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Abstract: Recent advancements in computing and artificial intelligence (AI) make it possible to
quantitatively evaluate human movement using digital video, thereby opening the possibility of more
accessible gait analysis. The Edinburgh Visual Gait Score (EVGS) is an effective tool for observational
gait analysis, but human scoring of videos can take over 20 min and requires experienced observers.
This research developed an algorithmic implementation of the EVGS from handheld smartphone
video to enable automatic scoring. Participant walking was video recorded at 60 Hz using a smart-
phone, and body keypoints were identified using the OpenPose BODY25 pose estimation model. An
algorithm was developed to identify foot events and strides, and EVGS parameters were determined
at relevant gait events. Stride detection was accurate within two to five frames. The level of agreement
between the algorithmic and human reviewer EVGS results was strong for 14 of 17 parameters, and
the algorithmic EVGS results were highly correlated (r > 0.80, “r” represents the Pearson correlation
coefficient) to the ground truth values for 8 of the 17 parameters. This approach could make gait
analysis more accessible and cost-effective, particularly in areas without gait assessment expertise.
These findings pave the way for future studies to explore the use of smartphone video and AI
algorithms in remote gait analysis.

Keywords: gait analysis; Edinburgh Visual Gait Score; computer vision; motion analysis; pose
estimation; smartphone video; remote gait analysis

1. Introduction

Gait analysis is used to evaluate functional status and neurological health, particularly
for those with mobility issues [1,2]. Instrumented gait analysis (IGA) is the gold standard
that uses three-dimensional body pose data to diagnose gait abnormalities [3–5]. However,
IGA is resource-intensive and not available in most clinical settings [4]. Observational
gait analysis or visual gait analysis (VGA) is an alternative that provides a simple and
easy-to-use procedure for clinicians to observe and characterize a patient’s gait. In VGA,
recorded video is evaluated using a variety of scales that concentrate on specific joints,
planes, and events in the gait cycle. Despite its subjective nature, VGA is widely used to
evaluate gait issues in children and adults, and several computer-based image analysis
methods have been designed to support clinicians. However, VGA may result in low
sensitivity, specificity, validity, and reliability when compared to IGA [6].

One of the oldest VGA scoring scales is the Physician Rating Scale (PRS), which
was specifically developed for children with cerebral palsy (CP) [7]. Its development,
reliability, and validity were not well documented when the scale was first published
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in 1993. Since then, several other VGA scales have been proposed for different patient
populations or to improve the validity of existing scales [8–18]. A review that analyzed
five VGA gait measures found that the PRS was insufficient to capture the entire gait
pattern accurately [19]. The Salford Gait Tool was highly reliable and concurrently valid,
but only assessed sagittal plane gait deviation and required additional validation [19].
The Edinburgh Visual Gait Score (EVGS) was the most effective scale for evaluating gait
patterns of children with CP because it included parameters for the trunk, pelvis, hip, knee,
and ankle in both the stance and swing phases and data on gait in all three planes [20].

The EVGS has emerged as a reliable tool for grading patient walking videos, particu-
larly for children with cerebral palsy [19]. However, existing methods still require human
assistance and can be time-consuming to implement, with the time to grade a video for one
patient taking up to 24.7 min [21]. While previous research explored automatic gait analysis,
such as the research by Yoo et al. [22], their approach did not utilize handheld videos or
scoring scales. Another study by Myriam et al. [23] developed a software package for auto-
mated gait analysis based on the Rancho Observational Gait Analysis approach, identifying
gait deviations and their causes. However, their software was not tested, and some issues
needed to be resolved, including automatic filling of the tables and synchronization with
Visual3D analysis software.

To address these limitations, automated tools could be developed for the EVGS analy-
sis of video clips with minimal human interaction. In this context, smartphones can play a
valuable role in acquisition and gait monitoring, providing high-quality video recordings
of human movement that can be analyzed using artificial intelligence (AI) algorithms. This
would enable gait analysis from any location, including rural clinics, and improve access to
care for patients with mobility issues.

Deep learning methods have shown the most promise for accurate pose estimation, and
various techniques are available, including top-down and bottom-up approaches [24–27]. Open-
Pose, HyperPose, and BlazePose are among the most widely used markerless techniques
for pose estimation. OpenPose is a reliable markerless motion analysis system for pose
estimation, particularly for gait analysis [26]. Research comparing OpenPose and Hyper-
Pose performance showed that OpenPose BODY25 consistently classified body keypoints
more accurately than HyperPose [28], while other studies found that OpenPose performed
better than BlazePose when predicting human pose estimation coordinates [29]. Although
OpenPose requires more computational resources compared to other models, it offers more
accurate keypoint detection, which is crucial for gait analysis. As shown in Table 1, when
compared to other widely used pose estimation methods, OpenPose has the necessary
inputs to compute the EVGS, making it a suitable option for automated gait analysis using
smartphone video recordings.

The goal of this research was to create a viable system that can automatically detect
foot events and strides and then calculate the EVGS from handheld smartphone video.
This work aimed to determine whether automatic EVGS analysis can be performed using
OpenPose keypoints alone. An automated system must be time-efficient to reduce the
workload for clinicians. A viable system will offer a novel, automated implementation
of visual gait analysis using smartphone video, making this level of gait analysis more
accessible and convenient for patients and more time efficient for clinicians.

The proposed system makes these main contributions:

• Provides viable methods that use handheld smartphone video, thereby making this
approach applicable to the remote video capture of patient movements by clinicians
or parents/caregivers;

• Creates an automatic system using OpenPose keypoints to detect foot events and
strides and automatically calculate the EVGS. This potentially reduces the workload
for clinicians because the EVGS is calculated quickly and automatically without the
need for manual calculations or human intervention;

• This approach saves substantial time and resources, eliminating the need for special-
ized equipment or extensive preparation for gait analysis.
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Table 1. Pose estimation models.

DeepPose HyperPose BlazePose OpenPose

Skeleton model
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The research presents a novel and time-efficient method for calculating the EVGS
results using smartphone video data, advancing the understanding of automatic gait
analysis methods using the EVGS and providing a basis for future research in this area.
Overall, this research provides a promising avenue for the integration of automatic EVGS
analysis and scoring using smartphones, paving the way for remote visual gait analysis
technology.

2. Materials and Methods

To achieve the automated EVGS analysis objective, the proposed system must be
able to identify the appropriate video frames for analysis and then apply a series of rules
to generate scores for each parameter. This involves two main tasks: creating a method
for identifying the required gait events in a walking video and creating an algorithm for
scoring the EVGS parameters. The proposed methodology sequentially implements pose
estimation, view detection, direction of motion detection, gait event identification, stride
allocation, and finally, algorithmic calculation of the EVGS.

A preliminary set of videos was needed to develop the algorithm. To obtain these
videos, an able-bodied individual walking in both sagittal and coronal views was recorded
at 60 Hz using a handheld smartphone camera.

2.1. Algorithm Development
2.1.1. Pose Estimation

For each video frame, the OpenPose BODY25 model provided joint coordinates as
keypoints (Figure 1). Coordinate trajectories can be noisy and sometimes contain outliers;
therefore, keypoint data were filtered using a zero-phase, dual-pass, second-order Butter-
worth filter with a 12 Hz cut-off frequency. A 2D (two-dimensional) keypoint processing
strategy was adapted from earlier work for a markerless AI motion analysis method for
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hallways [32], where keypoints with scores below a 10% threshold were removed, and then
cubic spline interpolation was used to fill gaps of five frames (0.083 s) or fewer.
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Figure 1. OpenPose output demonstrating human pose estimation through keypoint detection.

2.1.2. Gait Event and Stride Detection

The process involved determining if the video is in the sagittal or coronal plane;
determining whether the motion is left to right, right to left, anterior to posterior, or
posterior to anterior; detecting the four distinct gait events; and assigning values to a
particular stride. The required events are foot strike, foot off, mid-midstance (midpoint of
midstance) and mid-midswing (midpoint of midswing).

Detection of Sagittal/Coronal Views

Trunk length fluctuates very little when walking in the sagittal plane, and trunk length
stays within a certain threshold. The algorithm considers a video to be sagittal when the
absolute difference in trunk length (distance between the midshoulder (KP1) and midhip
(KP8) keypoints) between the first and last frames is less than a threshold (99 pixels). To
identify the threshold, 37 videos of able-bodied people walking in both coronal and sagittal
views were analyzed. A difference in trunk length of less than 99 pixels produced the best
results, where the video resolution was 1920 × 1080. Therefore, 99 pixels was set as the
threshold for classifying sagittal plane walking.
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In the front (coronal) view, trunk length is maximum when the person is close to the
camera and decreases from maximum when the person walks away from the camera.

Direction of Motion Detection

Following the coronal or sagittal identification of the video, the next step determines
frontal or rear in coronal view and left to right or right to left in sagittal view.

An algorithm was employed that replicated the approach for locating the sagit-
tal/coronal views by monitoring trunk length and comparing the difference between
the first and final frames. If the difference is negative, the participant is facing forward, and
if the difference is positive, the person is moving away from the camera.

In the sagittal view, the algorithm tracks the nose (KP0) location on the x-axis and
calculates the difference between nose positions in the first and final frames. X-coordinates
are maximal at the right border and minimal at the left border. Using this concept, if the
difference is negative, the person is walking from left to right. If the difference is positive,
the person is walking from right to left. This method produced consistent results.

Gait Event Identification

Foot strike and foot-off events were determined using the Zeni et al. [33] method.
According to this approach, heel strike is when the sacral marker’s forward distance from
the heel marker is at its maximum, and toe off is when the toe marker is furthest posterior
from the sacral marker. Since sacrum keypoints are not provided in OpenPose, the midhip
keypoint (KP8) was used to replace the sacral marker location. Figure 2 provides an
example of identified foot strikes and foot off using the heel positions (KP24 and KP21) and
midhip positions (KP8).

The distance between the toes (KP19 and KP22) is used to determine mid-midstance
and mid-midswing. The legs are closer together in mid-midstance posture; hence, the
space between the two toes will be less. Assuming that the right big toe (KP22) is (x1, y1)
and the left big toe (KP19) is (x2, y2), the distance between toes (d) was calculated using
Equation (1), and mid-midstance was at the minimum distance (Figure 3):

d =

√
(x2 − x1)

2 + (y2 − y1)
2 (1)
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For a coronal view, the beginning and end of the stride, and mid-midstance must
be located. The same procedure was used as in the sagittal view, measuring the distance
between the toes (Figure 4).

