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Abstract: Electrophysiology recordings are frequently affected by artifacts (e.g., subject motion or
eye movements), which reduces the number of available trials and affects the statistical power.
When artifacts are unavoidable and data are scarce, signal reconstruction algorithms that allow
for the retention of sufficient trials become crucial. Here, we present one such algorithm that
makes use of large spatiotemporal correlations in neural signals and solves the low-rank matrix
completion problem, to fix artifactual entries. The method uses a gradient descent algorithm in lower
dimensions to learn the missing entries and provide faithful reconstruction of signals. We carried out
numerical simulations to benchmark the method and estimate optimal hyperparameters for actual
EEG data. The fidelity of reconstruction was assessed by detecting event-related potentials (ERP)
from a highly artifacted EEG time series from human infants. The proposed method significantly
improved the standardized error of the mean in ERP group analysis and a between-trial variability
analysis compared to a state-of-the-art interpolation technique. This improvement increased the
statistical power and revealed significant effects that would have been deemed insignificant without
reconstruction. The method can be applied to any time-continuous neural signal where artifacts are
sparse and spread out across epochs and channels, increasing data retention and statistical power.

Keywords: EEG; MEG; LFP; artifact correction; preprocessing; sensor noise; human infants

1. Introduction

Electrophysiology recordings are valuable tools for studying the neural correlates
of cognition in humans as well as animals. Despite the development of new imaging
techniques such as fMRI and near-infrared spectroscopy, EEG and the related event related
potentials (ERPs) remains among the most reliable and clinically feasible tools for study-
ing cognition, especially in human populations, such as patients with pathology, elderly
subjects, infants, and children [1,2].

However, one of the biggest challenges with EEG/MEG data is the very small signal-
to-noise ratio, due to the wide range of sources of noise and artifacts. This problem
is exacerbated in infants, where apart from line noise and faulty channels, unexpected
movements and high amplitude voltage fluctuations are the norm rather than an exception.
On the other hand, long and continuous data recording is difficult due to their low attention
spans, fatigue, and frequent sleep episodes at this age. These problems result in a very high
amount of trial rejections in infant studies. For example, it is common to have 100–300 trials
per experimental condition in healthy adults, while in children and infants, usable trials
can be as few as 30 or less. Any algorithm that can roughly reconstruct these lost signals
to some extent becomes extremely valuable, in order to avoid rejecting too many trials,
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especially when they are so precious because they are so few in number, as in the case of
infant experiments [3,4].

A common practice in current electrophysiology analyses is to detect possible noise
sources either manually or using automated artifact detection algorithms, reject the noisy
trials, and possibly repair (or interpolate) signals if the contamination of individual trials
is minimal [5,6]. Since many of the current analysis paradigms (such as event related
potentials (ERPs), event related fields (ERFs), event-related desynchronizations (ERD), and
synchronization (ERS) of oscillatory activity, etc. [1,7]) rely on the averaging of signals
across trials and across subjects, they require a large number of trials to yield robust and
significant findings. One may hence want to increase the amount of trials by relaxing the
criteria for artifacted trial exclusion; however, this would further increase the noisiness of
the data. As a result, it is necessary to find a balance between the amount of noise included
in evoked activation analysis and the number of retained trials. There would be a huge
number of rejected trials if the artifact rejection procedure used with typical healthy adult
populations was applied to atypical populations. Therefore, relaxed rejection criteria are
used, resulting in the inclusion of time series with many more sporadic artifact-related
“gaps” than in standard studies. This situation reveals an even more pressing need for an
artifact rejection and repair algorithm.

Independent component analysis (ICA) and signal space projections (SSP) are common
candidates for artifact detection, rejection, and/or repair in healthy adults [8–11]. These
techniques remove noise by separating the common known sources of contamination,
such as heartbeats, ocular movements due to eye blinks, and muscle movements. Since
these artifacts are periodic, have a single noise source, and often include high amplitude
fluctuations, they are easy to detect using ICA or SSP. However, large voltage fluctuations of
neural origin may be more difficult to separate from fluctuations due to other environmental
or biological noise sources. Such high-amplitude fluctuations are more common in the
recordings of atypical populations than of healthy populations [12] and in infants relative
to adults, due to poor skull ossification and brain immaturity. Reference [5] showed, for
example, that ICA does not improve ERP robustness in young infants. Moreover, these
algorithms cannot correct for the motion artifacts that are very frequent and randomly
distributed throughout an experiment. A common practice in adults is to simply omit the
epochs containing motion artifacts based on manual inspection before and after ICA or SSP
has been applied. The resulting gaps still have to be fit by a suitable artifact repair algorithm.

Here, we propose a novel artifact repair method that is agnostic to the sources of
artifacts. We consider the task of artifact repair as a matrix completion problem, which is a
well-studied machine-learning task of filling in the missing entries from a partially observed
matrix (here the channel × time matrix of neural activity observations) [13]. The algorithm
we propose here is called OPTSPACE, which was first proposed for use in recommender
systems, such as to reveal the user preferences [14]. Such systems try to predict the items
(e.g., a Netflix show) that a user might like on the basis of the user’s ratings of similar
items, as well as from the reactions of similar users [15]. Theoretical proofs and numerical
solutions have been provided for this algorithm, showing that the missing entries of such a
matrix (in our case, due to artifact corruption) can be recovered with very high accuracy,
given specific bounds on the revealed matrix entries, and with the assumption that the
original matrix has low dimensionality, yielding successful applications in the fields of
collaborative filtering, compressed sensing, and image processing [14,16,17].

Here, we tested whether a similar algorithm can be applied to neural data and, specifi-
cally, to repair EEG artifacts from recordings of human infants. The precise problem is as
follows: Given multivariate time-series data (from 128 channels), if there exists moments
where some of the channels are corrupted, can we recover these entries making use of
the spatiotemporal correlations? Hence, after all the typical preprocessing steps were
performed for artifact detection, we applied the proposed learning algorithm to filling-in
the remaining artifact-related gaps. For the use of this algorithm with neural data, we first
needed to ensure that the neural data met the requirements, in terms of the assumptions
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of the original algorithm. One of the first assumptions is that the matrix to be filled has
low-dimensional representation or a low rank. This can happen if the time-series data
have a large degree of local linear interdependency (over time), or when neural state
trajectories unfold over manifolds of a lower dimension than the number of available
channels. Precisely this hypothesis has recently been advocated by an impressive number
of independent theoretical and experimental system neuroscience studies at different spa-
tiotemporal scales [18–27]. The low-dimensionality of neural recordings has been explicitly
quantified for several neural datasets [28,29]. Especially in the case of high-density EEG
data, the underlying brain sources generating scalp topography are much fewer than the
number of sensors [30,31]. Therefore, we considered it legitimate to base our artifact repair
procedure on a powerful low-rank matrix completion algorithm, which treats corrupted
signal observations as “missing values” to be predicted based on their interdependence
with other observed entries.

