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Abstract: This study proposed a novel adaptive interval Type-II fuzzy fault-tolerant control for
constrained uncertain 2-DOF robotic multi-agent systems with an active fault-detection algorithm.
This control method can realize the predefined-accuracy stability of multi-agent systems under input
saturation constraint, complex actuator failure and high-order uncertainties. Firstly, a novel active
fault-detection algorithm based on pulse-wave function was proposed to detect the failure time
of multi-agent systems. To the best of our knowledge, this was the first time that an active fault-
detection strategy had been used in multi-agent systems. Then, a switching strategy based on active
fault detection was presented to design the active fault-tolerant control algorithm of the multi-agent
system. In the end, based on the interval type-II fuzzy approximated system, a novel adaptive fuzzy
fault-tolerant controller was proposed for multi-agent systems to deal with system uncertainties and
redundant control inputs. Compared with other relevant fault-detection and fault-tolerant control
methods, the proposed method can achieve predefinition of stable accuracy with smoother control
input. The theoretical result was verified by simulation.

Keywords: active fault detection; adaptive fuzzy fault-tolerant control; multi-agent systems

1. Introduction

In recent years, multi-agent systems have been widely used in robots, factories, labo-
ratories and networks [1–4]. However, because of actuator failure and system uncertainty,
intelligent fault-tolerant control of multiple agents has become a research hotspot [5,6].

The existing fault-tolerant control strategies are mainly divided into passive fault-
tolerant control strategies and active ones [7–9]. Most passive fault-tolerant control methods
are based on robust control strategy, but this control strategy is often conservative and
requires prior fault information [7]. In order to solve the defect that the fault information in
passive fault-tolerant control needs prior information, the active fault-tolerant control was
proposed by adding a fault-detection and diagnosis module [10]. This strategy can realize
the online reconstruction of the controller without prior fault information. An active fault-
tolerant control method was proposed by integrating detection, diagnosis and controller
reconstruction, but it may be unstable in the detection and diagnosis stages [11]. In order
to solve this stability problem, an active fault-tolerant control method was proposed as a
robust control idea to deal with the conflict between stabilization and restructuring [12].
After that, active fault-tolerant control has been widely used in various mechanical control
systems. Active fault-tolerant control was applied to unmanned aerial vehicles (UAVs),
which achieved the rapid stability of the control system under actuator failure [13]. In order
to solve the stability problem of underwater robots under actuator fault conditions, an
active fault-tolerant control was used to realize the stability of the closed-loop system [14,15].
In order to improve the fault-tolerant control performance of the manipulator, an active
fault-tolerant control based on redundant motors was proposed to reduce the structural
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complexity [16]. In order to improve the performance of fault-tolerant controls under
noisy conditions, fault detection was often used [17–21]. With the development of fault-
detection technology, it was applied in many fields [22–26]. However, traditional active
fault-tolerant controls mainly relied on a passive detection mechanism. In systems with
complex uncertainties and faults, the passive detection mechanism may not be sensitive
enough to detect faults. In order to improve the sensitivity of the detection stage, an
active fault-detection algorithm was proposed by adding auxiliary input signals [27]. Since
the active fault-detection algorithm can identify more complex and variable faults, it has
been studied by some scholars [28–30]. However, the existing active detection algorithms
are mainly for single-agent systems and few are for multi-agent systems. The subsystem
faults of multi-agent systems are often different and the sensors are interfered with by
multiple subsystems. As a result, the detection mechanism may be insensitive to faults and
thus trigger incorrectly. Furthermore, the constraints of multi-agent controllers are also
very complex [31] and the control input saturation is not considered in most fault-tolerant
control methods for multi-agent systems. Hence, it is a challenge to detect complex faults
in multi-agent systems.

The actual control system often contains complex and changeable uncertainties, and
fuzzy logic systems are often used to approximate system uncertainty because of their
good approximation performance [32–35]. It is often difficult to deal with high-order
uncertainties with traditional fuzzy logic systems, so type-II fuzzy control was proposed
to improve the approximation performance to complex uncertainties [36]. The calculation
of traditional Type-II fuzzy logic systems is often slow, so an interval Type-II fuzzy logic
system was applied to the design of the controller [37]. In order to make the fuzzy logic sys-
tem approximate the rapidly changing uncertainty, an adaptive fuzzy control strategy was
proposed based on the adaptive adjustment of weight parameters [38]. Based on that, the
weight adaptive law was applied to interval Type-II fuzzy control to deal with high-order
uncertainties and changeable uncertainties [39]. By considering the fault-tolerant control
algorithm, an interval Type-II fuzzy fault-tolerant control was proposed to deal with system
faults and system uncertainties at the same time [40]. However, most existing interval
Type-II fuzzy fault-tolerant control methods are based on passive fault detection [40–42].
This passive detection has difficulty distinguishing between faults and the uncertainty of
multi-agent systems, which is caused by the strong coupling of multiple subsystems. This
problem may make it difficult for the fuzzy system to approximate the actual uncertainty
and affect the system control performance. Meanwhile, the active fault-tolerant control
strategy of the multi-agent system can also lead to fast changes in uncertainty. Therefore, it
is valuable to study adaptive interval Type-II fuzzy fault-tolerant controls for multi-agent
systems.