Allocating Foot Events to Specific Strides

Figure 5 provides a flowchart for identifying strides. The method involves determining
if the stride begins on the left or the right; acquiring at least a stride to determine if the
number of right/left foot strikes equals or exceeds 2; and assigning events to particular
strides by searching for foot strikes, foot offs, or mid-midstance that could happen between
the start and finish of the stride.
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2.1.3. Algorithmic Implementation of EVGS

The Edinburgh Visual Gait Score (EVGS) is a clinical tool used to assess gait deviations
in patients with various neurological and musculoskeletal conditions. EVGS consists of
17 parameters for each lower extremity, totaling 34 parameters. In practice, a person’s
gait in sagittal and coronal views are video recorded while walking, using a handheld
camera or a camera on a tripod. In typical clinical practice, the video is scored by a human
according to the EVGS guidelines. The person scoring the video can use video editing
software to pause the recorded video at specific gait events for analysis. Software can
also be used to determine joint angles and other EVGS parameters. A 3-point ordinal
scale is used to score each parameter: 0 = normal (within +/− 1.5 standard deviations
of the mean), 1 = moderate deviations (between 1.5 and 4.5 standard deviations of the
mean), and 2 = significant/severe deviations (more than 4.5 SD of mean). A lower overall
score indicates less gait deviation [20]. In this research, to enhance understanding and
maintain consistency, the 17 EVGS parameters were grouped based on foot events and gait
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cycle phases. Table 2 below lists the parameters and how they are organized according to
these events.
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Table 2. List of EVGS parameters.

Foot Events and
Gait Phases EVGS Parameters

Sagittal view

Initial
contact/Terminal

swing

Peak hip flexion in swing (#13)

Knee extension in terminal swing (#10)

Initial contact (#1)

Midstance

Peak sagittal trunk position (#16)

Pelvic rotation in midstance (#15)

Heel lift (#2)

Terminal stance

Peak hip extension in stance (#12)

Peak knee extension in stance (#9)

Max. ankle dorsiflexion in stance (#3)

Midswing

Peak knee flexion in swing (#11)

Maximum ankle dorsiflexion in swing (#7)

Foot clearance in swing (#6)

Coronal view Midstance

Maximum lateral shift of trunk (#17)

Maximum pelvic obliquity in stance (#14)

Knee progression angle (#8)

Foot rotation (#5)

Hindfoot valgus/varus (#4)

The majority of EVGS parameters need angle calculations, including hip, knee, and
ankle. Hip angle in the sagittal plane was computed using the angle between the axis per-
pendicular to the trunk axis and the thigh axis (Figure 6), Since OpenPose does not provide
keypoints for a pelvis segment. The trunk axis was the axis between the midshoulder (KP1)
and midhip (KP8) keypoints. The line connecting the hip (KP9 and KP12) and knee (KP10
and KP13) keypoints was the thigh axis. Note that this is different from how people can
visualize hip angle, which is usually the thigh angle related to pelvis orientation. Equation
(2) was used to calculate the slope

m =
y2 − y1

x2 − x1
(2)
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For the trunk axis, (x1, y1) are the midshoulder (KP1) coordinates, and (x2, y2) are the
midhip (KP8) coordinates. Using these coordinates and Equation (3), the trunk axis angular
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coefficient was determined. The axes used to compute joint angles are shown in Figure 7.
The axis perpendicular to the trunk axis thus had the following slope:

m1 =
1
m

(3)
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A similar procedure was followed for the thigh axis, where m2 was calculated from
(x3,y4), which corresponds to the hip’s coordinates (KP9 and KP12), and (x4, y4) represents
the knee keypoints (KP10 and KP13):

m2 =
y4 − y3

x4 − x3
(4)

Therefore, the angle (in degrees) is given by

θhip = 90 − arctan
∥∥∥∥ m2 − m1

1 + (m2 × m1)

∥∥∥∥× 360
2π

(5)

When the knee is in front of the body, the angle value is positive (flexion). This method
was used to calculate peak hip flexion in swing (#13) and peak hip extension in stance (#12).

Knee extension in terminal swing is determined using the knee angle, the angle
between the thigh and shank sagittal axes (Figure 8). When the knee is flexed, the angle is
positive. Equation (4) determines the slope of the thigh segment, and Equation (6) is for the
tibia segment slope.
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For the thigh, hip coordinates (KP9 and KP12) were (x3, y3), and knee coordinates
(KP10 and KP13) were (x4, y4), and Equation (4) was used to compute the angular coefficient
(slope) of thigh axis m2. The ankle coordinates (KP11 and KP14) were (x5, y5). The slope,
m3 (shank axis), was calculated using Equation (6):

m3 =
y5 − y4

x5 − x4
(6)

Knee angle was then calculated using

θknee = arctan
∥∥∥∥ m3 − m2

1 + (m3 × m2)

∥∥∥∥× 360
2π

(7)

This method was used to calculate knee extension in terminal swing (#10), peak knee
extension in stance (#9), and peak knee flexion in swing (#11).

The dorsiflexion/plantarflexion angle was calculated using the foot and shank sagittal
axes (Figure 9).
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Dorsiflexion angles are positive. Equations (6) and (8) are used for the tibia and foot
segments. The knee coordinates (KP10 and KP13) are (x4, y4), and ankle coordinates (KP11
and KP14) are (x5, y5). Using Equation (6), the angular coefficient is m3 (shank axis). The
heel coordinates (KP21 and KP24) are (x6, y6), and the mean positions of the big (KP19
and KP22) and small toes (KP20 and KP23) are (x7, y7). Equation (8) determines the slope
m4(foot axis)

m4 =
y7 − y6

x7 − x6
(8)

The ankle angle was calculated using Equation (9):

θankle = arctan
∥∥∥∥ m4 − m3

1 + (m4 × m3)

∥∥∥∥× 360
2π

(9)

Initial Contact (#1)

To determine whether the heel, toe, or flat foot makes initial contact with the ground,
a line (foot axis) between the heel (KP21 and KP24) and midtoe (midpoint of the big (KP19
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and KP22) and small toe (KP20 and KP23)) keypoints were used. The angle between the
foot axis and the image coordinate system x-axis in sagittal plane was measured. The
development dataset was used to calculate angle thresholds for scoring. The thresholds
were determined by evaluating sagittal videos showing any of the three conditions (heel
contact, toe contact, flat foot contact). After analysis, the flat foot contact range was set to
between 0 and 20◦, Since 95% of the development dataset showed heel contact at more than
20◦ and toe contact at less than 0◦.

Peak Sagittal Trunk Position (#16)

Similar to the foot position approach, a line from the midshoulder (KP1) to the midhip
keypoint (KP8) was used for trunk angle. The angle between this trunk line and the x-axis
of the image coordinate system in the sagittal plane was calculated. Then, in accordance
with the EVGS handbook [20], normal (vertical to 5◦ forward or backward), abnormal
(greater than 5◦ backward or between 6◦ and 15◦ forward), and highly abnormal (more
than 15◦ forward) conditions were classified.

Pelvic Rotation in Midstance (#15) and Maximum Pelvic Obliquity in Stance (#14)

OpenPose only provides hip keypoints, but the pelvis requires at least 3 keypoints to
define segment orientation. As a surrogate measure, pelvic rotation angle was determined
from a line connecting the right (KP9) and left hip (KP12) joints and the image coordinate
system’s sagittal plane y-axis.

Heel Lift (#2)

Heel lift has five EVGS criteria: normal, early, delayed, no heel, and no forefoot contact.
Using the same methodology for detecting foot position at initial contact, no forefoot touch
and no heel contact were detected at midstance. “No forefoot contact” refers to when the
forefoot (the front part of the foot, including the toes) does not contact the ground during
midstance. “No heel contact” refers to when the heel does not contact the ground during
midstance.

Three foot events (stance foot heel lift, other foot level with the stance foot, opposite
foot contact with the ground) were recorded if the foot was in a flat posture during mid-
stance. A normal EVGS result occurs if heel lift occurs on the stance leg between the other
foot being at the same level as the stance foot and the other foot making contact with the
ground. Heel lift is early if the stance leg heel lift occurs before the opposing foot levels
with the stance foot. Heel lift is delayed if lifting occurs after the opposing foot reaches the
ground.

Foot Clearance in Swing (#6)

Foot clearance has four criteria: full clearance, reduced clearance, no clearance, and
high steps. Toe, heel, and ankle keypoints were considered for this parameter. Full clearance
occurs when the big toe and heel involved in foot clearance cross the big toe and heel of the
opposing leg, respectively. Reduced clearance occurs when the heel crosses the opposing
leg’s heel, but the toe remains below or on the same level as the opposite leg’s toe. No
clearance is when both big toe and heel are below the opposite big toe and heel, respectively.
A high step occurs if the toe passes the opposite leg’s midpoint between the ankle and knee.

Maximum Lateral Trunk Shift (#17)

The EVGS instructions for maximum lateral trunk shift are not machine-friendly
because the scale’s description only refers to “marked,” “reduced,” or “moderate” trunk
shift, with no threshold values provided to distinguish between the various conditions.
The proposed approach for determining lateral trunk shift involves computing the angle
between the trunk axis and the image coordinate’s y-axis in the coronal plane. Angle
thresholds at which the trunk shift are normal, moderate, and marked and were determined
using the development dataset. Videos from the coronal view that displayed any of the
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three conditions (normal, mild trunk shift, marked trunk shift) were analyzed. After
analysis, maximum lateral trunk shift was considered normal if the angle was between 0◦

and 5◦, reduced if the angle was less than zero, moderate if the trunk angle was between 6◦

and 15◦, and severely inclined if the trunk angle was greater than 15◦.

Knee Progression Angle (#8)

Knee progression angle is highly subjective and depends on visual cues. This param-
eter determines if the kneecap is visible. EVGS instructions are insufficient to determine
the knee progression angle using only OpenPose keypoints. The proposed method of
determining knee progression angle involves obtaining the ankle angle and establishing
threshold values using the development dataset. Following video analysis, normal was
chosen as an ankle angle between −25◦ and 25◦, internal rotation as an ankle angle more
than 25◦, and external rotation as an ankle angle less than −25◦.

Hindfoot Valgus/Varus (#4)

Hindfoot valgus/varus was calculated using a line connecting the ankle (KP11 and
KP14) and heel keypoints (KP21 and KP24) and the image coordinate’s y-axis in the
coronal plane.

