR-SRGAN), which consists of an improved generator
and a discriminator. The generator network is mainly composed of multiple differential
value dense residual blocks (DVDB). Each DVDB is composed of differential value structure
(DV) and dense residual block (DB). Therefore, the generator can extract the data features
from two perspectives. On the one hand, the differential value structure is used to obtain
the lost information of each convolution layer; on the other hand, the dense residual block
is used to enrich the input information of each deconvolution layer. Then, the information
extracted is combined to generate the data that can “cheat” discriminator under the effects
of joint perceptual loss, adversarial loss, and mean absolute error loss.

2.1. Network Model of DVDR-SRGAN Generator

Based on the idea of deconvolution and differential values, the network structure of
the generator network model is improved, and the generator network model is shown in
Figure 1, which is divided into three parts: shallow feature extraction block, differential
value dense residual block set, and image reconstruction.

g =
s— 5— SR
O O

Upsampling

Figure 1. Network model of DVDR-SRGAN generator.

2.1.1. The Extraction Block of Shallow Feature

The extraction block of shallow feature consists of a convolutional layer, which is
represented by Conv. We first input a low-resolution image I; g, and then obtain the
shallow features of the I} g image by extracting block of shallow features, as shown in the
following Formula (1):

Fiy = fr(Itr), 1)

where fr(-) represents the operation of the shallow feature extraction block, and F;, repre-
sents the shallow feature of the I} g image.
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2.1.2. A Set of Differential Value Dense Residual Blocks

Convolutional neural network extract features from images by means of layer-by-
layer sampling. If the area mapped by the pixel on the output feature of the convolution
layer on the input is too small, that is, the receptive field is too small, then you can only
focus on the local feature. If the receptive field is too large, it contains too much useless
information. In order to effectively use the features of each layer and strengthen the
feature transmission between each layer, we introduce the differential value dense residual
technology into the convolutional network. The dvdb network structure is designed
as shown in Figure 2, where Deconv represents deconvolution layer, Conv represents
convolution layer, and LRelu represents the Leaky ReLu activation function. First, the
dense residual technique is used so that the input of each deconvolution layer is a stitching
of the input of the previous deconvolution layer and the output of the corresponding
convolution layer. The introduction of this structure allows each layer to make direct use
of the gradient information and input information of the loss function, thus alleviating
the gradient disappearance phenomenon to a certain extent and helping to train deeper
networks. Secondly, in order to avoid only paying attention to local features during feature
extraction, a differential value structure is introduced. Feature extraction is carried out
according to the differential value, and the extracted features are given corresponding
weights, thus enhancing the ability of information extraction and improving the network
performance and accuracy. Based on the dvdb network structure, a set of differential value
dense residual blocks is designed, which is composed of multiple DVDB modules. Each
DVDB module contains three dvdb modules.

Figure 2. dvdb network structure diagram.

In the dvdb network structure, the low-resolution image x is first sent to Deconv, and
then Deconv amplifies the features of x to obtain more high-frequency information. Next,
the output Fi,_ (x) of Deconv is input into conv, and the size of the output Fi,,(x) of
conv is guaranteed to be the same as the size of x. In order to prevent information loss
and network failure to train as the network increases in depth, we adopt dense residual
technology [23]. This technique compensates for lost information by fusing x and the
output Fl), (x) of conv. As the fused information becomes more reflective of the original
high-frequency information, some of the lower-frequency information about the image
texture is ignored. In order to retain low-frequency information, we make a difference
between x and Fi,(x) to obtain the differential value between them. This difference in
value can enrich the acquired image information. We sum the differential values of each
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group of Deconv input and conv output in dvdb and then pass the sum value through a
conv and an LRelu successively. The result obtained is weighted with the dense residual
result to obtain the final result of dvdb.

Fd—vulue = Z Filn_l - Fclon (Féecon(FiZ;l ) (2)
i—1

Faoap = Fi_vaiue + BEap 3)

Fout = Foap(Fin) + Fin 4)

where Fj_ 1 (-) represents the sum of differential values in dvdb. Fi,_ (-) and Fi,,(-)
represent the output values of the ith deconvolution layer and the ith convolution layer,

respectively. Fy, () represents the result of dense residual, and Foyt(+) represents the output
of dvbd.