As neural data have a very different structure from the algorithm’s original use in
collaborative filtering, we decided to benchmark the algorithm, to ensure that the appli-
cation of this algorithm to neural data was robust. Specifically, we studied the algorithm
performance in two ways. First, we benchmarked the current approach by testing its
performance on data with artificially created “gaps” that preserved the exact artifact pat-
terns of a typical EEG dataset. Since the ground truth data hidden by the artifacts were
known for these realistic surrogate data, we could quantify how accurately the algorithm
could recover these signals, as a function of the severity of the applied artifacts. Second,
to test the usefulness of such an approach for the analyses in real cognitive neuroscience
experiments, we demonstrated that this gap-filling algorithm could significantly improve
the statistical power in the detection of ERP components, as compared to spherical spline
interpolation [32], a state-of-the-art competitor algorithm. Moreover, we also showed that
our method allowed for a better comparison of single-subject metrics, such as between-trial
variability. In particular, thanks to an improved number of trials after the signal repair,
we were able to prove the existence of significant differences in between-trial variability
across young and older infants, which had previously been studied [33] but deemed not
significant, because of the large number of artifacted and non-repaired trials.

2. Materials and Methods
2.1. Proposed Algorithm and Assumptions

Let D be a C× T neural data matrix, where C represents the total number of channels
and T the length of the signal time series. We assume that this large matrix D has already
been examined for artifact detection and contains missing entries for which data has been
marked as corrupted and not recoverable using more conventional techniques. We present
an algorithm for filling these entries that is based on the matrix completion algorithm
known as OPTSPACE introduced by [14]. For full details of the matrix completion algorithm
itself and proofs of its convergence, we refer to the original literature. However, in this
section we will explain in a simplified manner the essence of its operation and how we use
it to specifically perform multi-variate time-series reparation.

The first step of our approach is data epoching, i.e., the usually large data matrix D is
first split into a finite number of short nonoverlapping epochs Mk of size C× Tk (Tk << T).
The reason for data epoching is twofold. First, applying a matrix completion algorithm
to the entire data matrix at once is computationally expensive and sometimes impossible,
due to memory constraints, whereas dividing it into shorter epochs can achieve a faster
convergence. Second, epoching enables temporally local prediction of the missing entries,
by employing different optimized projections for different epochs, as we will see later. It
should be noted, however, that this data epoching procedure differs from the epoching
process of the event-related paradigm. Unlike ERP epochs, in this step, we are agnostic
to the external events, i.e., stimulus onsets. We simply divide the full-length continuous
time-series matrix into nonoverlapping smaller blocks.
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The next step consists of applying a matrix completion procedure epoch by epoch.
Specifically, for each such small matrix M, let Ω(M) be the set of all known (noncorrupted)
entries of a given data epoch and f(M) its complement, i.e., the set of all corrupted entries.
To fill the gaps in M we need to infer values for the entries f(M) solely based on the entries
in Ω(M) and from the assumption that the original matrix M can be approximated using
a reasonably low rank matrix with rank r, i.e., Mij = M̂ij + Zij, where M̂ = XSYT and Z
contains a deviation from such a low rank matrix M̂, due to noise. Here, we use the ansatz,
reflecting our low-rank hypothesis, that the matrix component M can be decomposed in
terms of the three matrices X, S, and Y, where S is a diagonal matrix of singular values and
X ∈ RC×r and Y ∈ RTk×r provide approximate projections of the original data epochs onto
a hyperplane spanned by r orthogonal directions.

This step is reminiscent of other dimensionality reduction approaches, in which the
signal is decomposed in terms of the time-courses of a discrete number of factors (e.g.,
in ICA, the time-courses of a few spatial components of interest or common sources of a
signal). However, here, the factors are optimized epoch by epoch, unlike in conventional
dimensionality reduction approaches, which are usually performed over the whole data
matrix D or only on the epochs of relevant trials. Mathematically, this means that we
model the original neural trajectories unfolding on a generally nonlinear r-dimensional
manifold in RC as a trajectory on the linear Grassmanian manifold Gr

(
r,RC) of the full-

dimensional data space RC. This somewhat esoteric jargon hides a construction that is
relatively simple to visualize (cf. Figure 1, which also serves as a graphical abstract).
Intuitively, the procedure tries to approximate the original trajectory by sampling from the
linear projections on a series of flat hyperplanes, whose orientation is locally optimized
epoch by epoch.

Figure 1. Schematic explanation of the proposed method. Multi-sensor neural data can be considered
a trajectory in a high-dimensional space. However, the knowledge of this trajectory is incomplete,
as some observations are missing, generally because of artifacts corrupting them (as indicated by the
dashed red line sections in the figure here). We can, however, make the hypothesis that the trajectory
is continuous and unfolds over a low-dimensional manifold in data space (here represented as a
sphere). Under these assumptions, we can model short segments of the trajectory via their projections
on locally optimized hyperplanes, with the same dimensionality of the actual unknown manifold.
Through the optimization procedure, an inference is performed for the whole trajectory segment
projection, i.e., for the observed but also the unobserved data points. In this way, reasonable guesses
for discarded data segments can be obtained, in a way respectful of the local data geometry. This
figure also serves as a graphical abstract.
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Going back to the matrix completion algorithm, for each of the blocks M, we could de-
termine its missing entries by choosing an optimal projection space, such that the following
cost function is minimized:

F (X, Y) = min
S
||Ω(M)−Ω(XSYT)||F

where || · ||F denotes the Frobenius norm (i.e., the sum of squared matrix entries). Note
that, even though the embedded minimization is over S, the cost function still depends
on the matrices X and Y. The idea is precisely to identify an optimal projection subspace,
by finding an orthogonal X and Y, such that it minimizes the discrepancy between the
observed entries of M and the corresponding entries of its low-dimensional, linearly-
projected model M̂. The observed entries Ω(M̂) are an as faithful as possible reproduction
of the observed entries Ω(M). Eventually, through the optimization of F (X, Y), we also
determine all other entries of M̂, including the entries f(M̂), which can serve as repaired or
filled-in values for the corrupted entries f(M).

The issue, however, is that there are several unknowns. To begin with, the rank r
of the matrix M̂, which determines the size of S, is unknown. Second, optimizing the
aforementioned cost function would be a tough undertaking with no prior assumptions
about the missing entries. A solution comes from defining a new matrix ME:

ME
ij =

{
Mij, if {i, j} ∈ Ω(M)

0, otherwise

Thus, the corrupted entries of f(M) are simply replaced by zeroes. A low-rank matrix
closest to this zero-filled matrix ME is easy to find with singular value decomposition
(SVD) and provides a good first guess for the rank r of M̂ and S, which further needs
to be adjusted and optimized as an algorithm hyperparameter (see later). Furthermore,
to facilitate the convergence of the optimization of F (X, Y), one can use the factors of the
singular value decomposition of ME = M̂(0) = X(0)S0YT

(0) as initial conditions. Starting

from this M̂(0), the matrix entries can then be adjusted via a gradient descent algorithm
until a local optimum of F (X, Y) is found.