The algorithmic implementation of the Edinburgh Visual Gait Score is presented in
Pseudocode in Appendix B.

2.2. Algorithm Evaluation Methodology

Clinical implementation of EVGS is human-scored. To evaluate the proposed new
EVGS algorithmic approach, the algorithmic scoring was evaluated by comparison to
scoring by a panel of reviewers.

To evaluate the automated EVGS analysis system, a set of videos was collected that
represented gait conditions for each EVGS parameter and result. This also allowed for
a thorough evaluation of system performance, because the videos could be used to test
various gait patterns.

Three healthy people with a good understanding of gait volunteered for this study.
Participants were instructed to wear running shoes; tightly fitting, brightly colored clothes;
and shorts with patellae (kneecaps) visible. Participants were female, 20 to 25 years, and
with no issues affecting walking. All participants provided informed consent, and the
study was approved by the University of Ottawa Research Ethics Board.

Before video recording, gait characteristics mentioned in the EVGS scale were ex-
plained to participants so that they could recreate these conditions. Nine gait sets were
collected for the sagittal view: healthy, hip, knee, trunk, ankle, pelvis, foot position, heel
lift, and foot clearance (Table 3). Five gait sets were collected for the coronal view: healthy,
knee, trunk, foot, and pelvis (Table 4). Thirty-seven walking trials were collected, one
for each condition and two for normal gait. This approach allowed for a comprehensive
examination of different gait conditions and helped in the evaluation of algorithms for
automatically calculating EVGS.

Data were collected using an iPhone 13 pro with a 6.1-inch display and 2532 × 1170 rear
camera pixel resolution. The smartphone was handheld to replicate situations without
a tripod or other support. Three individuals were involved in each recording process:
volunteer being recorded, phone video recording operator, and assistant monitoring the
recording. The operator was instructed to maintain a steady hand and hold the camera in
portrait orientation at approximately neck level during the entire trial to ensure that the
participant’s entire body was captured in the video. The camera was oriented parallel to
the plane being captured. For a coronal view, the operator stood in front of the participant.
A satisfactory video had the participant visible, balanced lighting, and no images, objects,
or people in the background that may be mistaken for the participant. A brief description,
diagram, or video of each gait pattern was provided before the video trial to ensure that
the participants understood and interpreted the walking pattern correctly. Additionally, an
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EVGS manual was provided for the participants to read before the video session to help
reduce bias that may be introduced by any demonstration of the gait pattern.

For each trial, participants walked 10 m at a comfortable self-selected speed in an
obstacle-free and flat hallway. Following the initial 10 m walk, individuals took a brief
two-second break, turned 180◦ in their chosen direction, took a brief two-second break, and
then resumed straight walking. Each participant completed 37 walking trials, resulting in
111 videos being collected.

Each video was trimmed at the start and end to eliminate frames where the person
was not on camera. Sagittal view videos were divided into left-to-right and right-to-left
directions, while coronal view videos were divided into front view and rear view. Video
quality was checked to ensure that it met the required standards. Videos that were not taken
correctly were removed and recaptured. After preprocessing, 216 videos were available
for analysis.

Table 3. Gait sets in sagittal view.

Gait Set Characteristics Description

Healthy Normal Walk normally

Hip
Flexion At initial contact, walk with hips flexed

Extension At terminal stance, walk with hips extended

Knee
Flexion At initial contact and midswing, walk with knee flexed

Extension At initial contact and terminal stance, walk with knee extended

Ankle
Dorsiflexion During terminal stance and midswing, walk with ankle dorsiflexed

Plantarflexion During terminal stance and midswing, walk with ankle plantarflexed

Trunk

Reduced Walk with trunk more than 5◦ backward

Moderate Lean forward 6◦ to 15◦ while walking

Marked Lean more than 15◦ forward while walking

Pelvis
Protraction Walk with pelvic region extended more than 10◦

Retraction Retract pelvic region more than 5◦ when walking

Foot position

Toe contact Make initial contact with the floor with toes

Heel contact Make initial contact with the floor with heel

Flat foot contact Make initial contact with the ground with foot flat

Heel lift

No forefoot contact Walk on heel

No heel contact Walk on toes

Early Raise your heel off the ground before opposing foot aligns with stance foot

Delayed Raise your heel from the ground after the opposing foot has contacted the
ground

Foot clearance

High steps Lift knees high in the air as you walk

Reduced clearance Do not completely lift foot off the ground when walking. Either the heel or
toe is still in contact with the ground

No clearance Do not take feet off the ground. Drag feet
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Table 4. Gait sets in coronal view.

Gait Set Condition Description

Healthy Normal Walk normally

Knee

External: Full kneecap Walk with knees externally rotated and whole kneecaps visible

External: Part kneecap Walk with knees externally rotated and part of the kneecaps visible

Internal: Full kneecap Walk with knees internally rotated and whole kneecaps visible

Internal: Part kneecap Walk with knees internally rotated and part of the kneecaps visible

Foot

External: Moderate Walk with feet 21◦ to 40◦ externally rotated

External: Marked Walk with feet turned externally by more than 40◦

Internal: Marked Walk with feet 1◦ to 25◦ internally rotated

Internal: Moderate Walk with feet internally rotated by greater than 25◦

Pelvis
Up Lift one hip over the other by more than 5◦

Down Lower one hip more than 1◦ while raising the other

Trunk

Reduced During midstance, walk with trunk tilted toward the opposing leg

Moderate Tilt trunk more than 25 mm toward the stance leg at midstance

Marked At midstance, lean trunk substantially towards the stance leg

2.2.1. Reviewers and Training

Five University of Ottawa students volunteered to score videos, each person with a
sufficient understanding of gait events. Before evaluating the videos, all reviewers were
briefed on normal gait kinematics, gait phases, and methodologies for recording and
reviewing gait recordings. Additionally, the purpose and background of the EVGS were
discussed, and gait analysis using the EVGS was demonstrated.

For training, the reviewers manually scored an example video using the EVGS and
then compared their results to gain a better understanding. The reviewers then applied
EVGS to evaluate the videos independently, without consulting one another. Slow motion
and freeze-frame playback were used with video player software. Reviewers did not have
time restrictions and could work at their own pace while reviewing.

2.2.2. Algorithm Evaluation

To validate the approach to automatically calculating EVGS results, independent
evaluations were completed for stride detection and EVGS results.

For foot event ground truth, one reviewer manually identified foot events in each
video. The ground truth was then manually labeled for coronal/sagittal view, motion
direction, foot strike and foot off, mid-midstance, and the total number of strides in each
video. For EVGS algorithm evaluation, each video was scored by at least two reviewers.
The reviewers used the EVGS to evaluate the videos independently, without consulting
one another. Each reviewer was unaware of the other reviewer’s scoring.

Each reviewer completed an EVGS form containing all the EVGS parameters for each
leg. The reviewers evaluated the entire gait cycle, including multiple strides, for each
leg in each video. Only the most frequent score for each parameter for each leg in each
video was considered as the final score. The use of the most frequent score also helped
reduce potential biases introduced by evaluating only a single stride. The videos were rated
between 0 and 2, with 0 denoting normal performance and 2 denoting highly abnormal, as
specified in EVGS. Reviewers were instructed to assess joint angles using their eyes alone,
without using any software or other tools, to replicate the instructions described in EVGS.

Once the ground truth for coronal/sagittal view, motion direction, foot strike and foot
off, mid-midstance, the total number of strides, and the EVGS results were provided by
the reviewers for each video, the algorithmic results and EVGS results were compared
with the reviewers’ results. When using a human-scored scale, such as the EVGS, it is
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important to assess the degree of agreement or disagreement between different reviewers.
Therefore, Pearson correlations were calculated for scores assigned by different reviewers,
to determine the degree of consistency. Correlations were also used as a metric to compare
algorithmic and reviewer results, with correlations interpreted as very high (0.9–1.0), high
(0.7–0.9), moderate (0.5–0.7), low (0.3–0.5), and negligible (0.0–0.3).

3. Results
3.1. Coronal/Sagittal View Detection

To assess sagittal or coronal view identification, algorithmic findings and ground
truth were compared. Table 5 displays the sagittal or coronal view (number of videos)
classification confusion matrices. Accuracy was 96.3%, sensitivity was 93.1%, specificity
was 98.4%, precision was 97.6%, and the F1-score was 0.95.

Table 5. Confusion matrix for coronal/sagittal view identification.

Algorithm

Ground Truth Coronal Sagittal

Coronal 82 2
Sagittal 6 126

Algorithm accuracy was acceptable. The algorithm failed when multiple people were
in the video or when a person unexpectedly turned towards the camera while walking in
the sagittal view.

3.2. Direction of Motion Detection

Tables 6 and 7 show confusion matrices for detecting the direction of motion (number
of videos). For the coronal view, accuracy was 92.8%, sensitivity was 90.9%, specificity was
95.0%, precision was 95.2%, and the F1-score was 0.93. For the sagittal view, accuracy was
92.4%, sensitivity was 93.7%, specificity was 91.1%, precision was 90.9%, and the F1-score
was 0.92.

Table 6. Confusion matrix for detecting direction of motion (coronal view).

Algorithm

Ground Truth Coronal Sagittal

Coronal 40 2
Sagittal 4 38

Table 7. Confusion matrix for detecting direction of motion (sagittal view).

Algorithm

Ground Truth Coronal Sagittal

Coronal 60 6
Sagittal 4 62

The algorithm correctly determined direction in the majority of videos but failed when
a person’s reflection was visible on the wall, when numerous people were in the video,
when the camera moved as the person moved (both small and large camera movements),
or when the participant was not in the frame the entire time.

3.3. Foot Strike, Foot off, and Mid-Midstance Detection

Algorithmically determined foot strike, foot off, and mid-midstance were compared
to manually labelled ground truth. Each video was classified into three categories based
on the discrepancy between the identified frame number and the actual frame number:
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two frames or less discrepancy, two to five frames discrepancy, and more than five frames
discrepancy. Each stride in a video was categorized, and then the most frequently occurring
category was assigned to the video.

Additional foot events may occasionally be detected by the algorithm, while at other
times, the algorithm may not detect an event (Figure 10). These circumstances occurred
rarely (5 of 100 videos) when the OpenPose keypoints abruptly swapped between legs.
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Table 8 shows accuracy results for foot strike, foot off, and mid-midstance.