Motivated by the above-mentioned problem, we propose a novel adaptive interval
Type-II fuzzy fault-tolerant control for the proposed multi-agent systems based on active
fault detection. This control method can realize the predefined-accuracy stability of multi-
agent systems under input saturation, complex actuator failure and high-order uncertainties.
The main innovative contributions are listed in the following:

(1) To the best of our knowledge, active fault detection of multi-agent systems is
realized for the first time. Compared with the existing passive fault-detection methods, the
novel active detection algorithm can resist more topology communication interference than
passive detection.

(2) An improved fault-tolerant control algorithm of multi-agent systems was designed
by the novel active fault-detection switching strategy. Compared with the existing passive
fault-tolerant control methods, the proposed method can handle more serious and complex
actuator failures in multi-agent systems.

(3) Based on the interval Type-II fuzzy approximated system, a novel adaptive fuzzy
fault-tolerant controller was proposed for multi-agent systems to deal with high-order
uncertainties and redundant control inputs. Compared with other fault-tolerant control
methods, the proposed method can achieve predefinition of stable accuracy.
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In the following, Section 2 presents the preliminaries. Section 3 is the problem
description. Section 4 presents the results. Section 5 is the simulation analysis. Section 6
is the conclusion.

2. Preliminaries

Assumption 1 ([43–45]). Assume that only the failures given in Definition 2 occur during system
operation and no additional failures occur. The soundness of the system can be ensured in this study.

Lemma 1 ([32]). Consider a continuous function: f (x) : D f → R and D f is the compact set.
Then, f (x) can be approximated by an interval Type-II fuzzy logic system wT β(x) with arbitrary
small error δ: ∣∣ f (x)−wT β(x)

∣∣ ≤ δ (1)

where ŵ ∈ Rr is the adaptive weight parameter vector. ŵ ∈ Rr is the expected weight parameter
vector. β(x) ∈ R∏n

i=1 ri is a basis function as shown in Figure 1, which can be expressed as:

βr(x) = βL
r (x)ϑr + βU

r (x)ϑr (2)

in which

βLU
r (x) =

[
h=1
∏
φ

µL
Ãr

h
(x),

h=1
∏
φ

µU
Ãr

h
(x)

]
=
[
βL

r (x), βU
r (x)

] (3)

here, ϑr + ϑr = 1. µL
Ãr

h
(x) and µU

Ãr
h
(x) are the lower and upper membership grades:


µL

Ãr
h
(xh) = exp(− 1

2 (
xh−mL

h,r
σr

h
)2)

µU
Ãr

h
(xh) = exp(− 1

2 (
xh−mU

h,r
σr

h
)2)

(4)

with the following fuzzy rules:

Ruler : IF x1 is Ãr
1 and · · · and xn is Ãr

n,
Then wT β(x) is B̃r (5)

Here, the fuzzy set is considered as the complete and continuous set [46–51].

Figure 1. Interval Type-II fuzzy membership function.
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3. Problem Description

Multi-agent systems are based on graph theory and the relevant background is de-
scribed in Appendix A.

Definition 1. A 2-DOF robotic multi-agent system is defined with a leader and N (N ≥ 2)
followers: {

q̇i,1 = qi,2
q̇i,2 = fi(qi,1, qi,2) + ∆ fi(qi,1, qi,2) + (gi(qi,1) + ∆gi(qi,1))(ui + uai )

(6)

and the dynamic model of the leader is described as follows (i = l):{
q̇l,1 = ql,2
q̇l,2 = fl(ql,1, ql,2) + ∆ fl(ql,1, ql,2) + (gi(qi,1) + ∆gi(qi,1))(ul + ual )

(7)

where qi,1 = [qi,1,1, . . . , qi,1,n]
T and qi,2 = [qi,2,1, . . . , qi,2,n]

T . ui = [ui,1, . . . , ui,n]
T repre-

sents the main control input and uai represents the redundant control input. fi(qi,1, qi,2) =
−Mi(qi,1)

−1(Ci(qi,1, qi,2)qi,2 + Gi(qi,1)), in which Mi(qi,1) is the symmetric inertia matrix,
Ci(qi,1, qi,2) is the centripetal and Coriolis torques matrix and Gi(qi,1)) is the gravitational
torque. gi(qi,1) = Mi(qi,1)

−1. ∆ fi(qi,1, qi,2) and ∆gi(qi,1) denote the unknown uncertainties
caused by parameter perturbation and modeling uncertainty. When the subscript i is replaced
by l, the symbolic meaning is that of the leader. Uncertainty from multiple sources can be called
high-order uncertainty.