2.1.3. Image Reconstruction

First, the output of the differential value dense residual block set is upsampled, then
the upsampled result is passed through two convolution layers in turn, and, finally, the
required size SR image is output. This reconstruction method reduces network complexity.

2.2. Relative Discriminator Network

The traditional discriminator of GAN can only determine the probability that the input
image is real and natural under the same network structure, while the relative discriminator
is introduced in ESRGAN to try to predict the probability that the real image is more real
than the false image, as shown in Figure 3.

More realistic

D(x,) =a(C(x,)) > 1 Real? Dga(xr, xf) =o(C(x,) - E[C(xf)]) -1 than fake data?
Less realistic
D(x;) =0 (C(xf)) -0 Fake? Dra(%, %) = 0(C(xr) —Elc(x)1) > 0 a1 real data?
a)Standard GAN b)Relativistic GAN

Input

FHRHHEHHR

Figure 3. The difference between standard discriminator and relative discriminator.

In adversarial training, using this discriminator can help the network learn clearer
edges and finer textures. Therefore, this paper adopts the relative discriminator RaD of
ESRGAN. The specific network model is shown in Figure 4, where Conv represents the
convolution layer, LRelu represents the Leaky ReLu activation function, BN represents the
batch normalization layer, and Dense represents the full connection layer.

Figure 4. Relative discriminator network model.
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In the relative discriminator network model, Leaky ReLU and BN layers are used
simultaneously, and pooling operation is not used. The relative discriminator network
consists of 8 convolution layers, all of which are 3 x 3 convolutional kernels in size. The
number of convolutional kernels has doubled from 64 to 512. The discriminator network
alternately uses convolution layers with step size, which is 1 and 2, respectively. When the
number of features doubles, the convolution layer with step size of 2 is used to reduce the
image resolution. After the convolution layer obtains advanced features, the probability is
finally obtained through two full connection layers and the sigmoid activation function.

The loss function of the relative discriminator and the adversarial loss function of the
generator are shown in Formulas (5) and (6):

L' = ~Ex, [log(Dra (xr, x7))] ~ Exsllog(1 — Dra(xy, )] ©
L§" = —Ey, [log(1 — Dra(xr, f))] — Exf[log(Dra(xf, xr))] ©
DRa(xrr Xf) = U(C(XV) - Exf[C(Xf)D (7)

where xf represents the input LR image; x, represents the input HR image; E,¢[-] repre-
sents the average of the data generated by all generators; o is a sigmoid function; LX?(-)
represents the loss of discriminator; LX?(-) represents the generator adversarial loss. It can
be seen that the adversarial loss of the generator include x, and x 1z Therefore, in adversarial
training, our generator benefits from the gradient between generated data and real data,
while in traditional GAN, only the generated data is effective.

2.3. Loss Function

The traditional mean square error loss (MSE) is introduced in SRGAN as a part of the
loss, while the relative discriminator is introduced in ESRGAN to cancel the mean square
error loss, and the pre-activated features are used to construct the perceptual loss to obtain
more information. Research [17] shows that the use of pre-activated features will cause
the brightness of the reconstructed image to be inconsistent with the real image, so this
paper continues to use the pre-activated features. On this basis, a new joint perceptual loss
function is proposed, which combines the mean absolute error and adversarial loss to train
the network.