Table 8. Foot strike accuracy categories for sagittal and coronal views (number of videos).

Differ by More
than Five Frames

Differ by Two
to Five Frames

Differ by Two
Frames or Less

Foot strike
Coronal 22 27 35
Sagittal 20 91 21

Foot off
Coronal 20 33 31
Sagittal 19 87 26

Mid-midstance
Coronal 18 24 42
Sagittal 4 1 127
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3.4. Number of Strides

The difference between the number of strides detected by the algorithm and the
number of strides detected by the reviewer are displayed in Table 9. Each video was
classified into three categories based on the difference between the identified number of
strides and the actual number of strides: two strides or less, two to five strides, and more
than five strides.

Table 9. Difference between the number of strides detected by the algorithm and the number of
strides detected by the reviewer (number of videos).

Differ by More than
Five Strides

Differ by Two to
Five Strides

Differ by Two
Strides or Less

Coronal 3 4 77
Sagittal 3 3 126

3.5. EVGS Coronal Videos

The EVGS results were computed for five coronal view parameters. Pearson correlation
analyses assessed the relationship between reviewer 1 and reviewer 2, reviewer 1 with the
algorithm, and reviewer 2 with the algorithm, and for both legs and for each gait set. The
EVGS result correlations between reviewers (R1, R2) and the algorithm for right and left
legs for different gait sets are shown in Figure 11. The tables of results are in Appendix A.
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Figure 11. Reviewer correlation and correlation between the algorithm and the reviewers for coronal
plane parameters.

3.6. EVGS Sagittal Videos

The sagittal view had nine gait sets. The EVGS result correlations between reviewers
(R1, R2) and the algorithm for right and left legs for different gait sets are shown in Figure 12.
The tables of results are in Appendix A.
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Figure 12. Reviewer correlation and correlation between the algorithm and reviewers for sagittal
plane parameters.

The results for each EVGS parameter are summarized in Table 10, using the overall
average correlation between reviewers and the algorithm.

Table 10. Correlation interpretation between reviewers (R1 and R2) and algorithm.

Parameter Quality

Coronal parameters

Foot rotation (#5) High

Maximum lateral trunk shift (#17) High

Knee progression angle (#8) Moderate

Maximum pelvic obliquity in midstance (#14) Low

Hindfoot valgus/varus (#4) Negligible

Sagittal parameters

Initial contact (#1) Very high

Peak sagittal trunk position (#16) High

Maximum ankle dorsiflexion in swing (#7) High

Knee extension in terminal swing (#10) High

Peak knee extension in stance (#9) High

Peak hip extension in stance (#12) High

Maximum ankle dorsiflexion in stance (#3) Moderate

Peak knee flexion in swing (#11) Moderate

Peak hip flexion in swing (#13) Moderate

Pelvic rotation in midstance (#15) Negligible

Heel lift (#2) Negligible

Foot clearance in swing (#6) Negligible

4. Discussion

The discussion is divided into subsections for coronal view parameters and sagittal
view parameters.

4.1. Coronal View Parameters

Based on coronal view analysis across different gait sets, all five coronal parameters
had high correlations among reviewers (r = 0.7 to 0.9). The literature on the EVGS in-
terrater reliability found that the level of agreement between reviewers varied for each
parameter [34]. The knee progression angle showed a high level of agreement, with an
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81% agreement rate among reviewers, while the other parameters had a moderate level
of agreement (r = 0.5–0.7). Although there were differences between the correlation coef-
ficients in this research and the level of agreement in the literature, the overall range of
agreement among reviewers for each gait parameter was consistent between this study and
the literature.

Foot rotation and lateral trunk shift showed high correlations between the algorithm
and reviewers, while the knee progression angle had moderate correlations. Pelvic obliq-
uity had low correlations, and the hindfoot valgus/varus parameter showed negligible
correlations between the algorithm and reviewers. Keypoints on the ankle and heel that
are near each other in a narrow area and far from the camera are more likely to be occluded
during walking, which helps to explain this result. Figure 13 depicts foot keypoints as
the person walks away from the camera. Since the two legs are close together, the foot
keypoints for the left leg are not accurately detected. Possible improvements to address
these issues could include using the knowledge that the stance foot should not move (i.e.,
marker location fixed) when not “toe walking”, thereby helping to avoid confusion when
the swing foot passes close to the stance foot. Additional model training for these situations
could also help improve OpenPose keypoint determination.
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Figure 13. An example where OpenPose fails to recognize heel, ankle, big toe, and small toe accurately.
Image without keypoints (a) and image with keypoints errors at the ankle and foot (b).

Pelvic obliquity involves movement of the entire pelvis segment. Hip keypoints were
used as a surrogate measure of pelvic movement, because they are a part of the pelvic region
but may not represent the entire pelvic segment; therefore, lower correlations between
the algorithm and reviewer were anticipated. The difference was also attributed to the
reviewer looking at the entire pelvis when making their assessment, which differs from the
algorithm only using hip keypoints. In future, improved AI models that estimate depth
(i.e., 3D coordinates for each keypoint) could provide additional information to improve
outcomes when using the hips as a surrogate marker.

With the exception of hindfoot valgus and varus, all parameters demonstrated strong
correlations between reviewers and the algorithm for the healthy gait set. The knee progres-
sion angle had a stronger correlation within the knee gait set, while the foot progression
angle and lateral trunk shift had the strongest correlation within the foot gait set.
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All correlations between the algorithm and the reviewer were lower than between the
review outcomes. As mentioned previously, this difference can be attributed to surrogate
measures from the OpenPose BODY25 keypoints. In addition, if the camera is not parallel
to the coronal plane and oriented vertically, parallax effects may not accurately depict
the body keypoints, and phone orientation can affect measures where the phone axis is
assumed to be aligned to the ground. Keypoint detection errors can also occur for body
parts that are closer to the camera. Future research could include phone sensor data to
enable video frame transformation to gravity, thereby helping to provide a consistent
ground plane.

4.2. Sagittal View Parameters

Based on sagittal view analysis, the agreement between reviewers was very high for
initial contact, followed by six parameters with high correlations, namely peak sagittal
trunk position (#16), ankle dorsiflexion in swing (#7), peak hip flexion (#13), heel lift (#2),
knee extension in terminal swing (#10), and peak hip extension (#12). Four parameters had
moderate correlations (max. ankle dorsiflexion in stance (#3), pelvic rotation in midstance
(#15), foot clearance (#6), and peak knee flexion in swing (#11)). The literature on the
interrater reliability of sagittal view gait parameters reported that initial contact had an
agreement rate of 90%, while foot clearance and heel lift had agreement rates of 82–83% [34].
Knee extension in terminal swing had an agreement rate of 62%, and knee peak flexion in
swing had an agreement rate of 69%. For both the research results and the literature, initial
contact was the most consistent parameter between raters for sagittal view gait parameters.
Other parameters, such as trunk position, ankle dorsiflexion in swing, foot clearance, and
heel lift, also had high levels of agreement between reviewers. However, knee flexion, knee
extension in terminal swing, and knee peak flexion in swing had lower levels of agreement.

The foot position parameter had a very high correlation between the algorithm and the
reviewer. Five parameters had a high correlation: peak sagittal trunk position (#16), ankle
dorsiflexion in swing (#7), knee extension in terminal swing (#10), peak knee extension in
stance (#9), and peak hip extension (#12). Three parameters had a moderate correlation:
max. ankle dorsiflexion in stance (#3), peak knee flexion in swing (#11), and peak hip flexion
(#13). Finally, three parameters had a negligible correlation: pelvic rotation in midstance
(#15), heel lift (#2), and foot clearance (#6). Foot parameter correlations were close to zero,
indicating no relationship between the algorithm and reviewer scores. Foot parameters
are the keypoints farthest from the cameras, can be occluded during walking, can rely
on the floor plane being correct, and as a terminal segment, can have poorer OpenPose
performance. Pelvic parameters had lower correlations (r = 0.23), since the hip keypoints
were used as a surrogate measure of pelvic movement. The difference could also relate to
the reviewer’s assessment of the complete pelvis as opposed to the algorithm’s use of only
the hip keypoints. In future research, estimating the keypoint depth coordinate could help
improve the pelvic rotation scoring.

Knee flexion and ankle dorsiflexion in swing had stronger correlations between the
algorithm and reviewers when using the foot position gait set. Trunk position had a better
correlation for the knee gait set. In contrast, peak hip flexion and ankle dorsiflexion in
swing had the strongest correlations when using the ankle gait set. The results of our
research showed that ankle dorsiflexion had a stronger correlation with the foot and ankle
gait dataset, which was specifically designed to focus on foot movements during gait. This
may be due to the fact that the foot movements are more prominent in this gait dataset,
making it easier for both reviewers and the algorithm to accurately detect and agree on the
presence and extent of ankle dorsiflexion.

For peak hip flexion correlation, the between reviewers’ results were higher than the
reviewers and algorithm correlations. This difference can be attributed to small differences
in angle measurements leading to different scores. For example, a score of 0 corresponds
to a peak hip flexion angle between 25◦ and 45◦, while a score of 1 corresponds to angles
between 45◦ and 60◦. Reviewers may not accurately detect small angle changes, such as
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differences between 44◦ and 46◦, leading to discrepancies in their assessments. In contrast,
the algorithm assigns scores using the measured angle. Therefore, the algorithm provides a
more objective and consistent assessment of the peak hip flexion parameter compared to
the subjective assessments of human reviewers.

Foot strike and foot-off detection are crucial for the heel lift score. Even a small frame
change affects this parameter. Consider, for instance, a scenario in which the opposite
leg foot strike occurs at frame 53 and foot off occurs at frame 52. In this case, the patient
would have a normal heel lift score (score 0). The stride detection algorithm would identify
the foot strike at frame 53 and the foot off at 54. Foot event frames could be within the
permitted range of 2, which is used for stride detection. The condition would, therefore, be
considered delayed, and a score of one would be assigned. This demonstrates how even a
small variation of 1 frame would substantially affect the heel lift parameter.