The tracking error of ith follower in (6) is defined as:

zi,1 =
N
∑

h=1
aih(qi,1 − qh,1) + bi(qi,1 − ql,1) (8)

where aih and bi are the weight parameters.

Condition 1. The input constraint is
∣∣ui,k

∣∣ ≤ U, in which U is the known and bounded
constant.

Lemma 2. In order to achieve Condition 1, the actual control input ui,k can be designed by [52] as:

ui,k = Utanh(
vi,k

U
) (9)

where vi,k = ui,k(vi,k) + e(vi,k). ei,k(vi,k) ≤ E and E is a bounded unknown constant.

Definition 2. The faults of sub-systems for multi-agent systems are often various, so their overall
fault situation is complex. The actuator fault of subsystem [5] is considered as the following:

u fi,k
= Ψi,k(qi,1,k, t)ui,k + Φi,k(t) (10)

in which

Ψi,k(qi,1,k, t) =
{

exp(−ηi,kt + vi,k) + 0.1sin(qi,1,k) , t ≥ tai,k

1 , t < tai,k

(11)

where ηi,ktact = vi,k. ηi,k and vi,k are the positive parameters. tai,k is the failure time of actuator.
Φi,k(t) is considered to be zero in this paper.

The control objective is to make the tracking error of the system converge to the
predefined accuracy † before and after the fault occurs.
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4. Results

The design scheme of the proposed controller is shown in Figure 2. Assumption 1 is
satisfied and the system is considered optimized [53–57].

Main 

Controller System 

Dynamics+
-

u

Redundant 

Controller

clock

1
z

t Detection 

Function

∑ 

a
ud

q

p
u

qq

q

Figure 2. The controller structure block diagram of the agent.

4.1. Active Fault Detection and Fault-Tolerant Control

The auxiliary input signal of redundant controller up is considered as a pulse-wave function:

up(t) =
{

Um , κtp + t0 ≤ t ≤ κtp + t0 + ∆t
0 , others

(12)

where κ = 1, 2, 3 . . .. Um = [Um, . . . , Um]T is the pulse amplitude vector. tp is the pulse
repetition period. t0 is the start time of detection. ∆t is the pulse width.

By observing (6) and (7), it is clear that observable information q̇i,2 is more sensitive to
the change of control input uai than other observable information qi,2 and qi,1. Hence, a
novel active detection algorithm is designed as follows.

When f lag = 1 in Algorithm 1, the system is judged to be faulty. Then, the following
improved active fault-tolerant control algorithm is activated:

Algorithm 1 Active fault-detection algorithm (i = l, 1, 2, 3, . . .)

Initial stage
ui = Utanh( vi

U )
uai = upi

Initial Y (A fault threshold parameter)
Global Flag

The 1th detection cycle(2)
I f t ≈ tp + t0 + ∆t

I f ‖q̇i,2(t)− q̇i,2(t− ∆t)‖ > ‖q̇i,2(t− t1)− q̇i,2(t− t1 − ∆t)‖+ Y
Flag = 1

end
end

...

The κ − 1th detection cycle(κ)
I f t ≈ κtp + t0 + ∆t

I f ‖q̇i,2(t)− q̇i,2(t− ∆t)‖ >
∥∥q̇i,2(t− tp)− q̇i,2(t− tp − ∆t)

∥∥+ Y
Flag = 1

end
end

4.2. Main Controller Design
4.2.1. Main Controller Design of Leader

The virtual error zl,2 can be designed as:
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{
zl,1 = ql,1 − qdl,1

zl,2 = ql,2 − αl,1
(13)

where αl,1 is virtual control.
The uncertainty of the system can be approximated by a fuzzy logic system [58,59]

and then an approximation-based controller can be designed as follows.

Theorem 1. The leader system in Definition 1—(7) can be controlled by the following controller
with a predefined accuracy Bl =

{
zl,1
∣∣∥∥zl,1

∥∥ ≤ †
}

:
αl,1 = − (2†2+k̂l)zl,1

2†2 + q̇dl,1

vl = −gl(ql,1)
−1
(

fl(ql,1, ql,2) +
1
2 θ̂T

l ψl(ql,1, ql,2)zl,2 + zl,1 +
3
2 zl,2 − α̇l,1

)
ul = Utanh( vl

U )

(14)

and the adaptive law is
˙̂θl =

zT
l,2zl,2ψl(ql,1,ql,2)

2
(15)

and the adaptive law is
˙̂kl =

zT
l,1zl,1

2ξ2
l †2 (16)

where θ̂l = [θ̂l,1, . . . , θ̂l,n]
T is the adaptive parameter vector. k̂l is an adaptive parameter and

ξl is a positive parameter. ψl,k(ql,1, ql,2) = βl,k(ql,1, ql,2)
T βl,k(ql,1, ql,2), and ψl(ql,1, ql,2) =

[ψl,1(ql,1, ql,2), . . . , ψl,n(ql,1, ql,2)]
T . † is the accuracy parameter.