2.3.1. Joint Perceived Loss Function

VGG-54 is defined in the deep network, which extracts the feature map of high-
frequency features. These feature maps pay more attention to the content. VGG-22 is
defined in the shallow network, and most of the extracted features are low-frequency
features such as contour and shape [24]. Only using VGG-54 to define the loss will make
the texture of the reconstructed image too sharp, which results in distortion of the details
and produces noise and artifacts, etc. On the basis of ESRGAN, this paper uses the pre-
activation features of VGG-54 and VGG-22 to construct the joint perceptual loss function
so that the reconstructed image has the feature of smooth details, offsets the part noise
generated, and can also have a good subjective visual effect. The improved loss is shown in
Formula (8) as follows:

16 = axlyge-22 + B* lyge—s4, 8)

where Iy ;27 is the feature map before the 2nd convolutional layer before the 2nd pooling
in the VGG19 network, which is the ultra-low frequency feature; Iy 54 is the feature map
before the 4th convolutional layer before the 5th pooling in the VGG19 network, which is
the high-frequency feature; « and p are pre-set parameters. We will conduct the related
experiments on the parameter values in Section 3.
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2.3.2. Mean Absolute Error Loss

The mean absolute error (MAE) is the average of the absolute error between the
predicted value and the observed value. MAE can avoid the error offsetting each other,
so it can accurately reflect the actual prediction error. Therefore, this paper combines the
average absolute error loss with the joint perceptual loss to increase the prediction effect of
the model. The formula of MAE is shown as follows.

1 m
huae = — Y0 |G(IF) — 1'%, ©)
i=1

where I 4 represents the mean absolute error loss function, m is the number of iterations,
i is the HR serial number, I/R is the distribution of the real image, and G(IR) is the
distribution of the high-resolution image generated by the generator.

We fuse the joint perceived loss proposed in Section 2.3.1, the average absolute error,
and the adversarial loss given in Section 2.3.2. The improved loss function is shown in the
following Formula (10):

Isr = I'ee + NlmaE + 7lep (10)

where I2R represents adversarial loss, which can make the images reconstructed by gen-
erator network deceive the discriminator network as much as possible and enhance the
expressive force of the reconstructed image in terms of visual perceptual. 7 and v are
coefficients that balance different loss terms. We will conduct relevant experiments on
parameter values in Section 3.4.

3. Experiments
3.1. Datasets and Evaluation Metrics

The training set used in this paper is the DIV2K dataset [25], which contains 800 images.
These images are divided into various types, such as city, architecture, landscape, nature,
and so on. These images are all from the real world and have high complexity and
authenticity. The test datasets include Set5 [26], Set14 [27], BSD100 [28], and Urban100 [29].
Set5 and Set14 are low-complexity single-image super-resolution datasets. BSD100 contains
various degraded images, such as images with noise, blur, and lossless compression.
Urban100 is an image super-resolution dataset for urban environments, which contains
100 high-resolution images. These four datasets are commonly used for performance
testing of super-resolution tasks. When training the network, first, the high-resolution
images in the training set are randomly flipped horizontally or vertically, and then the
images are clipped to obtain 128 x 128 high-quality image blocks. Finally, we perform the
bicubic interpolation on these image blocks to obtain the down-sampling 4 x LR images
for training.

In this paper, we use three evaluation metrics, namely peak signal-to-noise ratio
(PSNR), structural similarity (SSIM) [30], and learned perceptual image patch similarly
(LPIPS) [31] to evaluate the performance of algorithms. As shown in Formula (11), PSNR
can evaluate the quality of the image by comparing the gray value difference of the pixels
corresponding to the two images. The higher the PSNR value is, the smaller the distortion is.
As shown in Formula (12), SSIM evaluates the similarity of the two images from brightness,
contrast, and structure, and the closer the SSIM value is to 1, the more similar the structure
of the reconstructed image is to the original image, and the better the reconstructed effect.
As shown in Formula (13), the LPIPS metric can measure the difference between two images.
The lower the value of LPIPS, the more similar the two images are.

2
PSNR(X,Y) =10+ 1g—— 255 s ik ,
L oL X [X(m/n)—Y(m,n)}z

m=1n=1z=1

(11)
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where X represents the original HR images; Y represents the reconstructed SR images by
the generator; ¢ represents the number of channels in the images; w and h represent the
width and height of the images; m represents the m-th pixel on the width of the image;
n represents the n-th pixel in the height of the image; z represents the z-th channel of three
primary color channels.