Some additional technical aspects must be taken into account to guarantee the perfor-
mance, such as the “trimming” of ME to eliminate over-represented rows and columns and
the use of a suitable regularization during the optimization. For these details, we invite
the reader to refer to the original publications introducing the OPTSPACE algorithm and its
variants [14].

Keshavan et al. [14] proved that, given the following assumptions, the described
optimization procedure can recover the missing entries accurately: (1) The rank r of the
actual matrix should be sufficiently low, with its singular values spread across all basis
vectors; (2) each row and column should have at least one observed entry and there is a
lower bound on the overall number of missing entries, depending on the rank and total
elements of the matrix; and (3) missing values should be distributed uniformly, i.e., the
algorithm cannot recover the missing entries if at some moment, all the channels were bad,
or if some channels were bad at all time-points. For time series of neural activity recordings,
the first two assumptions are not too far fetched, since, as previously mentioned, it is
reasonable to suppose that neural activity unfolds on low-dimensional manifolds [28,29].
However, the third assumption of a uniform distribution of missing values does not always
hold for EEG Data. Typical artifacts can be bursty in nature and, hence, missing values can
be concentrated in a single channel or at all channels at several time points. Due to this
caveat, one can only expect to approximately recover the true matrix. It is thus necessary to
estimate how well the matrix completion works based on numerical experiments, given
that the criteria for exact convergence are not always fulfilled. To accomplish this, we
must create an appropriate benchmarking dataset for which the ground truth signals are
known, i.e., surrogate EEG datasets with artificially introduced gaps that mimic the impact
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of real artifacts. In the following, we first describe the Dataset and Task Paradigm, and
then describe the benchmarking method (Figure 2) as well as results obtained through
benchmarking (Figures 3 and 4).

2.2. EEG Dataset
2.2.1. Subjects and Task Paradigm

The dataset serving as the basis for generating surrogates, as well as for the sub-
sequent ERP and single-trial analyses, consisted of the electroencephalography (EEG)
responses from N = 40 full-term healthy infants aged between 5.8 and 24 weeks (mean
age: 14.2 weeks, 25 girls). This experiment was conducted to study the development of
hemispheric specialization of face processing in human infants. The study was approved by
the ethical committee for biomedical research. Parents of all infants gave written informed
consent before participating in the study. Human faces were presented in the left and right
hemifield, while infants fixated at the center. In order to draw infants’ attention toward
the center of the screen, each trial began with a revolving colored bull’s-eye that remained
there throughout the entire experiment. A variable delay between images (550 to 950 ms
post-offset of the image with a 50 ms step) followed streams of face images (male or female
face out of 6 neutral, unknown front-looking faces) that appeared consecutively on the
left and right side of the bull’s eye for 250 ms. A minimal anticipatory glance to the left
or right side was made possible by the asynchronous image presentation (variable timing
between left and right faces at each trial). Figure 5A summarizes the task paradigm. Using
this paradigm, we previously showed that the infants could discriminate infrequent and
novel faces from the stream of repeated faces when they were present in the left but not
in the right hemifield [34]. Furthermore, we also found a remarkable growth of intertrial
variability and structure in this cohort [33]. Hence, here, we tried to reproduce some of
these prevalidated results. The EEG paradigm is explained in detail in [34].

2.2.2. Preprocessing and Artifact Labeling

For each subject, a maximum of 9–15 min of recordings (continuous or interrupted)
were obtained from each of the 128 Geodesic EEG channels with a sampling rate of 250 Hz.
The data were first band-pass filtered between 0.5–20 Hz, in order to remove slow drifts as
well as high frequency power-line and muscle noise, resulting in a data matrix D. Addi-
tionally, the reconstruction performance was also tested without low-pass filtering. In both
cases, motion and blink artifacts were marked if sudden jumps were detected exceeding a
voltage amplitude >250 µV or if the deviation between fast and slow average amplitude
exceeded the mark of 150 µV. Further epochs were marked as artifacted using manual
inspection. When a channel had more than 70% of rejected time points, it was rejected for
the entire recording (i.e., marked bad for the entire recording). On average, 5–10 electrodes
were rejected for each baby (and the corresponding rows were then trimmed from the data
matrix). When a time point was rejected for more than 75% of the electrodes, this time point
was marked as bad for all channels (and the corresponding column was then trimmed from
the data matrix). Furthermore, all entries whose voltage value was greater than 10 S.D.
from the overall voltage mean were also marked as bad.

2.3. Numerical Analysis of Model Performance
2.3.1. Hyperparameters

For any real EEG dataset, the number of total time points T in raw data is always
much larger than the number of sensors. For our dataset in particular, the dimension of
the data matrix D was T = O

(
C

3
2

)
. For practical reasons, it is not advisable to attempt to

recover all missing entries at once in these circumstances: First, because of the large size of
the input matrix (the data matrix for each subject contained ∼105 time points), and second,
and perhaps more significantly, due to the possibility that the activity time series may visit
different low-rank manifold components at different time points, due to spontaneous or
evoked state changes (cf. [35,36]).
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Hence, to avoid a large information loss and to meet the expectation of the original
algorithm, we split the original matrix D into a series of k nonoverlapping epochs Mk, each
of which was assumed to have some low rank r and a size C× Tk, and where the length of
epoch was Tk ∼ O(C). The performance of the algorithm may depend on the choice of Tk
and thus had to be tested against its variations.

Moreover, the performance also depended on our guess for the rank r assumed for the
completion of each shorter block Mk. As previously mentioned, a good guess for this may
be the rank of the zero-filled block matrix ME

k. If such an estimation can provide an initial
indication of the range of ranks to investigate, it could also vary substantially from block to
block, due to varying noise levels more than to the actual signal dimensionality changes.
We therefore made the practical choice of using the same r for all the different Mk’s into
which D was split. We, thus, treated r as a second hyperparameter, whose variations may
affect performance and should be optimized.

Finally, the performance of the algorithm also depends on the severity of the artifacts
to repair, i.e., on the number of corrupted entries within f(Mk). When benchmarking the
algorithm, the severity percentile class q can also be chosen, as we can generate surrogate
artifacted blocks by overlaying on a good block M(good) the artifact mask B

(
M(bad)

)
of bad

blocks with the desired artifact severity (see next subsection).