The proof of Theorem 1 is given in Appendix B.

4.2.2. Main Controller Design of Follower

The virtual error zi,2 can be designed as:

zi,2 = qi,2 − αi,1 (17)

where αi,1 is the virtual control.

Theorem 2. The follower systems in Definition 1—(6) can be controlled by the following controller
with a predefined accuracy Bi = {zi,1|‖zi,1‖ ≤ †}:

αi,1 = 1
(bi+∑N

h=1 aih)

(
biql,2 + ∑N

h=1 aihqh,2 −
(2†2+k̂i)zi,1

2†2

)
vi = −gi(qi,1)

−1
(

fi(qi,1, qi,2) +
1
2 θ̂T

i ψi(qi,1, qi,2)zi,2

+
(

bi + ∑N
h=1 aih

)
zi,1 +

3
2 zi,2 − α̇i,1

)
ui = Utanh( vi

U )

(18)

and the adaptive law is
˙̂θi =

zT
i,2zi,2ψi(qi,1,qi,2)

2
(19)

and the adaptive law is
˙̂ki =

zT
i,1zi,1

2ξ2
i †2 (20)

where θ̂i = [θ̂i,1, . . . , θ̂i,n]
T is the adaptive parameter vector. k̂i is an adaptive parameter and

ξi is a positive parameter. ψi,k(qi,1, qi,2) = βi,k(qi,1, qi,2)
T βi,k(qi,1, qi,2) and ψi(qi,1, qi,2) =

[ψi,1(qi,1, qi,2), . . . , ψi,n(qi,1, qi,2)]
T . † is the accuracy parameter.

The proof of Theorem 2 is given in Appendix C.
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4.3. Redundant Controller Design

Theorem 3. According to Algorithm 2, the redundant controller can be designed as follows
(i = l, 1, 2, 3, . . .): {

uai = upi , f lag = 0
uai = Utanh( vl

U ) , f lag = 1
(21)

where upi is from (12). When f lag = 1, the proof of Theorem 3 is similar to Theorems 1 and 2. The
mathematical principle is that the value of ui and uai can be exchanged to obtain a symmetric stability
result. According to (A10), (A21) and (21), it is clear that zi,1 can converge to a neighborhood of
zero Bi = {zi,1|‖zi,1‖ ≤ †} after controller reconstruction.

Algorithm 2 Active fault-tolerant control algorithm (i = l, 1, 2, 3, . . .)

Initial stage
ui = Utanh( vi

U )
uai = upi

Switching stage [60]
I f f lag = 1

ui = 0
uai = Utanh( vi

U )
end

4.4. Stability Analysis of the System

The Lyapunov functions in (A1) Vl,1, (A3) Vl,2, (A11) Vi,1 and (A14) Vi,2 are considered
to verify the stability of system.

No-fault stage: According to Theorems 1 and 2, it can be deduced that V̇l,1 ≤ 0,
V̇l,2 ≤ 0, V̇i,1 ≤ 0 and V̇i,2 ≤ 0 at qi,1 ∈ Bi. Hence, the system is predefined-accuracy stable.

Fault and no-switching stage: According to Algorithm 1, if f lag = 0, q̇i,2 is small
and bounded. Then, qi,2 and qi,1 are bounded if the operation time is finite. Next, by
considering (8), (13), (14) and (18), and qdi,1

is bounded, it can be deduced that each virtual
error z is bounded. Then, the Lyapunov functions Vl,1 = zT

l,1zl,1, Vl,2 = zT
l,2zl,2, Vi,1 = zT

i,1zi,1

and Vi,2 = zT
i,2zi,2 are also bounded. Hence, according to the above-mentioned bounded

inference and Barbalat stability theorem, the system is Lyapunov stable. The steady-state
accuracy at this stage can be adjusted by a fault threshold parameter Y in Algorithm 1.

Switching stage: If the switching is considered as a momentary event [61] and
Condition 1 is considered, (A4) can be rewritten as:

V̇l,2 ≤ −
(2†2+k̂l)zT

l,1zl,1

2†2 + zT
l,1zl,2 + zT

l,2[ fl(ql,1, ql,2) + ∆ fl(ql,1, ql,2 − α̇l,1)]

− θ̃T
l

˙̂θl − ξ2
l k̃l

˙̂kl +
∣∣∣zT

l,2

∣∣∣∣∣gl(ql,1) + ∆gl(ql,1)
∣∣(|ui|+

∣∣ual

∣∣)
≤ − (2†2+k̂l)zT

l,1zl,1

2†2 + zT
l,1zl,2 + zT

l,2[ fl(ql,1, ql,2) + ∆ fl(ql,1, ql,2 − α̇l,1)]

− θ̃T
l

˙̂θl − ξ2
l k̃l

˙̂kl +
∣∣∣zT

l,2

∣∣∣∣∣gl(ql,1) + ∆gl(ql,1)
∣∣(2U)

(22)

Since the virtual errors of the system z in the fault and no-switching stage are bounded,
V̇ is bounded. Assuming that the switching time is a very small constant τ. By considering
that the Lyapunov functions V in the fault and no-switching stage are also bounded, then
V(t− τ) + V̇τ = V(t) is bounded. Hence, the leader system is also Lyapunov stable by
considering (22).