For foot clearance, reviewers scored Figure 14a as 2, “No clearance”. The person in
Figure 14b was scored as 1, “Reduced clearance”. However, the algorithm categorized
Figure 14a as “Reduced clearance” and Figure 14b as “No clearance”, as the keypoints
were clustered in a small area, and there was no data for the floor axis. Considering that
OpenPose does not locate foot keypoints at the shoe insole level and handheld smartphone
video can lead to variable floor plane estimation, foot clearance and heel lift parameters
will be difficult to achieve without further research. Potential improvements could involve
using phone orientation data to correct the floor plane and continuing to develop the foot
keypoint identification aspect of pose estimation models.
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Algorithm performance varied across the different parameters. For the foot pro-
gression angle (#5), both the correlation between reviewers and the correlation between
reviewers and the algorithm were high, indicating that the algorithm performed well in
identifying this parameter. The algorithm performed reasonably well for the knee progres-
sion angle (#8) and lateral trunk shift (#17), with moderate and high agreement between
reviewers and the algorithm, respectively. The algorithm’s performance was poor and
negligible for pelvic obliquity (#14) and hindfoot valgus/varus (#4) in the coronal view
compared to human reviewers. The correlation between the algorithm and each reviewer
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was moderate for pelvic obliquity and negligible for hindfoot valgus/varus, indicating
the algorithm struggled to accurately identify these parameters in a way that aligned with
human judgment. The correlation between the two reviewers for hindfoot valgus/varus
was also negligible compared to other coronal parameters, which may have contributed to
the algorithm’s lower performance.

5. Conclusions

This research proposes an automated approach for using the Edinburgh Visual Gait
Score (EVGS) with handheld smartphone video. The results show that the algorithmic
stride detection component works better for sagittal videos than coronal videos, and the
EVGS performance varied across different parameters. Of the seventeen EVGS parameters,
correlations between human reviewers and the algorithm were very high for one parameter,
high for seven parameters, moderate for four parameters, low for one parameter, and
negligible for four parameters. Based on these results, automated EVGS processing could
now be used for 12 parameters, but more research is needed to properly classify pelvic
rotation in midstance (#15), heel lift (#2), foot clearance in swing (#6), maximum pelvic
obliquity in midstance (#14), and hindfoot valgus/varus (#4).

This research demonstrates the feasibility of using videos recorded using a handheld
smartphone camera, processed by pose estimation models, and scored by rule-based
algorithms. The proposed approach has the potential to enhance gait analysis accessibility
and facilitate continuous monitoring of patients outside the clinic.

Future research should involve capturing smartphone orientation, accelerometer, and
gyroscope data while recording videos and incorporating this information into the stride
identification and EVGS algorithms for results, especially for foot-related parameters. To
improve the accuracy of patient gait pattern capture, future research could gather data from
more strides to recognize more foot events and minimize the effect of outliers. Additionally,
machine learning algorithms could be implemented to potentially improve the automatic
scoring of foot event and stride frame identification. An app for smartphone-based gait
analysis could be developed, enabling the automatic acquisition of the Edinburgh Visual
Gait Score (EVGS) after capturing patient video with the app and thereby enabling evidence-
based decision-making during a patient encounter.
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Appendix A

Table A1. EVGS correlations between reviewers (R1, R2) and the algorithm for healthy gait set
coronal parameters.

Parameter
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Lateral trunk shift (#17) 1.00 1.00 0.84 0.61 0.84 0.61

Pelvic obliquity (#14) 0.92 1.00 0.92 1.00 0.84 1.00

Knee progression angle (#8) 1.00 1.00 0.92 1.00 0.92 1.00

Foot progression angle (#5) 1.00 1.00 1.00 0.83 1.00 0.83

Hindfoot valgus/varus (#4) 1.00 1.00 −0.61 −0.61 −0.61 −0.61

Table A2. EVGS correlations between reviewers (R1, R2) and algorithm for knee gait set coronal
parameters.

Parameter
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Lateral trunk shift (#17) 0.52 0.77 0.77 0.62 0.67 0.81

Pelvic obliquity (#14) 0.52 1.00 −0.26 −0.26 −0.13 −0.26

Knee progression angle (#8) 0.45 0.67 0.70 0.92 0.87 0.87

Foot progression angle (#5) 0.92 1.00 0.77 0.83 0.83 0.64

Hindfoot valgus/varus (#4) 0.89 0.67 0.20 0.20 −0.04 0.30

Table A3. EVGS correlations between reviewers (R1, R2) and the algorithm for foot gait set coronal
parameters.

Parameter
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Lateral trunk shift (#17) 0.90 1.00 1.00 1.00 0.87 1.00

Pelvic obliquity (#14) 0.82 1.00 −0.58 0.58 0.71 0.58

Knee progression angle (#8) 0.58 0.58 0.58 0.58 0.33 1.00

Foot progression angle (#5) 1.00 1.00 1.00 0.90 1.00 0.90

Hindfoot valgus/varus (#4) 0.58 0.58 0.33 0.33 −0.58 −0.58

Table A4. EVGS correlations between reviewers (R1, R2) and algorithm for pelvis gait set coronal
parameters.

Parameter
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Lateral trunk shift (#17) 0.70 0.29 0.77 0.45 0.54 0.22

Pelvic obliquity (#14) 0.92 0.67 0.60 −0.41 0.45 −0.31

Knee progression angle (#8) 0.88 0.71 0.45 0.10 0.22 0.49

Foot progression angle (#5) 0.49 0.61 0.27 0.71 0.91 0.06

Hindfoot valgus/varus (#4) 0.92 0.84 −0.38 0.38 0.54 0.38
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Table A5. EVGS correlations between reviewers (R1, R2) and algorithm for trunk gait set coronal
parameters.

Parameter
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Lateral trunk shift (#17) 0.72 0.84 0.75 0.64 0.60 0.50

Pelvic obliquity (#14) 0.87 0.78 0.10 0.64 −0.12 0.82

Knee progression angle (#8) 0.91 0.78 0.33 0.41 0.28 0.41

Foot progression angle (#5) 0.60 0.92 0.77 0.83 0.43 0.91

Hindfoot valgus/varus (#4) 0.68 0.68 0.22 −0.03 0.32 0.22

Table A6. The overall average correlation between reviewers and algorithm of entire dataset, as well
as the average correlation of reviewers for each coronal parameter.

Parameters R1 and R2
R1, R2 and Algorithm

Right Left Average

Lateral trunk shift (#17) 0.77 0.77 0.65 0.71

Pelvic obliquity (#14) 0.85 0.25 0.34 0.30

Knee progression angle (#8) 0.76 0.56 0.68 0.62

Foot rotation (#5) 0.85 0.80 0.74 0.77

Hindfoot valgus/varus (#4) 0.78 −0.06 0.00 −0.03

Table A7. EVGS correlations between reviewers (R1, R2) and algorithm for healthy gait sagittal
parameters.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Peak hip flexion (#13) 1.00 1.00 1.00 1.00 1.00 1.00

Knee extension in terminal swing (#10) 1.00 1.00 1.00 1.00 1.00 1.00

Initial contact (#1) 1.00 1.00 1.00 1.00 1.00 1.00

Peak sagittal trunk position (#16) 1.00 1.00 1.00 1.00 1.00 1.00

Pelvic rotation in midstance (#15) 1.00 1.00 0.69 0.71 0.92 0.98

Heel lift (#2) 1.00 1.00 0.41 0.41 0.41 0.41

Peak hip extension (#12) 1.00 1.00 1.00 0.91 1.00 0.91

Peak knee extension in stance (#9) 1.00 1.00 0.92 0.87 0.92 0.87

Max. ankle dorsiflexion in stance (#3) 1.00 1.00 1.00 0.75 1.00 0.75

Peak knee flexion in swing (#11) 1.00 1.00 1.00 1.00 1.00 1.00

Ankle dorsiflexion in swing (#7) 1.00 1.00 0.92 1.00 0.92 1.00

Foot clearance (#6) 1.00 1.00 −0.17 −0.24 0.17 −0.24

Table A8. EVGS correlations between reviewers (R1, R2) and algorithm for hip set sagittal parameters.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Peak hip flexion (#13) 1.00 1.00 0.85 0.88 0.85 0.88

Knee extension in terminal swing (#10) 0.47 0.35 0.47 0.73 1.00 0.26

Initial contact (#1) 1.00 1.00 1.00 1.00 1.00 1.00

Peak sagittal trunk position (#16) 0.75 0.75 0.73 1.00 0.55 0.75
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Table A8. Cont.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Pelvic rotation in midstance (#15) 1.00 0.91 0.73 0.93 0.73 0.88

Heel lift (#2) 0.75 0.75 0.47 0.35 0.35 0.47

Peak hip extension (#12) 1.00 0.89 1.00 0.91 1.00 0.77

Peak knee extension in stance (#9) 1.00 1.00 0.92 0.87 0.92 0.87

Max. ankle dorsiflexion in stance (#3) 0.68 0.68 0.55 0.75 0.37 0.11

Peak knee flexion in swing (#11) 0.55 0.55 0.55 0.73 1.00 0.40

Ankle dorsiflexion in swing (#7) 0.30 1.00 0.65 1.00 −0.26 1.00

Foot clearance (#6) 0.32 0.32 −0.11 0.24 −0.47 0.17

Table A9. EVGS correlations between reviewers (R1, R2) and algorithm for knee gait set sagittal
parameters.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Peak hip flexion (#13) 1.00 1.00 0.65 0.00 0.65 0.00

Knee extension in terminal swing (#10) 0.63 0.86 0.63 0.61 1.00 0.84

Initial contact (#1) 1.00 1.00 1.00 1.00 1.00 1.00

Peak sagittal trunk position (#16) 1.00 1.00 0.71 1.00 0.71 1.00

Pelvic rotation in midstance (#15) 0.71 0.71 −0.24 0.22 −0.34 0.46

Heel lift (#2) 1.00 1.00 −0.32 −0.32 −0.32 −0.32

Peak hip extension (#12) 1.00 1.00 −0.20 1.00 −0.20 1.00

Peak knee extension in stance (#9) 1.00 1.00 1.00 0.88 1.00 0.88

Max. ankle dorsiflexion in stance (#3) 0.82 0.82 0.27 1.00 0.50 0.82

Peak knee flexion in swing (#11) 0.63 0.63 0.45 0.61 0.71 0.77

Ankle dorsiflexion in swing (#7) 0.89 0.89 1.00 0.20 0.89 0.45

Foot clearance (#6) −0.29 1.00 0.00 0.20 0.56 0.20

Table A10. EVGS correlations between reviewers (R1, R2) and algorithm for ankle gait set sagittal
parameters.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Peak hip flexion (#13) 1.00 1.00 1.00 1.00 1.00 1.00