(2uxpy +C1)(20xy + Co)

SSIM(X,Y) = p
X = Gz 2 T a) T+ o2+ Gy

(12)

where ox represents the average value of X, and py represents the average value of Y;

0% represents the variance of X, 02 represents the variance of Y, and oyy represents the

covariance between X and Y; C; = (0.001 % L)?,C, = (0.003 % L)? are the two variables
used to maintain stability, and L represents the dynamic range of image pixels.

1
LPIPS(x,x0) = ZWZ 01 © Yo — Yo 13- (13)
[ AT,

The real image x and reconstructed image x( are sent to the neural network for
feature extraction. The output of each layer is activated and normalized, denoted as

'yl € RH>Wix , Then, the L2 distance is calculated by multiplying the weight points of
the w layer, and the average distance is obtained.

3.2. Training Details

The parameters of hardware equipment for experiment conduction are Intel(R) Xeon(R)
CPU E5-2680 v4, instance memory: 28G, core: 28, 3080 Ti-12G; Experimental environment:
Linux, PyTorch 1.12.0(Python3.8), Cudal1.3.

The training process is divided into two stages. First, a PSNR-oriented model is trained
using the average absolute error as the loss function. The initial learning rate is set to
2 x 107, Next, the learning rate reduces to 0.5 times after each 5 x 10% iteration. Then, the
perceptual loss and adversarial loss are introduced into the PSNR-oriented model to obtain
the final model. The initial learning rate is set to 1 x 10~%. Next, the learning rate reduces
to 0.5 times after each 5 x 10* iteration. In the training process, the model uses the Adam
optimizer, the batch_ size is set to 16, and the generator network uses 18 DVDB feature
extraction blocks. The trained PSNR-oriented model is used as the pre-trained model.
One reason is to make the GAN more stable and avoid the remaining local optima in the
generator, and the other reason is to ensure that the images received by the discriminator
have high resolution, which helps the discriminator to focus more on texture recognition.

In order to obtain the values of «# and f in Formula (8), we conducted the experiments
on public test sets Set5 and Set14, and the experimental results are shown in Table 1. When
the values of « and 8 are 0.2 and 0.8, respectively, the performance of PSNR, SSIM, and
LPIPS reaches the best.

Table 1. Comparison of values of & and B. The best performance is highlighted in red (1st best).

Parameter Set5 Set14
o B PSNR SSIM LPIPS PSNR SSIM LPIPS
0.1 0.9 28.40 0.796 0.061 24.69 0.602 0.107
0.2 0.8 28.52 0.825 0.052 24.81 0.702 0.094
0.3 0.7 27.93 0.767 0.068 24.56 0.653 0.110
0.4 0.6 27.85 0.759 0.073 24.53 0.621 0.121
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3.3. Comparative Experiments

In this paper, our proposed algorithm DVDR-SRGAN is compared with Bicubic,
SRGAN [15], ESRGAN [17], Beby-GAN [21], and SPSR [22] on the public sets Set5, Set14,
BSD100, and Urban100. In this paper, we evaluate the algorithm performance based on the
quantitative results and qualitative results, as follows.

3.3.1. Quantitative Results

Table 2 shows the comparison results of the proposed algorithm with other compar-
ative algorithms on multiple evaluation metrics. The algorithm DVDR-SRGAN has the
highest PSNR and SSIM values on the Set5, Set14, and BSD100 datasets, and is also out-
standing in LPIPS. Only when facing the Urban100 dataset, the metric results are slightly
lower than the algorithm SPSR. The algorithm SPSR based on gradient loss also has better
PSNR and SSIM values, but the LPIPS value is not as good as the algorithm DVDR-SRGAN,
which shows that the visual quality of the image generated by the algorithm SPSR is
much worse than that of the algorithm DVDR-SRGAN. The algorithm Beby-GAN performs
poorly in reconstructing large images. The main reason is that the algorithm Beby-GAN
uses a method with one-to-many supervision. All the values of evaluation metrics of the
algorithm ESRGAN are not as good as algorithm DVDR-SRGAN, which indicates that
the algorithm ESRGAN is at the expense of authenticity to optimize the visual quality of
the reconstructed images. All the values of evaluation metrics of algorithm SRGAN and
algorithm Bicubic are poor, indicating that satisfactory results cannot be obtained when
facing tasks of high-quality image super-resolution. In summary, the algorithm DVDR-
SRGAN can effectively solve the problem of the general lack of authenticity in adversarial
perception methods and ensure the visual quality as much as possible while increasing
image details.