Redundant control stage: According to Theorem 3, the system is predefined-accuracy
stable at f lag = 1.

Remark 1. Based on the proposed active fault-detection and redundant fault-tolerance mechanism,
the Lyapunov stability analysis of this system can be regarded as continuous. Hence, compared with
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other existing fault-tolerant control methods, the proposed method can achieve predefinition of stable
accuracy.

5. Simulation

The following simulations are carried out on MATLAB R2016a with a variable sim-
ulation step of ode45, 10−5 relative tolerance and auto other additional options. A small
image embedded in a large image is a local magnification of a large image with the same
time scale. Section 5.1 presents the validation simulations of the proposed controller for the
single-agent system. Section 5.2 presents the validation simulations of the proposed con-
troller for multi-agent systems with different actuator subsystem faults. Section 5.3 presents
comparative simulations between the proposed method and recent passive fault-tolerant
methods. Section 5.4 presents the comparative simulations between the proposed method
and recent active fault-tolerant methods. This active fault-tolerant method adopts passive
fault detection. The structure of multi-agent systems is shown in Figure 3; the subsystem
is modeled as the following 2-DOF robot arm system. The advantages of the proposed
method can be verified by comparative simulation.

4 6

5

Figure 3. The communication topology of MASs.

According to recent robot studies [62–64], the dynamics of simplified 2-DOF robot
arm system are modeled as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) + D(q) = τ (23)

in which,

M(q) =
[

(m1 + m2)l2
1 + m2l2

2 + 2m2l1l2 cos(q2) m2l2
2 + m2l1l2 cos(q2)

m2l2
2 + m2l1l2 cos(q2) m2l2

2

]
,

C(q, q̇) =
[
−2m2l1l2q̇2 sin(q2) −m2l1l2(q̇1 + q̇2) sin(q2)

m2l1l2q̇1 sin(q2) 0

]
,

G(q) =
[

(m1 + m2)gl1 cos(q1) + m2gl2 cos(q1 + q2)
m2gl2 cos(q1 + q2)

]
,

D(q) =
[

0.1 sin(q1) + 0.1 cos(q2)
0.1 sin(q2) + 0.1 cos(q1)

]
,

and parameter perturbation is expressed as:{
∆m1 = ±10%
∆m2 = ±10%

(24)

where D(q) is disturbance. g = 9.8 kg/m2. Mass parameters are m1 = 1 and m2 = 0.5.
Link lengths are l1 = 1 and l2 = 0.5.

The initial condition is
[

q1 q̇1 q2 q̇2
]
=
[

0.5π 0.5π 0.5π 0.5π
]

and the
joint angle command is

[
qd1 qd2

]
=
[

sin(t) + 0.5 sin(t) + 0.5
]
.

The singularity problem of Jacobian matrix M(q) is solved by the DLS method [65]:

(M(q))−1 = ∑2
i=1

si

(si)
2 + (ζi)

2 ψiν
T
i (25)
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in which

ζi =

{
0.008(1 + cos( πsi

0.003 )) , |si| ≤ 0.003
0 , others

, (26)

where [ν, s, ψ] = SVD(M(q)).
By considering one communication topology structure of MASs as shown in Figure 3,

the weighted Laplacian matrix L and weighted adjacency matrix W1 defined by [66] are
shown in the following: 0 0 0

6× 1 0 0
0 5× 1 0

,

 0 0 0
6×−1 6× 1 0

0 5×−1 5× 1

 (27)

with a connected weight matrix of leader and followers 4× 1 0 0
0 0 0
0 0 0

 (28)

The auxiliary input signal is selected as

up(t) =
{

Um , κtp + t0 ≤ t ≤ κtp + t0 + ∆t
0 , others

(29)

where Um = 1, tp = 2, t0 = 0.5, ∆t = 0.05.
The interval type 2 membership function with ϑr = ϑr =

1
2 is chosen as the Gaussian

function: 
µL

Ãr
h
(xh) = exp(− 1

2 (
xh−mL

h,r
σr

h
)2)

µU
Ãr

h
(xh) = exp(− 1

2 (
xh−mU

h,r
σr

h
)2)

(30)

where σr
h = 1, mL

h,r = −2.1,−1.1,−0.1, 0.9, 1.9, mU
h,r = −1.9,−0.9, 0.1, 1.1, 2.1.