Knee extension in terminal swing (#10) 1.00 1.00 1.00 0.77 1.00 0.77

Initial contact (#1) 1.00 1.00 1.00 1.00 1.00 1.00

Peak sagittal trunk position (#16) 1.00 0.71 0.71 1.00 0.71 0.71

Pelvic rotation in midstance (#15) 0.63 0.63 −0.43 0.71 −0.55 0.45

Heel lift (#2) 0.88 0.88 −0.80 −0.80 −0.88 −0.88

Peak hip extension (#12) 1.00 0.71 0.63 0.50 0.63 0.71

Peak knee extension in stance (#9) 0.84 0.58 0.77 0.61 0.43 0.71

Max. ankle dorsiflexion in stance (#3) 0.88 0.88 0.93 0.88 0.79 0.80

Peak knee flexion in swing (#11) 0.17 0.77 0.86 0.77 0.41 0.50

Ankle dorsiflexion in swing (#7) 1.00 1.00 1.00 1.00 1.00 1.00

Foot clearance (#6) 0.63 0.63 0.29 −0.25 0.00 −0.63
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Table A11. EVGS correlations between reviewers (R1, R2) and algorithm for trunk gait set sagittal
parameters.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Peak hip flexion (#13) 0.82 0.67 −0.45 0.15 −0.46 0.23

Knee extension in terminal swing (#10) 0.89 0.70 1.00 0.75 0.89 0.67

Initial contact (#1) 0.81 0.81 1.00 0.86 0.81 0.78

Peak sagittal trunk position (#16) 1.00 1.00 0.82 0.82 0.82 0.82

Pelvic rotation in midstance (#15) 0.88 0.88 −0.45 0.01 −0.32 −0.02

Heel lift (#2) 0.80 0.88 0.80 0.88 1.00 1.00

Peak hip extension (#12) 0.67 0.38 0.67 0.67 1.00 0.67

Peak knee extension in stance (#9) 0.68 0.50 0.75 0.90 0.75 0.43

Max. ankle dorsiflexion in stance (#3) 0.80 0.80 0.91 1.00 0.49 0.80

Peak knee flexion in swing (#11) 0.49 0.38 0.90 0.82 0.30 0.31

Ankle dorsiflexion in swing (#7) 1.00 1.00 1.00 0.67 1.00 0.67

Foot clearance (#6) 0.55 0.94 −0.22 −0.16 −0.23 −0.17

Table A12. EVGS correlations between reviewers (R1, R2) and algorithm for pelvis gait set sagittal
parameters.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Peak hip flexion (#13) 0.61 0.17 0.58 −0.33 1.00 0.87

Knee extension in terminal swing (#10) 0.77 0.74 0.36 0.83 0.32 0.78

Initial contact (#1) 0.81 0.88 0.97 0.89 0.85 0.77

Peak sagittal trunk position (#16) 0.76 0.65 0.72 0.86 0.81 0.66

Pelvic rotation in midstance (#15) 0.56 0.43 0.22 0.27 −0.02 0.12

Heel lift (#2) 0.69 0.68 −0.59 −0.32 −0.22 −0.22

Peak hip extension (#12) 0.54 0.57 0.71 1.00 0.45 0.53

Peak knee extension in stance (#9) 0.52 0.54 0.77 0.35 0.64 0.55

Max. ankle dorsiflexion in stance (#3) 0.47 0.54 0.64 0.40 0.53 0.38

Peak knee flexion in swing (#11) 0.68 0.67 0.70 0.61 0.40 0.27

Ankle dorsiflexion in swing (#7) 0.69 0.75 0.79 0.51 0.58 0.73

Foot clearance (#6) 0.73 0.74 −0.33 0.10 −0.38 0.05

Table A13. EVGS correlations between reviewers (R1, R2) and algorithm for foot position gait set
sagittal parameters.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Peak hip flexion (#13) 1.00 1.00 1.00 0.50 1.00 0.50

Knee extension in terminal swing (#10) 0.75 0.75 0.75 1.00 0.72 0.75

Initial contact (#1) 1.00 1.00 1.00 0.92 1.00 0.92

Peak sagittal trunk position (#16) 0.94 0.94 0.80 0.74 0.75 0.81

Pelvic rotation in midstance (#15) 0.77 0.70 0.67 0.52 0.29 0.60

Heel lift (#2) 0.93 0.93 −0.92 −0.58 −0.94 −0.60

Peak hip extension (#12) 0.80 0.80 1.00 1.00 0.80 0.80



Sensors 2023, 23, 4839 28 of 36

Table A13. Cont.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Peak knee extension in stance (#9) 1.00 1.00 0.76 0.89 0.76 0.89

Max. ankle dorsiflexion in stance (#3) 0.45 0.45 0.90 0.00 0.43 0.44

Peak knee flexion in swing (#11) 1.00 1.00 0.87 0.94 0.87 0.94

Ankle dorsiflexion in swing (#7) 1.00 1.00 1.00 0.90 1.00 0.90

Foot clearance (#6) 0.76 0.76 −0.22 0.50 −0.22 0.66

Table A14. EVGS correlations between reviewers (R1, R2) and algorithm for heel lift gait set sagittal
parameters.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Peak hip flexion (#13) 0.52 0.76 0.18 0.53 −0.08 0.41

Knee extension in terminal swing (#10) 0.69 0.69 0.23 0.84 0.36 0.76

Initial contact (#1) 0.82 1.00 1.00 0.82 0.82 0.82

Peak sagittal trunk position (#16) 0.67 0.30 0.67 1.00 1.00 0.30

Pelvic rotation in midstance (#15) 0.82 0.82 −0.26 0.22 −0.16 0.27

Heel lift (#2) 0.90 0.90 −0.69 0.00 0.72 0.05

Peak hip extension (#12) 0.53 0.53 0.36 1.00 0.43 0.53

Peak knee extension in stance (#9) 0.76 0.76 0.90 0.35 0.88 0.23

Max. ankle dorsiflexion in stance (#3) 0.55 0.67 0.07 0.68 0.59 0.43

Peak knee flexion in swing (#11) 0.38 0.38 0.36 0.60 −0.26 −0.04

Ankle dorsiflexion in swing (#7) 0.83 0.76 0.54 0.76 0.32 1.00

Foot clearance (#6) 0.67 0.67 −0.27 0.11 −0.41 0.17

Table A15. EVGS correlations between reviewers (R1, R2) and algorithm for foot clearance gait set
sagittal parameters.

Parameters
R1 and R2 R1 and Algorithm R2 and Algorithm

Right Left Right Left Right Left

Peak hip flexion (#13) 0.76 0.31 0.89 0.59 0.88 0.85

Knee extension in terminal swing (#10) 0.87 0.78 0.10 0.64 −0.12 0.82

Initial contact (#1) 0.63 0.64 0.90 0.92 0.73 0.58

Peak sagittal trunk position (#16) 0.69 0.71 0.69 0.84 0.69 0.85

Pelvic rotation in midstance (#15) 0.08 −0.22 0.24 0.08 −0.20 −0.51

Heel lift (#2) 0.23 0.21 −0.17 −0.39 −0.43 −0.10

Peak hip extension (#12) 0.29 0.37 0.77 1.00 0.13 0.24

Peak knee extension in stance (#9) −0.19 −0.15 0.64 −0.19 0.27 0.53

Max. ankle dorsiflexion in stance (#3) 0.41 0.51 0.96 0.52 0.55 0.26

Peak knee flexion in swing (#11) 0.65 0.63 0.88 0.27 0.60 −0.09

Ankle dorsiflexion in swing (#7) 0.25 0.49 0.82 −0.15 0.43 0.30

Foot clearance (#6) 0.77 0.81 −0.51 −0.30 −0.52 −0.68
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Table A16. The overall average correlation between reviewers and algorithm, as well as the average
correlation of reviewers for each sagittal parameter.

Parameters R1 and R2
R1, R2, and Algorithm

Right Left Average

Peak hip flexion (#13) 0.81 0.64 0.56 0.60

Knee extension in terminal swing (#10) 0.78 0.65 0.77 0.71

Initial contact (#1) 0.91 0.95 0.90 0.93

Peak sagittal trunk position (#16) 0.83 0.77 0.84 0.81

Pelvic rotation in midstance (#15) 0.68 0.09 0.38 0.23

Heel lift (#2) 0.80 −0.12 −0.05 −0.09

Peak hip extension (#12) 0.73 0.62 0.79 0.70

Peak knee extension in stance (#9) 0.71 0.78 0.64 0.71

Max. ankle dorsiflexion in stance (#3) 0.69 0.64 0.60 0.62

Peak knee flexion in swing (#11) 0.64 0.64 0.58 0.61

Ankle dorsiflexion in swing (#7) 0.83 0.76 0.72 0.74

Foot clearance (#6) 0.67 −0.17 −0.01 −0.09

Appendix B

Pseudocode for algorithmic implementation of EVGS

1. Obtain video from user and load it into the program
2. Apply OpenPose-BODY25 model to extract joint coordinates as keypoints for each

video frame and store in variable KP_raw1,KP_raw2, . . . ..KP_raw24
3. Filter the keypoint data using a zero-phase, dual-pass, second-order 12 Hz Butterworth

filter (filtered_keypoints: KP_filter1,KP_filter2, . . . ..KP_filter24)
4. Remove keypoints with scores below a 10% threshold (threshold = 0.1)

For each keypoint in filtered_keypoints:
If keypoint score < threshold, remove keypoint.