Table 2. Comparison of PSNR, SSIM, and LPIPS values of 4 x reconstruction results of each algorithm.
The best performance is highlighted in red (1st best) and blue (2nd best).

Dataset Metric Bicubic SRGAN ESRGAN Beby-GAN SPSR DVDR-SRGAN
PSNR 26.66 2691 27.35 27.82 28.44 28.52
Set5 SSIM 0.790 0.804 0.806 0.801 0.824 0.825
LPIPS 0.364 0.131 0.108 0.118 0.087 0.064
PSNR 24.23 23.87 23.61 24.69 24.75 24.81
Setl4 SSIM 0.685 0.677 0.650 0.701 0.696 0.702
LPIPS 0.387 0.142 0.125 0.109 0.106 0.098
PSNR 22.65 22.67 23.33 24.13 24.21 24.21
BSD100 SSIM 0.601 0.636 0.613 0.635 0.655 0.667
LPIPS 0.445 0.163 0.143 0.119 0.119 0.118
PSNR 21.70 21.77 21.82 22.75 23.24 2291
Urban100 SSIM 0.652 0.677 0.679 0.695 0.737 0.706
LPIPS 0.435 0.153 0.135 0.109 0.106 0.108

3.3.2. Qualitative Results

In order to more intuitively feel the visual effect of the algorithm DVDR-SRGAN, we
take SRGAN, ESRGAN, Beby-GAN, and SPSR as the comparison algorithms and carry out
the comparison experiment based on the four test sets mentioned above. Figures 5-10 show
some of the results of reconstructed images. In order to better illustrate the reconstruction
effect, we take a portion of each image for comparison, as shown in the red box in the image.
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SRGAN ESRGAN
SPSR DVDR-SRGAN

Figure 5. Algorithms 4x reconstruction results. Image “bird” from Set5.

e

Beby-GAN
DVDR-SRGAN GT

Figure 6. Algorithms 4 x reconstruction results. Image “butterfly” from Set5.

SRGAN ESRGAN Beby-GAN

i . SPSR DVDR-SRGAN GT

Figure 7. Algorithms 4 reconstruction results. Image “face” from Set14.
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ESRGAN Beby-GAN

SPSR DVDR-SRGAN

Figure 8. Algorithms 4 reconstruction results. Image “man” from Set14.

SRGAN ESRGAN Beby-GAN
SPSR DVDR-SRGAN

Figure 9. Algorithms 4 reconstruction results. Image “296059” from BSDS100.

SPSR DVDR-SRGAN

Figure 10. Algorithms 4 x reconstruction results. Image “026” from Urban100.

From the visual perspective, Figure 5 highlights the image of a parrot’s foot grasping
a branch. It can be observed that except for the images of the parrot’s foot generated by
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DVDR-SRGAN and SPSR, which are more obvious, the images generated by other methods
have a certain degree of distortion. However, compared to SPSR, DVDR-SRGAN can still
make the branch image in the backward position clear. Figure 6 highlights the butterfly’s
back and wing image. The reconstructed image using the algorithm DVDR-SRGAN is
closest to GT, while the images generated by other algorithms either have a poor shape
or have too many unrealistic artifacts. Figure 7 highlights the hair image near the boy’s
temple. For the most obvious strand of hair in the middle, only the image reconstructed
by algorithm DVDR-SRGAN is closest to GT, and other algorithms cannot do it. Figure 8
highlights the image of the man’s hand. The reconstructed image using the algorithm
DVDR-SRGAN is closest to GT, while the images generated by other algorithms either
have a poor shape or have too many unrealistic artifacts. Figure 9 highlights the image
of the elephant’s ears. Only the algorithm DVDR-SRGAN can generate dense and clear
cross stripes, while other algorithms cannot do it. Figure 10 highlights the pattern of the
building. The reconstructed image using the algorithm DVDR-SRGAN is closest to GT,
while other algorithms generated unrealistic artifacts when reconstructing the left wall.
In summary, the images generated by the algorithm SRGAN have serious detail loss. In
addition to producing too many artifacts in the reconstruction process, the images generated
by algorithm ESRGAN also have a loss of details. Due to the use of the method with one-
to-many supervision in the algorithm Beby-GAN, it is not possible to perform better image
reconstruction when dealing with large-sized images. Algorithm SPSR restores high-
resolution gradient maps via a gradient branch to provide additional structure priors for
the SR process and introduces the loss function of gradient, which alleviates the problem of
image reconstruction distortion. However, a better reconstruction effect cannot be achieved
for image areas with small color differences. The algorithm DVDR-SRGAN introduces
deconvolution and differential value dense residual methods. This algorithm not only
focuses on high-frequency information but also learns and extracts effective features from
low-frequency information with weak color to make the reconstructed image more realistic.