2.3.2. Library Construction and Bootstrapping

In order to generate realistic surrogate data for benchmarking, we first built a library
of good and bad data chunks, as follows: According to the previously introduced definition,
we call f(D) the set of corrupted entries of D, and Ω(D) its complementary set of good
entries. We call any matrix block formed by a set of temporally contiguous columns
of D with entries all belonging to Ω(D) a “good” block (i.e., without artifacted entries).
Conversely, a matrix block formed by a set of temporally contiguous columns of D with at
least some entries belonging to f(D) is a possible “bad” block (i.e., with artifacted entries).
Parsing through all subject’s continuous EEG data files, we built a collection of all possible
good and bad blocks, which we call good and bad libraries. Example good and bad blocks
from an actual EEG data matrix are shown in Figure 2A,B. The artifact severity of a bad block
is evaluated as the percent fraction of block entries that are corrupted. The distribution
of the artifact severity in the library of all bad blocks can be computed, and blocks can
be divided based on severity classes.For this, we calculated five severity levels based on
quantiles of the % bad value distribution (cf. Figure 2C), i.e., we divided the bad blocks
in five equiprobable classes, based on how severely they were corrupted by artifacts. We
finally also defined a M ∈ bad(D), artifact mask for each bad block, computed as:

B(M) =

{
1, if i, j ∈ Ω(M)

0, otherwise

In every iteration, a chunk of EEG data of a given block size was selected at random
from any of the subjects in the dataset, without replacement. The size of the chunk was
systematically varied between a maximum number of Tk,max = 470 time points (or 1.88 s)
and a minimum Tk,min = 20 of time points (or 0.08 s). This randomly chosen block
was labeled good or bad depending on whether it included artifacted entries or not.
This random extraction of good and bad blocks continued until we reached the desired
library size. This procedure is illustrated in Figure 2B. The number of good blocks found
depended on how noisy the EEG data were. For instance, in our dataset, for the data table
D for one subject, we could extract a ratio of ∼20 good blocks vs. O(105) bad blocks when
using the largest block length Tk,max. A larger number of good blocks were found when
constructing libraries with shorter block sizes (as it was easier to fit shorter blocks between
two artifact-induced data gaps). For every block size, we also assigned each of the extracted
bad blocks to a percentile class of severity q. Note that, even for Tk = Tk,max, most of the
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bad blocks had only a few corrupted entries, as indicated by the strongly right-skewed
distribution of artifact severity in the extracted library bad(D), as shown in Figure 2B.

Figure 2. Generation of test data with artificial artifacts. (A) (left) Example of a typical EEG recording,
including a fairly good time-segment of 20 s from one human infant. Artifact-related gaps are shown
as blue entries in the data matrix. A sample short epoch with missing values due to artifacts is
shown for certain example channels in the right side of panel A. The task was to numerically evaluate
how well we could determine the missing entries of this matrix (highlighted in red elipses in the
three zoomed-in time-series). (B) From the actual recording we extracted both “good” and “bad”
blocks made of data epochs not including or including artifact gaps, respectively (see text for details,
Red panels from the time x channel matrix in A). The good block library contained 104 times less
blocks than the bad block library, i.e., very few epochs were found without any artifacts. Bad blocks
were sorted according to the severity of missing values in the block. (C) The distribution of severity
(i.e., % fraction of corrupted values) followed a power law. i.e., for a given size, most of the blocks
contained very few missing entries. Q1–Q5 represent the percentiles of this distribution and we used
these percentile limits to group bad blocks into sub-classes with growing severity. Subsequently,
we generated surrogate artifacted data blocks with a known ground truth signal, by overlaying
actual artifact masks mediated from bad blocks on top of good blocks. We tested the artifact repair
performance on these surrogate artifacted blocks, varying the block size, severity, and rank of the
block matrix to be reconstructed.

Based on the libraries good(D) and bad(D) of good and bad blocks extracted from the
considered data table D, we generated realistic and data-compliant surrogate bad matrices.
For each block size value Tk ∈ {20, 70, 120, ..., 470} and severity percentile q ∈ {1, 2, ..., 5},
good blocks M(good) and bad blocks M(bad) were sampled with replacements from good(D)
and bad(D), respectively. A surrogate artifacted block M(good),E was then computed by
performing entry-wise multiplication between the original good block M(good) and the
artifact mask B

(
M(bad)

)
of the bad block M(bad). In this way, we obtained a surrogate

artifacted block for which the ground truth signal was masked by the imposed artifact
pattern but that could be recovered for comparison, i.e., f(M(good)) is empty by definition.

Each of these corrupted matrices were used as input to the matrix completion algo-
rithm and the performance was measured in terms of both the Frobenius distance and
Pearson correlation between the ground truth good matrix block M(good) and the matrix
with repaired gaps generated from M(good),E. Completion was performed for any block-
size Tk and severity percentile, by varying systematically the chosen fixed rank values
r ∈ {4, 8, 12, ..., 20}. Overall, the performance of completions was studied through per-
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forming n = 500 bootstrapped iterations for each combination of block size, severity, and
rank. The results for these experiments are presented in Figures 3 and 4 and discussed
in Section 3.

2.4. Method Validation in Real Data Analysis Applications

No method can create information, and our method is no exception. This algorithm
does, not only fill the missing values with values that may be different from the real ones,
but furthermore can alter the time series, even in the sections where real data are available,
because the original data matrix with gaps is replaced by a low rank approximation
without gaps. It was thus important to understand whether our artifact repair algorithm
can guarantee or, ideally, improve the quality of real neuroscience-relevant analyses with
respect to analyses without completion or those completed with competitor state-of-the-art
techniques. Hence, we quantified the event-related potentials (ERPs) and modulations of
between-trial variability quenching (VQ)—two relevant markers for cognitive neuroscience
analyses— and assessed the relative improvement achieved by the two data completion
methods (our proposed method and an alternative, more conventional, spherical spline
interpolation method). Spherical spline interpolation is a spatial interpolation method that
is applied for filling missing entries in the bad channels of a subject’s evoked responses
(e.g., using MNE Python’s built-in function evoked.interpolate_bads) [37]. At each time-
point, spline interpolation considers the relative spatial positions of the good and bad
channels on the head model. The voltage entries of all the good and bad channels are first
projected onto a unit sphere. Then a matrix is computed, to project good channels onto the
bad channels on this sphere, which is then used to interpolate data in the bad channels.
A detailed explanation of this method can be found in [32]. Importantly, this method does
not explicitly take into account temporal correlations in the data and was not designed
to repair small gaps, but operates by generating a full spline-interpolated time series for
an entire channel marked as bad. A performance comparison between our method and
spherical spline interpolation is given in Figures 3 and 5. For a more robust comparison,
we chose 300 randomly selected surrogate bad blocks and applied either OPTSPACE or
spherical spline interpolation (after marking any channel containing artifacted values as
“bad”). We then compared the correlation between the original, ground-truth block and
the reconstructed blocks with the two methods. To test if our method could reconstruct
the blocks significantly better than spherical spline interpolation, we applied a right-tailed
Wilcoxon rank sum test to the two Pearson correlation values for each block.
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Figure 3. Examples of signal reconstruction. (A) Unfiltered simulated bad block (represented here as a
C× T matrix). Missing values are visible as blue patches (bottom panel). Quality of reconstruction for
a single time series obtained from one channel is represented by a red box in the top panel. Original
time series (ground truth) is plotted in black, the retained sections of time series with missing entries
(artificially dropped surrogate bad times) are marked in blue, with the achieved reconstructed time
series in red. (B) (top) Reconstructed matrix and (bottom) the same channel (as in panel (A)) after
applying a 20 Hz low-pass filter and thereby removing power-line noise. In both cases, a remarkable
agreement between the ground truth (black line) and the reconstructed time series (red line) is visible.
The troughs and valleys of the time series were faithfully reconstructed, even when the oscillations
are strong, as before filtering, although the exact amplitude of the reconstruction might be slightly
different. The performance is quantified in detail in the following: (C−E) Example comparison of
OPTSPACE and spherical spline interpolation. (C). A typical block, with artifacted entries represented
in black. (D) Block recovered by OPTSPACE with rank = 20. (E) The same block recovered with
spherical spline interpolation. An apparent reversal of polarity in the lower (occipital) channels is
visible. Examples of three recovered channels (highlighted by red rectangles) are shown in the bottom
panels. High amplitude oscillations were over-represented in the spherical spline recovery, because
it was contaminated by artifact oscillations at E59. The overall fit was better for the OPTSPACE