5.1. Validation Simulations of the Proposed Controller for Single-Agent Systems

In this section, the validation simulation of the proposed method for uncertain single-
agent systems is carried out with Condition 1. The model of the single-agent system is based
on the leader model of topology-free communication. The initial detector parameter is
Y = 0.1. The initial parameters are † = 0.1, U = 30, θ̂l(0) = 0, k̂l(0) = 0.4, ξl =

√
10× 10−3.

The actuator fault parameters in Definition 2 are set as follows: ηl,1 = ηl,2 = 0.05, vl,1 =
vl,2 = 0.5 and tal,1 = tal,2 = 10.

As shown in Figure 4, it is clear that the tracking error of the proposed method is about
0.05, which is less than the predefined accuracy † = 0.1. By considering the simulation
results in Figures 4 and 5, there is no significant change in system tracking performance
when the fault occurs at 10 s. The reason is the robustness of the control system. Therefore,
the auxiliary input in Figure 6 is considered to be added to the control system. According
to the results in Figure 5, when the sensor detects the occurrence of acceleration-level
abnormal phenomena, Algorithm 1 judges the system failure f lag = 1 at about 18.55 s.
Furthermore, as shown in Figure 7, the maximum absolute values of ul and ual are 30.00 and
27.63, respectively. This result verifies the validity of the constraint controller in Lemma 2.
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Figure 4. The tracking error curves el = ql,1 − qdl,1
of the proposed method.
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Figure 7. The main control input curves ul and redundant control input curves ual of the proposed method.

5.2. Validation Simulations of the Proposed Controller for Multi-Agent Systems

In this section, the validation simulation of the proposed method for uncertain multi-
agent systems is carried out with Condition 1. The initial detector parameter is Y = 4.
The initial parameters are † = 0.1, U = 30, θ̂l(0) = θ̂i(0) = 0, k̂l(0) = k̂i(0) = 0.4,
ξl = ξr =

√
10× 10−3. The actuator fault parameters in Definition 2 are set as follows:

ηl,k = vl,k = tal,k = ∞; η1,k = 0.05, v1,k = 1, ta1,k = 20; η2,k = 0.05, v2,k = 1.5, ta2,k = 30;
η3,k = 0.05, v3,k = 0.5, ta3,k = 10.

As shown in Figure 8, it is clear that the final tracking error of the proposed method
is about 0.02 at 50 s, which is less than the predefined accuracy † = 0.1. According to
the results in Figures 9 and 10, under three different fault types, the proposed method
successfully carries out the corresponding fault detection and controller reconstruction of
three followers. When the sensor detects the occurrence of acceleration-level abnormal
phenomena, Algorithm 1 judges the system failure f lag = 1 at about 36.55 s, 36.55 s and
24.55 s, respectively. Meanwhile, the detector is not triggered by mistake for the leader
f lag = 0. Furthermore, as shown in Figures 9 and 10, the maximum absolute values of ui
and uai are 30.00 and 30.00, respectively. This result verifies the validity of the constraint
controller in Lemma 2.
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Figure 8. The tracking error curves of leader el = ql,1 − qd,1 and followers ei = qi,1 − ql,1 for the
proposed method with different actuator faults of subsystems. Figure legends: : ei,1, i = l, 1, 2, 3;

: ei,2, i = l, 1, 2, 3.
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Figure 9. The tracking error curves of leader ul = [ul,1, ul,2]
T and followers ui = [ui,1, ui,2]

T for the
proposed method with different actuator faults of subsystems. Figure legends: : ui,1, i = l, 1, 2, 3;

: ui,2, i = l, 1, 2, 3.
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Figure 10. The tracking error curves of leader ual = [ual,1 , ual,2 ]
T and followers uai = [uai,1 , uai,2 ]

T

for the proposed method with different actuator faults of subsystems. Figure legends: :
uai,1 , i = l, 1, 2, 3; : uai,2 , i = l, 1, 2, 3.

5.3. Comparative Simulations between the Proposed Method and the Passive Fault-Tolerant Method

In this section, comparative simulations between the proposed method and the pas-
sive fault-tolerant method [67] for uncertain multi-agent systems are carried out with
Condition 1. In order to ensure the fairness of the comparison, we use the same fuzzy
approximator; the only difference between them is the active detection strategy and passive
fault-tolerant strategy. The initial detector parameter is Y = 4. The initial parameters are
† = 0.1, U = 30, θ̂l(0) = θ̂i(0) = 0, k̂l(0) = k̂i(0) = 0.4, ξl = ξr =