5. Fill gaps of five frames or fewer using cubic spline interpolation (interpolated_keypoints:
KP1,KP2, . . . ..KP24)

6. Determine the orientation of the video:

trunk_length_diff = abs(euclidean_distance(KP0, KP8)[0] − euclidean_distance(KP0,
KP8)[Last frame (L) − 1])

If trunk_length_diff < threshold (99 frames): video_orientation = “sagittal”
Else: video_orientation = “coronal”

7. Detect the direction of motion

If orientation is coronal: trunk_length_diff = abs(euclidean_distance(KP0, KP8)[0]
− euclidean_distance(KP0, KP8)[L − 1])

If trunk_length_diff < 0: direction = frontal
Else: direction = rear

If orientation is sagittal: nose_x_diff = (KP0)[0][0] − (KP0)[0][L − 1]
If nose_x_diff < 0: direction = left-to-right
Else: direction = right-to-left

8. Identify the four distinct gait events

Determine foot strike and foot off events using the Zeni et al. method [33]
left_foot_strike_raw = euclidean_distance (KP21[0], KP8[0])
left_foot_off_raw = euclidean_distance ((KP19[0] + KP20[0])/2, KP8[0])
right_foot_strike_raw = euclidean_distance (KP24[0], KP8[0])
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right_foot_off_raw = euclidean_distance ((KP22[0] + KP23[0])/2, KP8[0])
left_foot_strike = search_for_peaks (left_foot_strike_raw, flip = TRUE if direc-

tion = right-to-left)
right_foot_strike = search_for_peaks (right_foot_strike_raw, flip = TRUE if direc-

tion = right-to-left)
left_foot_off = search_for_peaks (left_foot_off_raw, flip = FALSE if direction = right-

to-left)
right_foot_off = search_for_peaks (right_foot_off_raw, flip = FALSE if direc-

tion = right-to-left)
Determine mid-midstance and mid-midswing events using the distance between

the toes
toe_distances = sqrt(square(KP19_x − KP22_x) + square(KP19_y − KP22_y))

mid_midswing = toe_distances.idxmin ()
mid_midstance = toe_distances.idxmax ()

9. Allocate gait events to specific strides (strides)

right_first = left_foot_strike [0] > right_foot_strike [0]
if right_first: start = right_foot_strike, other_foot_strike = left_foot_strike
else: starts = left_foot_strike, other_foot_strike = right_foot_strike
if len(starts) >= 2:

for i in range of length(start) − 1): current_foot_strike = start[i], next_foot_strike
= start [i + 1], end = next_foot_strike − 1

possible_right_foot_off = right_foot_off [current_foot_strike < right_foot_off <
next_foot_strike]

possible_other_foot_strike = other_foot_strike[current_foot_strike < other_foot_strike<
next_foot_strike]

possible_left_foot_off = left_foot_off [current_foot_strike < left_foot_off < next_foot_strike]
‘stride_midstance = midstances [current_foot_strike < midstances < end]
if (length(possible_right_foot_off) >= 1) and (length(possible_other_foot_strike) >= 1)

and (length(possible_left_foot_off) >= 1) and (length(stride_midstance) >= 2):
‘Direction’: right-to-left or left-to-right,
‘index’: i,
‘right_first’: TRUE if right_first else FALSE
‘right_foot_strike’: current_foot_strike if right_first else possible_other_foot_strike [0],
‘right_foot_off’: possible_right_foot_off [0] if right_first else possible_right_foot_off [0]
‘left_foot_strike’: possible_other_foot_strike [0] if right_first else current_foot_strike,
‘left_foot_off’: possible_left_foot_off [0] if right_first else possible_left_foot_off [0],
‘r_midstance’: stride_midstance [0] if right_first else stride_midstance [1],
‘l_midstance’: stride_midstance [1] if right_first else stride_midstance [0],
‘start’: current_foot_strike
‘end’: next_foot_strike − 1

A. If the video is coronal and frontal view, calculate scores of the following EVGS
parameters:

FUNCTION (#17) MST_Lateral_Trunk_Shift_L (Keypoints):
Trunk = unit_vector(KP1[row] − KP8[row]), labY = array([0, 1])
Trunk_L = (arctan2(Trunk [1], Trunk [0]) − arctan2(labY [1], labY [0])) ∗ 180/pi

FUNCTION trunk_score(x): If x > 20: Return 2, Else if x < 0 OR (10 < x < 20):
Return 1, Else if 0 <= x <= 10: Return 0, Else: Return NaN END

For each stride: midstance_frame = stride[‘l_midstance’]
stride_scores.append (trunk_score(Trunk_L[midstance_frame])) END
FUNCTION (#17) MST_Lateral_Trunk_Shift_R (Keypoints):
Trunk = unit_vector(KP1[row] − KP8[row]), labY = array([0, 1])
Trunk_R = (arctan2(Trunk [1], Trunk [0]) - arctan2(labY [1], labY [0])) ∗ 180/pi

FUNCTION trunk_score(x): If x > 20: Return 2, Else if x < 0 OR (10 < x < 20):
Return 1, Else if 0 <= x <= 10: Return 0, Else Return NaN END
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For each stride: midstance_frame = stride[‘r_midstance’]
stride_scores.append(trunk_score(Trunk_R[midstance_frame])) END
FUNCTION (#14) MST_Pelvic_Obliquity_L (Keypoints):
Hip = unit_vector(KP9[row] − KP12[row]), labY = array([0, 1])
hip_L = (arctan2(Hip [1], Hip [0]) − arctan2(labY [1], labY [0])) ∗ 180/pi

FUNCTION pelvis_score(x): If −1 < x < 6: Return 0, Else if x < −10 or (x > 15):
Return 2, Else if (10 <= x <= −1) or (6 <= x <= 15): Return 1, Else: Return NaN, END

For each stride: midstance_frame = stride[‘l_midstance’]
stride_scores.append(pelvis_score(hip _L[midstance_frame])) END.
FUNCTION (#14) MST_Pelvic_Obliquity_R (Keypoints):
Hip = unit_vector(KP9[row] − KP12[row]), labY = array([0, 1])
hip _R = (arctan2(Hip [1], Hip [0]) − arctan2(labY [1], labY [0])) ∗ 180/pi

FUNCTION pelvis_score(x): If −6 < x < 1: Return 0, Else if x > 10 or (x < −15):
Return 2, Else if (1 <= x <= 10) or (−15 <= x <= −6): Return 1, Else: Return NaN, END

For each stride: midstance_frame = stride[‘r_midstance’]
stride_scores.append(pelvis_score(hip _R[midstance_frame])) END
FUNCTION (#8) MST_Knee_Progression_Angle_L (Keypoints):
M1 = KP13_y − KP14_y/KP13_x − KP14_x, M2 = KP19_y − KP21_y/KP19_x −

KP21_x
Angle = arctan(M1 − M2/1+ (M1 ∗ M2)) ∗ (360/2π)

FUNCTION ankle_score(x): If x < −25: Return 1, Else if (−25 <= x <= 25): Return
0, Else if x > 25: Return 1, Else: Return NaN, END

For each stride: midstance_frame = stride[‘l_midstance’]
stride_scores.append(ankle_score(Angle[midstance_frame])) END
FUNCTION (#8) MST_Knee_Progression_Angle_R( Keypoints):
M1 = KP10_y − KP11_y/KP10_x − KP11_x, M2 = KP22_y − KP24_y/KP22_x −

KP24_x
Angle = arctan(M1 − M2/1+ (M1 ∗ M2)) ∗ (360/2π)

FUNCTION ankle_score(x): If x < −25: Return 1, Else if (−25 <= x <= 25): Return
0 Else if x > 25: Return 1, Else: Return NaN END

For each stride: midstance_frame = stride[‘r_midstance’]
stride_scores.append(ankle_score(Angle[midstance_frame])) END
FUNCTION (#5) MST_Foot_Rotation_L (Keypoints):
M1 = KP13_y − KP14_y/KP13_x − KP14_x, M2 = KP19_y − KP21_y/KP19_x −

KP21_x
Angle = arctan(M1 − M2/1 + (M1 ∗ M2)) ∗ (360/2π)

FUNCTION ankle_score(x): If x > 45: Return 2, Else if (25 <= x <= 45): Return 1,
Else if (−5 <= x <= 25): Return 0, Else if (−30 <= x <= −5): Return 1, Else if x < −30: Return
2, Else: Return NaN, END

For each stride: midstance_frame = stride[‘l_midstance’]
stride_scores.append(ankle_score(Angle[midstance_frame])) END
FUNCTION (#5) MST_Foot_Rotation_R (Keypoints):
M1 = KP10_y − KP11_y/KP10_x − KP11_x, M2 = KP22_y − KP24_y/KP22_x −

KP24_x
Angle = arctan(M1 − M2/1 + (M1 ∗ M2)) ∗ (360/2π)

FUNCTION ankle_score(x): If x < −45: Return 2, Else if (−45 <= x <= 25): Return
1, Else if (−25 <= x <= 5): Return 0 Else if (5 <=x <= 30): Return 1, Else if x > 30: Return 2,
Else: Return NaN END

For each stride: midstance_frame = stride[‘r_midstance’]
stride_scores.append(ankle_score(Angle[midstance_frame])) END
B. If the video is coronal and rear view, calculate scores of the following EVGS parameters:
FUNCTION (#4) MST_Hindfoot_Valgus_Varus_L (Keypoints):
Hindfoot = unit_vector(KP11[row] − KP24[row]), labY = array([0, 1])
foot_L = (arctan2(Hindfoot [1], Hindfoot [0]) − arctan2(labY [1], labY [0])) ∗ 180/pi
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FUNCTION foot_score(x): If x < −15: Return 2, Else if (−15 <= x <= −6): Return
1, Else if (−6 <= x <= 1): Return 0 Else if (1 <= x <= 10): Return 1, Else if (x >10): Return 2,
Else: Return NaN, END

For each stride: midstance_frame = stride[‘l_midstance’]
stride_scores.append(foot_score(foot_L[midstance_frame])) END
FUNCTION (#4) MST_Hindfoot_Valgus_Varus_R (Keypoints):
Hindfoot = unit_vector(KP11[row] − KP24[row]), labY = array([0, 1])
foot_R = (arctan2(Hindfoot [1], Hindfoot [0]) − arctan2(labY [1], labY [0])) ∗ 180/pi

FUNCTION foot_score(x): If x < −15: Return 2, Else if (−15 <= x <= −6): Return
1, Else if (−6 <= x <= 1): Return 0 Else if (1 <= x <= 10): Return 1, Else if (x >10): Return 2,
Else: Return NaN END.