algorithm (Pearson’s r = 0.988) than for spherical spline (Pearson’s r = 0.678) interpolation.
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Figure 4. Performance benchmarking. (A) Effect of the three hyperparameters on the artifact repair
algorithm performance. Each data point in 3-D space represents the median correlation between the
actual and reconstructed signal across 500 iterations. Overall, the model fit was good, as visible from
the Pearson’s correlation between the ground truth and reconstructed entries. (B) Combined effect of
block size and rank. For very low ranks, the performance decreased exponentially with block size.
However, for all r > 12, the performance (Pearson’s R > 0.97) is good, only slightly growing with
r. (C) The effect of severity across all block sizes and ranks. The violin plot gives a kernel density
estimate of model performance estimated (Pearson correlation) from N = 25,000 iterations for each
severity percentile class. When the severity of missing blocks was high, i.e., data were corrupted too
much, the algorithm performed poorly on many data epochs; however, for a large fraction of blocks
the overall performance remained high (Pearson’s R = 0.8).

2.5. Event Related Potentials

We applied our reconstruction algorithm to N = 34 subjects, a subset of the previously
described dataset with the block size = 120 and varied ranks depending on the amount of
corrupted entries in the blocks. After signal reconstruction with both methods, baseline cor-
rection and reference averaging steps were performed to improve the signal-to-noise ratio.
Channels were further rejected if they remained irrecoverable after applying OPTSPACE

throughout all epochs and were normalized using the global field power (GFP) at each
time point [38]. We then averaged the evoked responses from the left occipital-temporal
cluster across time-aligned trials and compared the resulting ERPs when visual face stimuli
were presented in either the left or right visual hemifield. A good ERP response was
computed by further averaging across subjects. Subjects for which the data quality was
marked as insufficient in the original cohort (without reconstruction) were removed from
further comparisons (Figure 5A represents the experimental paradigm, described in greater
detail by [34]). The comparison between ERPs obtained after data reparation with the two
considered methods is discussed later and depicted in Figure 5C.
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Figure 5. Performance of the repair algorithm in actual data analysis applications. (A) Experimental
paradigm for evoked responses. In this simple paradigm, described in detail in [33,34], face stimuli
were presented alternately in the left and right visual hemifields. (B) Number of sufficiently clean
trials that were considered in the original data versus the actual number of trials that could be retained
after artifact reparation for each of the subjects. For many subjects, the number of retained trials
increased substantially, thanks to artifact reparation. (C) The averaged evoked response of the left
occipital-temporal electrodes (position shown in the inset montage) for the two lateralized visual face
stimuli (left in blue vs. right in orange), averaged across all subjects. The left panel shows the original
data after spherical spline interpolation and the right panel shows data reconstructed with our matrix
completion-based method.Shaded regions represent a 95% confidence interval of the mean. Typical
contralateral and ipsilateral responses are visible. Our method improved the statistical power of
the F-test at the peak around 370 ms. (D) Between-trial variability at P400 ERP components, when
the faces were presented in the right hemifield for 5−12 and 16−24 week-old infants. The group
difference became significant for the reconstructed data, due to a reduced across-subject variance,
especially in older infants. Interquartile ranges and means of distributions are shown as dashed lines.
? marks significant difference across condition, # = Number of trials.

2.6. Between-Trial Variability

Recently, our group and others have shown that the single-trial variability of a sub-
ject can serve as an important marker of cognitive development and flexibility in in-
fants and children [33,39]. Indeed, even if part of the between-trial variability could be
due to unwanted environmental and biological noise, when these noise sources are suffi-
ciently removed, the remaining between-trial variability can reflect underlying dynamical
changes [40]. Such between-trial variability is quenched at the onset of stimulus, showing a
nonlinear relationship between stimulus-evoked and resting-state neural activity. A grow-
ing number of studies have proven that this measure is a relevant marker of task-driven
or subject-driven trial-by-trial fluctuations in performance and attention ([41–43]). Hence,
here, we considered how our artifact reparation procedures can improve the quantification
of between-trial signal variability, beyond ERP analyses. Specifically, we focused on neural
trajectory variability in a time range matching the P400 response (i.e., a 400–600 ms peris-
timulus time window), which displays a stronger maturation of “event related variability”
(ERV) with age during early infancy (see [33] for details). To evaluate the between-trial
variability, we calculated, (following [33]), pairwise correlation distances between different
trials at each time point and averaged these distances over the time range of interest for
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each subject. We then compared this metric between very young (5–12 weeks old) and
older (16–24 weeks old) infants, first with the original data (with spline interpolation) and,
second, using low-rank matrix completion signal reconstruction (cf. Figure 5D).

3. Results
3.1. Algorithm Performance Benchmarking with Surrogate Artifacted Data

As described in the previous Methods section, we generated a library of ∼105 realistic
patterns of artifact-induced data corruption and generated a a similar number of artificially
artifacted data blocks, to test how well our matrix completion algorithm could reproduce
the ground truth. Typical examples of reconstructed time series are shown in Figure 3,
obtained using an artifact mask belonging to the fourth percentile of severity. Figure 3A
shows the simulated bad block structure for a block sampled from the fourth percentile
(matching the example bad block shown in Figure 2A). In Figure 3A,B we show the actual
and reconstructed time series for a representative artifacted channel. The reconstructed
time series, shown in red color, recovered the prominent oscillations displayed by the
ground truth data in a pretty faithful manner (in black and blue). Notably, oscillations were
regenerated even within the artificially punched-in artifact-induced gaps.