√
10× 10−3. The actua-

tor fault parameters in Definition 2 are set as follows: ηl,k = ηi,k = 0.05, vl,k = vi,k = 0.5,
tal,k = tai,k = 10.
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As shown in Figures 11 and 12, it is clear that the final tracking error of the proposed
method is about 0.05 at 50 s, which is less than the predefined accuracy † = 0.1. However,
the tracking error of passive fault-tolerant control method is not convergent. The reason is
that passive fault-tolerant controllers can only operate under minor actuator failures. If the
fault function Ψi,k(qi,1,k, t) is too small, the more master control input is required. However, by
considering the control input constraint in Condition 1, the control system can not be stable.
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Figure 11. The tracking error curves of leader el,1 = ql,1,1 − qd,1,1 and followers ei,1 = qi,1,1 − ql,1,1

in the proposed method and passive fault-tolerant control method [67]. Figure legends: : The
proposed method; : The passive fault-tolerant control method [67].
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Figure 12. The tracking error curves of leader el,2 = ql,1,2 − qd,1,2 and followers ei,2 = qi,1,2 − ql,1,2

in the proposed method and passive fault-tolerant control method [67]. Figure legends: : The
proposed method; : The passive fault-tolerant control method [67].
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5.4. The Comparative Simulations between the Proposed Method and Active Fault-Tolerant Method

In this section, the comparative simulations between the proposed method and active
fault-tolerant method [68] for uncertain multi-agent systems is carried out with Condition 1.
This active fault-tolerant method [68] adopts the passive fault-detection algorithm. In
order to ensure the fairness of the comparison, we use the same main controller and adjust
similar tracking accuracy. The only difference is that the active and passive detection
mechanism. As shown in Figures 13 and 14, the final tracking errors of the two algorithms
are similar. The initial detector parameter is Y = 4. The initial parameters are † = 0.1,
U = 30, θ̂l(0) = θ̂i(0) = 0, k̂l(0) = k̂i(0) = 0.4, ξl = ξr =

√
10× 10−3. The actuator

fault parameters in Definition 2 are set as follows: ηl,k = ηi,k = 0.05, vl,k = vi,k = 0.5,
tal,k = tai,k = 10.
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Figure 13. The tracking error curves of leader el,1 = ql,1,1 − qd,1,1 and followers ei,1 = qi,1,1 − ql,1,1 in
the proposed method and passive fault-detection control method [68]. Figure legends: : The
proposed method; : The active fault-tolerant control method with passive fault detection [68].

As shown in Figures 13 and 14, when the switch happens, the maximum absolute
values of tracking errors in the proposed control method are [0.12, 0.49]T , [0.15, 0.39]T ,
[0.27, 0.67]T and [0.36, 0.86]T , respectively. When the switch happens, the maximum ab-
solute values of tracking errors in the compared control method [68] are [0.58, 1.33]T ,
[1.04, 1.84]T , [1.09, 1.91]T and [1.13, 1.94]T , respectively. It is clear that the system tracking
performance of the proposed method is better than that of the passive detection method
when switching occurs. According to the results in Figures 15 and 16, the chattering of
the proposed main controller is weaker than that of the compared control method during
switching. In Figures 17 and 18, the chattering of the proposed main controller is basically
weaker than that of the compared control method during switching. Furthermore, accord-
ing to Figures 15–18, under the same fault, the proposed active fault detector basically
detects the fault occurrence at 22.55 s. The compared passive fault detector detects the
fault occurrence at 22.91 s, 23.25 s, 23.60 s and 24.90, respectively. This simulation result
means that passive detection is more susceptible to topology communication interference
of multi-agent systems than active detection.
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Figure 14. The tracking error curves of leader el,2 = ql,1,2 − qd,1,2 and followers ei,2 = qi,1,2 − ql,1,2 in
the proposed method and passive fault-detection control method [68]. Figure legends: : The
proposed method; : The active fault-tolerant control method with passive fault detection [68].
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Figure 15. The main control input curves of leader ul,1 and followers ui,1 in the proposed method
and passive fault-detection control method [68]. Figure legends: : The proposed method; :
The active fault-tolerant control method with passive fault detection [68].
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Figure 16. The main control input curves of leader ul,2 and followers ui,2 in the proposed method
and passive fault-detection control method [68]. Figure legends: : The proposed method; :
The active fault-tolerant control method with passive fault detection [68].
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Figure 17. The redundant control input curves of leader ual,1 and followers uai,1 in the proposed
method and passive fault-detection control method [68]. Figure legends: : The proposed method;

: The active fault-tolerant control method with passive fault detection [68].
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Figure 18. The redundant control input curves of leader ual,2 and followers uai,2 in the proposed
method and passive fault-detection control method [68]. Figure legends: : The proposed method;

: The active fault-tolerant control method with passive fault detection [68].