For each stride: midstance_frame = stride[‘r_midstance’]
stride_scores.append(foot_score(foot_R[midstance_frame])) END
C. If the video is Sagittal, calculate scores of the following EVGS parameters:
FUNCTION (#13) IC_Peak_Hip_Flexion (Keypoints):
M = KP1_y − KP8_y/KP1_x − KP8_x, M1 = 1/M If left-to-right: M2 = KP9_y −

KP10_y/KP9_x − KP10_x Else:
M2 = KP12_y − KP13_y/KP12_x − KP13_x
Angle = arctan(M1 − M2/1 + (M1 ∗ M2)) ∗ (360/2π)

FUNCTION hip_score(x): If (x > 60): Return 2 Else if (45 < x <= 60): Return 1 Else
if (25 < x <= 45): Return 0, Else if (10 < x <= 25): Return 1 Else if (x <= 10): Return 2 Else:
Return NaN END

For each stride: heelstrike_frame = stride[‘right_foot_strike’] if left-to-right else stride
[‘left_foot_strike’]

stride_scores.append(hip_score(Angle[heelstrike_frame])) END
FUNCTION (#10) IC_Knee_Extension (Keypoints):
If left-to-right: M1 = KP9_y − KP10_y/KP9_x − KP10_x, M2 = KP10_y − KP11_y/KP10_x

− KP11_x
Else: M1 = KP12_y − KP13_y/KP12_x − KP13_x, M2 = KP13_y − KP14_y/KP13_x −

KP14_x
Angle = arctan(M1 − M2/1 + (M1 ∗ M2)) ∗ (360/2π)

FUNCTION knee_score(x): If (x > 30): Return 2, Else if (15 < x <= 30): Return 1,
Else if (5 < x <= 15): Return 0, Else if (−10 < x <= 5): Return 1, Else if (x < −10): Return 2
Else: Return NaN END

For each stride: heelstrike_frame = stride[‘right_foot_strike’] if left-to-right else
stride[‘left_foot_strike’]

stride_scores.append(knee_score(Angle[heelstrike_frame])) END
FUNCTION (#1) IC_Initial_Contact (Keypoints):
If left-to-right: foot = unit_vector(KP22[row] − KP24[row] Else: foot = unit_vector

(KP19[row] − KP21[row]
labY = array([1, 0]) Angle = (arctan2(foot [1], foot [0]) − arctan2(labY [1], labY [0])) ∗

180/pi
FUNCTION foot_score(x): If (x < 0): Return 2 Else if (0<= x <= 20) or (160<= x <=

180): Return 1 Else: Return 0 END
For each stride: heelstrike_frame = stride[‘right_foot_strike’] if left-to-right else

stride[‘left_foot_strike’]
stride_scores.append(foot_score(Angle[heelstrike_frame])) END
FUNCTION (#16) MST_Peak_Sagittal_Trunk (Keypoints):
Trunk = unit_vector(KP1[row] − KP8[row]), labY = array([0, 1])
Angle = (arctan2(Trunk [1], Trunk [0]) − arctan2(labY [1], labY [0])) ∗ 180/pi

FUNCTION trunk_score(x): If x > 15: Return 2, Else if x < −5 OR (5 < x < 15):
Return 1, Else if −5 <= x <= 5: Return 0 Else Return NaN END

For each stride: midstance_frame = stride[‘r_midstance’] if left-to-right else stride
[‘l_midstance’]
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stride_scores.append(trunk_score(Angle[midstance_frame])) END
FUNCTION (#15) MST_Pelvic_Rotation (Keypoints):
If left-to-right: Pelvis = unit_vector(KP9[row] − KP12[row] Else: Pelvis = unit_vector

(KP12[row] − KP9[row]
labY = array([0, 1]) Angle = (arctan2(Pelvis [1], Pelvis [0]) − arctan2(labY [1], labY [0]))

∗ 180/pi
FUNCTION pelvic_score(x): If (x < −15) or (x > 21): Return 2 Else if (11 < x < 21)

or (−15 < x < −6): Return 1 Else if −6 < x < 11: Return 0 Else Return NaN END
For each stride: midstance_frame = stride[‘r_midstance’] if left-to-right else stride

[‘l_midstance’]
stride_scores.append(pelvic_score(Angle[midstance_frame])) END
FUNCTION (#2) MST_Heel_Lift (Keypoints):
If left-to-right: foot = unit_vector(KP22[row] − KP24[row] Else: foot = unit_vector(KP19[row]

− KP21[row]
labY = array([1, 0]) Angle = (arctan2(foot [1], foot [0]) − arctan2(labY [1], labY [0])) ∗

180/pi
FUNCTION lift_score(p, l, Cc,a): If (−10 <= a <= 5) or (−180 <= a <= −170) or

((170 <= a <= 180)): If l < p <Cc: Return 0
Else if p >= Cc: Return 1 Else if p <= l: Return 1 Else: Return 2 END

For each stride: p = stride[‘right_foot_off] if left-to-right else stride[‘left_foot_off] l=
stride[‘r_midstance’] if left-to-right else stride[‘l_midstance’] Cc = stride[‘right_foot_strike]
if left-to-right else stride[‘left_foot_strike] m = stride[‘r_midstance’] if left-to-right else
stride[‘l_midstance’] stride_scores.append(lift_score(p,l,Cc,Angle[m])) END

FUNCTION (#12) TST_Peak_Hip_Extension (Keypoints):
M = KP1_y − KP8_y/KP1_x − KP8_x , M1 = 1/M, left-to-right: M2 = KP9_y −

KP10_y/KP9_x − KP10_x Else:
M2 = KP12_y − KP13_y/KP12_x − KP13_x
Angle = arctan(M1 − M2/1 + (M1 ∗ M2)) ∗ (360/2π)

FUNCTION hip_score(x): If (x > 15): Return 2 Else if (0 < x <= 15): Return 1 Else
if (−20 < x <= 0): Return 0 Else if (−35 < x <= −20): Return 1 Else if (x <= −35): Return 2
Return NaN END

For each stride: heelstrike_frame = stride[‘left_foot_strike’] if left-to-right else stride
[‘right_foot_strike’]

stride_scores.append(hip_score(Angle[heelstrike_frame])) END
FUNCTION (#9) TST_Knee_Extension (Keypoints):
If left-to-right: M1 = KP9_y−KP10_y/KP9_x −KP10_x M2 = KP10_y −KP11_y/KP10_x

− KP11_x
Else: M1 = KP12_y − KP13_y/KP12_x − KP13_x. M2 = KP13_y − KP14_y/KP13_x −

KP14_x
Angle = arctan(M1 − M2/1 + (M1 ∗ M2)) ∗ (360/2π)

FUNCTION knee_score(x): If (x > 25): Return 2 Else if (15 < x <= 25): Return 1
Else if (0 < x <= 15): Return 0 Else if (−10 < x <= 0): Return 1 Else if (x <= −10): Return 2
Else: Return NaN END

For each stride: heelstrike_frame = stride[‘left_foot_strike’] if left-to-right else stride
[‘right_foot_strike’]

stride_scores.append(knee_score(Angle[heelstrike_frame])) END
FUNCTION (#3) TST_Ankle_Dorsiflexion (Keypoints):
If left-to-right: M1 = KP10_y − KP11_y/KP10_x − KP11_x M2 = KP22_y − KP24_y/KP22_x

− KP24_x
Else: M1 = KP13_y − KP14_y/KP13_x − KP14_x1 M2 = KP 9_y − KP21_y/KP19_x −

KP21_x
Angle = arctan(M1 − M2/1 + (M1 ∗ M2)) ∗ (360/2π)
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FUNCTION ankle_score(x): If (x > 40): Return 2 Else if (25 < x <= 40): Return 1
Else if (5 < x <= 25): Return 0 Else if (−10 < x <= 5): Return 1 Else if (x <= −10): Return 2
Else: Return NaN END

For each stride: heelstrike_frame = stride[‘left_foot_strike’] if left-to-right else stride
[‘right_foot_strike’]

stride_scores.append(ankle_score(Angle[heelstrike_frame])) END
FUNCTION (#11) MSW_Knee_Flexion (Keypoints):
If left-to-right: M1 = KP9_y − KP10_y/KP9_x − KP10_x M2 = KP10_y − KP11_y/

KP10_x − KP11_x
Else: M1 = KP12_y − KP13_y/KP12_x − KP13_x M2 = KP13_y − KP14_y/KP13_x −

KP14_x
Angle = arctan(M1 − M2/1 + (M1 ∗ M2)) ∗ (360/2π)

FUNCTION knee_score(x): If (x > 85): Return 2 Else if (70 < x <= 85): Return 1
Else if (50 < x <= 70): Return 0 Else if (35 < x <= 50): Return 1 Else if (x <= 35): Return 2
Else: Return NaN END

For each stride: heelstrike_frame = stride[‘l_midstance] if left-to-right else stride
[‘r_midstance’], stride_scores.append(knee_score(Angle[heelstrike_frame])) END

FUNCTION (#7) MSW_Ankle_Dorsiflexion (Keypoints):
If left-to-right: M1 = KP10_y − KP11_y/KP10_x − KP11_x M2 = KP22_y − KP24_y/

KP22_x − KP24_x
Else: M1 = KP13_y − KP14_y/KP13_x − KP14_x M2 = KP19_y − KP21_y/KP19_x −

KP21_x
Angle = arctan(M1 − M2/1 + (M1 ∗ M2)) ∗ (360/2π)

FUNCTION ankle_score(x): If (x > 30): Return 2 Else if (15 < x <= 30): Return 1
Else if (−5 < x <= 15): Return 0 Else if (−20 < x <= −5): Return 1 Else if (x <= −20): Return
2 Else: Return NaN END

For each stride: heelstrike_frame = stride[l_midstance] if left-to-right else stride
[‘r_midstance’]

stride_scores.append(ankle_score(Angle[heelstrike_frame])) END
FUNCTION (#6)MSW_Foot_Clearance(Keypoints):
fh = euclidean_distance(KP24[0] if left-to-right else KP21[0], KP8[0])
sh = euclidean_distance(KP21[0] if left-to-right else KP24[0], KP8[0])
ft = euclidean_distance(KP22[0] if left-to-right else KP19[0], KP8[0])
st = euclidean_distance(KP19[0] if left-to-right else KP22[0], KP8[0])
ml = euclidean_distance((KP10[0] if left-to-right else KP13[0] + KP24[0] if left-to-right

else KP21[0])/2, KP8[0])
FUNCTION foot_score(ft,st,ml,fh,sh): If ( ml >= ft): Return 1 Else if ((st >= ft)

and ( sh >= fh)): Return 0 Else if ((sh < fh) and (st < ft)): Return 2 Else if ((st < ft) and (sh >
fh)): Return 1 Else: Return NaN END

For each stride: heelstrike_frame = stride[l_midstance] if left-to-right else stride
[‘r_midstance’]

stride_scores.append(ankle_score(ft[heelstrike_frame],st[heelstrike_frame],ml[heelstrike_
frame], fh[heelstrike_frame], sh[heelstrike_frame])) END
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