The libraries of good and bad blocks were generated directly from the original data,
without applying any filtering, and hence power-line noise was present in the channels,
which is visible in panel A. The fitting improved remarkably when the power-line noise
was filtered out using a 20 Hz low-pass filter. Figure 3B shows the reconstructed matrix
and signals after filtering, and we can observe that the temporal trends still appeared to
be well-recovered, even after filtering. Note that we obtained better reconstructions by
applying matrix completion first on the signal unfiltered for line noise and then afterwards
filtering the reconstructed signal, rather than performing matrix completion on a prefiltered
signal. This probably occurred because line noise contributes to the increase in the spa-
tiotemporal redundancy among channels, thus reducing the signal rank. In Figure 3C–E
we compare the rendering quality achieved by our OPTSPACE-based algorithm with the
state-of-the-art spherical spline method. To do so, we randomly selected 300 simulated
bad blocks with maximum block sizes (i.e., ∼470 time-points) from the 4th severity per-
centile. Then we applied spherical spline interpolation, as described in the Method’s section.
The representative example shown in Figure 3C–E clearly demonstrates that the OPTSPACE

algorithm performed better in recovering the ground truth entries than the spherical spline
interpolation. In the shown example, the spherical spline-interpolated time series tended
to be systematically shifted with respect to the original time series. This is because the
spherical-spline method seeks for missing information only through space, i.e., regenerat-
ing the bad channel through operations on the signals of spatially neighboring channels.
On the contrary, OPTSPACE regenerates local missing sections of the artifacted channels
seeking for information across both space and time, and maintaining signal continuity at
each of the repaired gaps (see Section 4). Overall, considering the comparisons over the
full test ensemble of bad blocks, Pearson’s correlation between the ground truth and recon-
structed missing entries was significantly higher for OPTSPACE than for spherical spline
interpolation (Wilcoxon signed rank test z(299, 1) = 45145, p = 3.1× 10−51), suggesting
that the bad blocks were reproduced significantly better by the OPTSPACE algorithm than
the competing spherical spline algorithm.

In Figure 4, we evulate the actual quality of reconstruction—quantified in terms of the
Pearson correlation distance between the actual and regenerated signals; achieved by the
algorithm as a function of the different hyperparameters affecting performance: block size,
projection rank, and severity percentile of the applied artifact masks. The accuracy reported
here was O(104) across all iterations, including all severity quantiles, ranks, and block sizes.

Overall, the model performed well across all bootstrapped simulations (median correla-
tion between all matrix entries = 0.976± 0.0338, median Frobenius distance = 0.107± 0.0685).
The observed entries were recovered nearly perfectly (median correlation = 0.997± 0.01,
median Frobenius distance = 0.037± 0.036). Apart from a few data blocks (10% blocks out
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of O(104)) where it was impossible to meet the assumptions of the algorithm, all other corre-
lations between recovered entries and ground-truth entries were positive. The accuracy of
the recovered artifacted entries was less than that of the revealed entries, but it was still sig-
nificantly high (median correlation = 0.47± 0.36, median Frobenius distance = 0.35± 0.25).
In all cases, the correlations (and Frobenius distance) were significantly higher (smaller)
than is expected using chance level reconstruction (estimated via permutation testing,
deeming correlations significant with 95% confidence when larger than Cchance = 0.03 and
distances when smaller than Dchance = 39.038).

3.2. Dependence of Algorithm Performance on Algorithm Hyperparameters

The variability of the accuracy scores may have depended on the choice of hyperpa-
rameters. We then moved to study the dependence of the repair performance upon the
tuning of the three hyperparameters.

Figure 4A presents the performance in a 3-D parameter space spanning all hyperpa-
rameter combinations. The hyperparameter space can be clearly divided into different
regions, according to the median model performance. Specifically, close to an exact re-
covery (r > 0.99) was possible up to the third percentile of artifact severity, when using
smaller a block size and higher rank values. The average reconstruction accuracy remained
satisfactorily high (r∼0.88) even for the highest severity percentile, i.e., when 30–45% of
the entries were corrupted.

The performance decreased with increasing block size. However, this decrease was
much less marked when a sufficiently large rank was used; i.e., as Figure 4B suggests,
there was a combined effect of rank and block size. For the lowest rank r = 4, the model
performance decreased quite rapidly with block size. However, for the rank r ≥ 12 onward,
there was no significant gain in performance from further raising the rank. This may
be an indirect confirmation that our initial low-rank assumption for the data was well
justified (see Section 4). Indeed, the median rank of the data blocks before applying the
OPTSPACE algorithm were quite high (median rank = 114± 10), and reflected the number
of channels with nonzero entries, suggesting that the higher matrix rank reflects the noise
in the data. This was further confirmed by looking at the same relationship, specifically
for the recovery of missing values. As observed in Supplementary Figure S1, the accuracy
in missing value recovery increased (or the error in reconstruction decreased) with the
increase in block size, for all approximated matrix ranks. This was due to the fact that the
longer block sizes tolerated more deviations from the actual neural trajectory, and hence
the local reconstruction improved at the expense of the overall global reconstruction of the
manifold. Here again, lower matrix ranks could approximate the missing entries better
than higher ranks, again suggesting that the lower matrix rank reduced overfitting of the
existing entries, allowing for better reconstruction of the missing entries.

Finally, Figure 4C displays the effect of artifact severity percentile on performance.
For all severity levels, our method appeared to be capable of reasonably reconstructing the
ground truth, with a greater than 90% mean accuracy. However, as revealed by a developing
a downward performance distribution tail, as the severity quartile increased, some of
the artifacted blocks began to be reconstructed with reduced accuracy. With increased
severity, the reconstruction of missing values was indeed compromised (cf. Supplementary
Figure S2), i.e., artifacts in the first quantile were more faithfully reconstructed (median
Pearson’s r = 0.82) than those in the fifth quantile (Pearson’s r = 0.4). However, for all
severity classes, the performance remained significantly higher, as indicated by the positive
correlation coefficient values. This trend was not as marked for the revealed entries, as they
were always reconstructed almost perfectly. The effect of severity on recovering artifacted
entries can be understood in terms of the violation of a random sampling of the missing
values. As the severity of artifacts increased, there was insufficient information in the
revealed entries of the matrix to faithfully reconstruct the missing entries. Furthermore,
the chance of witnessing bursts of missing values concentrated in a single channel or
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clustered around single epoch of time grows rapidly with the increase in severity, further
lowering the quality of reconstruction.