3.4. Ablation Study

In order to verify the necessity of each part of our proposed network model, we
conduct an ablation study on loss function via superposition. Figure 11 shows the relevant
visual effects. With the superposition of the loss function, the structure of the reconstructed
images is gradually clear, and the artifacts are eliminated, thus improving the authenticity
and visual quality. When 7 = 1072, = 1073, the reconstructed images have the best effect.

SR SR SR -3 1SR SR
MAE MAE + lGen MAE + lGen + ZVGG MAE + 10 lGen + ZVGG

Figure 11. Visual evaluation of different loss functions.

As algorithm DVDR-SRGAN is proposed based on model ESRGAN, we conducted
an ablation study on network modules. We designed three algorithms to compare them.
The first algorithm (DVDB no JPL) is trained without using joint perceived loss, but the
DVDB network module is applied in the network. The second algorithm (DVDB no dvdb)
has the same network model as ESRGAN and is trained using joint perceived loss. The
third algorithm (DVDB) uses our proposed model. The experimental results are shown in
Table 3.
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Table 3. Comparison of methods under different network modules.

Setl14 BSD100 Urban100
Method
LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM
ESRGAN 0.138 23.61 0.650 0.147 23.33 0.613 0.178 21.82 0.679
DVDB no JPL 0.128 24.25 0.648 0.138 23.59 0.601 0.171 21.99 0.671
DVDB no dvdb 0.131 24.52 0.657 0.142 24.04 0.623 0.176 22.29 0.681
DVDR-SRGAN 0.122 24.81 0.668 0.132 24.21 0.627 0.168 2291 0.706

From Table 3, it can be seen that compared with ESRGAN, the network with DVDB
has significantly improved the LPIPS performance, which proves the effectiveness of the
proposed differential value dense residual in improving the perceptual quality. In addition,
the experiment results of the network model with joint perceptual loss show that joint
perceptual loss can significantly improve the performance of images in PSNR and SSIM.
For algorithm, DVDR-SRGAN, all the values of evaluation metric are better than algorithm
ESRGAN on different test sets. Therefore, the effectiveness of our proposed method has
been clearly verified.

4. Conclusions

Aiming at the super-resolution task with high visual quality, this paper first proposes
DVDR-SRGAN, a differential value dense residual network, which can obtain more ef-
fective information in the process of feature extraction and improve learning efficiency.
Additionally, a relative discriminator has also been introduced to replace traditional dis-
criminator, which can obtain a more realistic probability of real images compared to false
images, thereby promoting the reconstructed images via the generator to have more de-
tailed textures. Then, the joint loss function is used to merge the high-frequency information
and low-frequency information, which improves the visual effect of the reconstructed im-
ages to some extent. Finally, a large number of quantitative and qualitative experiments
verify the effectiveness of the proposed method, and the necessity of the proposed method
is verified by the ablation study. In future work, considering the complexity of the network,
we will focus on optimizing the computational complexity of the network and trying to
build a high-performance lightweight network.
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