3.3. Event-Related Potentials

Using the optimal values for the block size and rank hyperparameters, as determined
through the benchmarking process, we applied signal reconstruction to an actual EEG
dataset derived from a real cognitive neuroscience experiment [34] and tested how the
reparation of real (rather than imposed) artifact gaps affected the extraction of event related
potentials (ERPs) and their comparison between trial groups (Figure 5).

Figure 5A summarizes the experimental paradigm. Visual face stimuli were presented
alternately in the left and right visual hemifields. This task was performed as previously
described in the Methods by very young infants, an atypical subject cohort, for which the
level of corruption by artifacts in a time series is particularly large, forcing the discarding
of a large number of experimental trials.

The first positive effect of using signal reconstruction is observed in Figure 5B. Af-
ter matrix completion, the number of trials that reached quality levels sufficient for their
inclusion in the analyses increased by a twofold factor (trials were rejected if more than
50% of the entries were corrupted).

In Figure 5B, we show a comparison between the extracted ERPs. The left panel
of Figure 5C shows the ERP response from the left occipital-temporal clusters for the
original data, where the gaps were reconstructed with the conventional spherical spline
interpolation. Note that, even though the electrode voltage may have momentarily drifted,
the spherical spline interpolation was used to replace electrode activity for the entire epoch.
Hence, the spherical spline did not take into account the temporal properties, only spatial
properties. On the other hand, OPTSPACE took into account, not only the trajectories of
evoked responses, but also the spontaneous activity. Analogous ERP time courses are
shown in the right panel, but these were derived from signals repaired with our low-rank
matrix completion method. Two interesting observations can be made: First, the grand-
average curves in both cases had excellent similarity, with the reconstructed data replicating
the peaks and troughs at the exact same latency as the minimally interpolated data (with
spherical spline interpolation). This is noteworthy, as our method not only fills the gaps
in the evoked data but fully regenerates the entire time series to make it compliant with
a low-rank model, and hence, the alterations in ERPs could even have been induced far
from the epochs where most artifacts were detected. The fact that ERP was still faithfully
captured indicates that the ERP spatiotemporal characteristics were well determined by
the topology of the low-rank manifold over which the neural trajectory unfolded and that
our algorithm learned to extract (see Section 4).

Second, only for the low-rank matrix-completed time series did we observe a signif-
icant reduction of the standard error of the mean (SEM) across subjects, due to the fact
that we could include many more trials, many of which in reality where corrupted only
at specific locations but carried otherwise meaningful and relevant information. As a
result, the increased statistical power made possible detecting significant effects of a smaller
size. Notably, we calculated the contra- and ipsilateral ERP responses of the left occipital-
temporal channels when faces were presented in the left and right hemifield. The two
responses significantly differed in the time window of 250–450 ms. We found that this
response was significantly different depending on the hemifield in which the faces were
presented. Owing to the reduced across-subject variance and increased confidence in the
mean curve, we observed a 1000-fold increase in the size of this effect for reconstructed
data as compared to the original data (one sample f-test F(1, 37) = 8.7, p = 0.004 for spher-
ical spline interpolation, one sample f-test F(1, 37) = 26.33, p = 2.2× 10−6 for low-rank
matrix completion).
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3.4. Between-Trial Variability Quenching

As demonstrated in the previous section, our method was better able to successfully
reconstruct ERPs than the spherical spline method. In a previous study by our group [33],
we showed that the variability of neural trajectories in response to stimuli was a sensible
neuromarker for tracking cognitive development. In particular, through a paradigm that we
named “event-related-variability” (ERV) analysis in [33], we showed that the between-trial
variability is quenched at certain peristimulus times and that the exact timing and spatial
pattern of quenching is modulated by development.

Here, we show that artifact reparation via our novel method can also improve the
sensitivity of response-variability analyses. Figure 5D depicts the subject-level distributions
of Z-scored between-trial variability in the vicinity of the P400 ERP component for two age
groups: young infants (5–12 weeks old) and older infants (16–24 weeks). Here again, we can
observe that the single-subject distributions of between-trial variability better discriminated
between age groups for the reconstructed data as compared to the original data (Wilcoxon
rank sum test for equality of medians between the two age groups: p = 0.06 for original
data vs. p = 0.005 for reconstructed data).

Hence, we are able to show that the improved number of trials due to reconstruc-
tion did not simply improve the average discrimination due to the higher-number of
included trials, but also faithfully reconstructed individual trials, so as to track differences
in their variability.

Overall, our results suggest that such a method is not only able to retain a higher
number of trials, but also able to retain subtle features of the intrinsic neural signals.

4. Discussion

In this study, we have demonstrated how a low-rank matrix completion algorithm
along with gradient descent learning of Grassman manifolds can be used to “fill” the
missing entries due to artifacts in real EEG recordings. After comparing this algorithm’s
performance with a state-of-the-art alternative method and studying the performance
dependence on selected parameters, we also provided a proof-of-concept demonstration
of the algorithm’s usefulness, showing how the ERP and single-trial analyses of an actual
EEG dataset can be improved. In particular, we have shown that the use of our method
can substantially increase the number of trials that can be retained for subsequent analyses,
as compared to a simple spherical-spline interpolation, thus generally increasing the statis-
tical power of estimation and discrimination. Our method can easily be inserted within
existing preprocessing pipelines in the case of cohorts for which the noise is high and yet
where trial retention is an absolute necessity.

Other methods for artifact repair have been introduced. With a few notable exceptions
(cf. [44]), most of the signal recovery algorithms for neural data rely either on channel-by-
channel recovery of signals using algorithms developed for time-series interpolation [1]
or use spatial interpolation at specific time points [45]. These approaches do not take
advantage of the redundancy of the EEG signal in the spatiotemporal and spectral domains.
The spherical spline spatial interpolation method used here as comparison belongs to
this category. Other methods previously described in the literature, however, use similar
approaches to ours and were thus particularly adapted for the reparation of sparse artifact
damages. For instance, the STAR method by [46] also adopts a linear projection strategy,
by attempting to estimate missing sections of the data in terms of the linear covariance
structure of data from observed channels. There are two key differences with our method.
First, in our approach, we perform local projections on short chunks of the data, rather
than on the whole time series. In other words, the linear model for projection is locally
adjusted, rather than globally determined, so different projection matrices can eventually be
used for different individual gaps within the same recording. Such local adjustment could,
however, be implemented in the STAR method; estimating different covariance matrices
for different data segments. A second, more fundamental difference is our emphasis on
low-dimensionality. In a covariance-based approach such as STAR, the underlying com-



Sensors 2023, 23, 4847 17 of 21

pletion model always has the same dimensionality of the original data. In our case, on the
contrary, we explicitly assume that the right completion model has a smaller dimensionality
than the recorded dataset. This is a strong assumption, potentially prone to information
loss. The justification of our low-dimensionality ansatz is not of a methodological nature,
but reflects a prior hypothesis motivated by experimental findings.

Indeed, a growing amount of literature shows that neural signals become redundant
due to high spatiotemporal correlation of the spontaneous activity observed at many
different scales [28,29]. This reflects the fact that neural trajectories unfold over low-
dimensional brain-state-specific manifolds, due to both learning and the self-organized
collective nature of brain network dynamics [22,24,26]. The local geometric structure of
neural activity manifolds thus constrains the way in which neural activity configurations
can fluctuate, and effectively reduces the dimensionality of the space in which these
configurations can be sampled. Our method takes advantage of this hypothesis by learning
the local tangent space orientation of the unknown underlying manifold sampled using the
multi-variate EEG time series. Hence, unlike other interpolation methods, our method does
not simply fill the missing entries when artifacts are detected, but completely regenerates a
“fake” data matrix under the local low-dimensionality ansatz. We have checked, however,
that, for the observed entries, the correlation between the actually measured activity values
and the regenerated ones was nearly perfect (cf. Supplementary Figure S2B). This means
that the low-dimensionality ansatz is not completely “out of the blue sky” but correctly
embeds an essential aspect of the actual data. By constraining the regeneration of missing
entries, to be tested on locally adjusted linear spaces tangent to the neural trajectory
manifold, we automatically perform a denoising operation, as noise causes trajectories
to transiently depart from the manifold. In this sense, the reduced but still significant
performance of rendering for “hidden” (i.e., surrogate missing) data matrix entries could be
explained by the fact that the local high-dimensional noise component of the signal cannot
be regenerated, only for its low-dimensional trend.

With regard to the actual EEG data analyses discussed by Figure 5, it may seem
surprising that the result quality can actually be improved. Indeed, because of data
processing inequality, no algorithm, independently from how powerful and sophisticated
it is, can recreate permanently lost information. A solution to this apparent paradox may be
that the irremediably lost information conveyed by artifacted data sections is redundant with
information present in some other observations, either the activity in other channels or even
the same channel at different times outside the corrupted sections. Due to redundancy, this
information is equivalent to the lost information. However, because of the technical difficult
of handling artifacted channels, too much data are usually discarded, thus throwing away
usable “copies” of the missing information. Ultimately, signal repair allows keeping more
trials. Besides the fact that this increased sample size boosts statistical power per se, it
does this in a reliable and sound manner, as the new information injected in the analysis
by the additional included trials is genuine and not only a random guess. This is also the
reason why, not only the ensemble-level ERP analyses of Figure 5C but also the “ERV”
analyses [33] of Figure 5D can benefit from signal repair. Our procedure is not limited to
inferring a generic trial-group level signal trend common to multiple trials (which would
be sufficient to improve ERP estimation, but not single-trial-level analyses). On the contrary
it actually infers information about activity within gaps at specific spatiotemporal locations,
extracting it from redundant copies at different spatiotemporal locations. In other words,
each trial can be individually regenerated to a certain extent, and not only the average
activity. This is a crucial asset of our method, opening the way to its application in studies in
which the functional role of between-trial variability is explicitly investigated [33,42,47,48].

Here, we illustrated only one proof-of-concept application of our method to a high-
density EEG dataset, including the first semester of the life of infants [33,34]. However,
given the generality of this method, it could be applied to any multisensory neural data,
including LFP, MEG, and ECoG, to name a few. However, the optimal hyperparameters
for selection could be different for different datasets and types of signal. In the case of our
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example application, we estimated optimal parameters based on a bootstrapping library of
surrogate artifacted data, which was highly tailored to the specific dataset we wanted to
complete. Precisely the same procedure could be adapted to other datasets, for different
scientific problems and different modalities of recording, thus opening the way to a dataset-
specific optimization of repair procedures; potentially superior to benchmarking with
simulated signals from generic statistical models (cf. e.g., [46]).

Limitations and Future Work

One of the main limitations of our OPTSPACE-based method is its time complexity.
Unlike most interpolation techniques, this method is applied not only to the peristimulus
epoch times, but on the entire data matrix of continuous data, artificially segmented into
blocks of reasonable sizes. Such a “holistic” approach is needed, as we need all data to
infer a bundle of hyperplanes locally tangent to the hypothesized but unknown neural
activity manifold. In our procedure, an optimization step is iterated as many times as the
number of time blocks in which the continuous multivariate time series is divided. While
multiple iterations are needed to improve the accuracy of the inference of missing values,
each of these optimization steps scale linearly with the number of missing entries |E|, rank
r, and blocksize n as time complexity is O(|E|r log n). This means that a typical run of the
OptSpace algorithm with 10–20 min of EEG recording took approximately 10–15 min of
processing per subject, with a moderate-to-high number of missing entries on MATLAB.
Since the computational cost of applying our data repair method is not negligible, one
should consider beforehand what is the expected level of improvement that its application
could yield for the planned data analyses. When studying, for instance, data from healthy
adults in highly stable experimental conditions, the gain from applying data completion
could be so low that the additional time (and CO2) expenditure needed for signal repair may
not be worth undertaking. There are cases, however, such as studies involving patients
with Parkinson’s or Alzheimer’s diseases and elderly subjects, or young children and
infants, in which increasing trial retention is an absolute necessity, as the degree of signal
corruption due to artifacts is very high. It is, thus, especially for these “atypical cohorts”
that we expect our method will serve as a valuable resource.

We note that low-rank matrix completion is a machine learning optimization problem,
whose range of applications goes well beyond signal repair. This means that the very
active research in other research fields— e.g., compressed sensing [28]—may yield superior
and faster algorithms for matrix completion in the near future. As our pipeline was not
built ad hoc for EEG signal repair, but capitalizes on the encounter between a general
hypothesis—low dimensionality and activity—and an equally general and widespread
algorithmic problem, it will be possible to profit from any advances obtained in different
fields, simply by replacing the OPTSPACE step with another better algorithm performing
the same low-rank matrix completion task. For example, the time limitation might be
mitigated by making use of faster implementations of matrix completion methods, such as
fancyImpute (available in R and Python ([49])), which are optimized for parallel processing.
Our benchmarking results suggest that such matrix completion algorithms are compatible
with use with EEG data.

5. Conclusions

A low-rank matrix completion method was able to successfully repair artifacts, without
any assumptions about the underlying sources that might have generated these artifacts.
Taking advantage of the combined spatiotemporal structure of the neural data, this method
was able to successfully reconstruct the signal of interest, not just for the evoked activity,
but also for intrinsic neural activity. This method significantly improved the trial retention,
which in many cases further improves the effect sizes during hypothesis testing. Such a
method improves the usability of noisy EEG signals, a critical aspect, especially when the
number of rejected trials tends to be large, as in atypical and pathological cohorts.
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