6. Conclusions

A novel adaptive interval Type-II fuzzy fault-tolerant control method was proposed
for constrained uncertain 2-DOF robotic multi-agent systems by considering an active
fault-detection algorithm. This control method can realize the predefined-accuracy stability
of multi-agent systems under input saturation, complex actuator failure and high-order
system uncertainties. Firstly, a novel active fault-detection algorithm based on pulse-wave
function was proposed to detect the failure time of multi-agent systems for the first time.
Compared with the existing passive fault-detection methods, the novel active detection
algorithm can resist more topology communication interference than passive detection.
Then, an improved fault-tolerant control algorithm was adopted to deal with more complex
actuator failures. In the end, based on the interval Type-II fuzzy approximated system,
a novel adaptive fuzzy fault-tolerant controller was proposed for constrained uncertain
mechanical multi-agent systems to achieve predefined-accuracy stability. Compared with
other fault-tolerant control methods, the proposed method can achieve predefined-accuracy
stability of multi-agent systems under complex multi-agent faults. Meanwhile, the switch-
ing chattering of the controller was weaker. These theoretical results were verified by
simulation.
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Appendix A

Graph theory [66]: The topological structure of a multi-agent system is represented
by one directed graph G = (V, E), where V =

{
v1 . . . vn

}
and E ⊆ V × V. vi is a

node which represents agent i. If vi only gets information from vj, eji = (vj, vi) ∈ E can
be true. vj represents the neighbor of vi. Ni =

{
vj
∣∣(vj, vi) ∈ E

}
represents a collection of

vj. If weights are considered, the proposed graph is a weighted graph. Adjacency matrix
W1 =

[
w1,ij

]
∈ RN×N is also the weighted topology. w1,ij > 0 if eji = (vj, vi) ∈ E, otherwise

w1,ij = 0. D = diag(d1, d2, . . . , dN) ∈ RN×N , where di = ∑N
j=1 w1,ij is in-degree of vi. The

Laplacian matrix is L = D− A. The communication topology is described by augmented
graph Ḡ = (V̄, Ē). There are one leader and N followers.

Appendix B

Proof. Step 1: Consider a candidate Lyapunov function:

Vl,1 =
zT

l,1zl,1
2

(A1)

By considering (13) and (14), the time derivative of Lyapunov function (A1) can be
deduced as:

V̇l,1 = zT
l,1żl,1

= zT
l,1

(
ql,2 − q̇dl,1

)
= zT

l,1

(
zl,2 + αl,1 − q̇dl,1

)
= − (2†2+k̂l)zT

l,1zl,1

2†2 + zT
l,1zl,2

(A2)

Step 2: Consider a candidate Lyapunov function:

Vl,2 = Vl,1 +
zT

l,2zl,2
2 +

θ̃T
l θ̃l
2 +

ξ2
l k̃2

l
2

(A3)

where θ̃l = θl − θ̂l . k̃l = kl − k̂l , in which kl ≥ δT
l δl + 1 is defined in (A7).

By considering Lemma 2, (7) and (13), the time derivative of Lyapunov function (A3)
can be deduced as:

V̇l,2 = − (2†2+k̂l)zT
l,1zl,1

2†2 + zT
l,1zl,2 + zT

l,2żl,2 + θ̃T
l (−

˙̂θl) + ξ2
l k̃l(− ˙̂kl)

= − (2†2+k̂l)zT
l,1zl,1

2†2 + zT
l,1zl,2 + zT

l,2[ fl(ql,1, ql,2) + ∆ fl(ql,1, ql,2)

+ (gl(ql,1) + ∆gl(ql,1))(vl − e(vl) + ual )− α̇l,1
]
− θ̃T

l
˙̂θl − ξ2

l k̃l
˙̂kl

(A4)

where e(vl) = [e1(vl,1), . . . , en(vl,n)]
T .

By considering (14), (A4) can be deduced as:

V̇l,2 = − (2†2+k̂l)zT
l,1zl,1

2†2 + zT
l,1zl,2 + zT

l,2[ fl(ql,1, ql,2) + ∆ fl(ql,1, ql,2) + ∆gl(ql,1)(vl

− e(vl) + ual ) + gl(ql,1)
[
−gl(ql,1)

−1
(

fl(ql,1, ql,2) +
1
2 θ̂T

l ψl(ql,1, ql,2)zl,2

+ zl,1 +
3
2 zl,2 − α̇l,1

)
− e(vl) + ual

]
− α̇l,1

]
− θ̃T

l
˙̂θl − ξ2

l k̃l
˙̂kl

= − (2†2+k̂l)zT
l,1zl,1

2†2 + zT
l,2
[
∆ fl(ql,1, ql,2) + ∆gl(ql,1)(vl − e(vl) + ual )

+ gl(ql,1)(ual − e(vl))
]
− 1

2 zT
l,2θ̂T

l ψl(ql,1, ql,2)zl,2 − 3
2 zT

l,2zl,2 − θ̃T
l

˙̂θl − ξ2
l k̃l

˙̂kl

≤ − (2†2+k̂l)zT
l,1zl,1

2†2 − 3
2 zT

l,2zl,2 +
∣∣zl,2

∣∣Tχ(ql,1, ql,2)

− 1
2 zT

l,2zl,2θ̂T
l ψl(ql,1, ql,2)− θ̃T

l
˙̂θl − ξ2

l k̃l
˙̂kl

(A5)
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in which

χ(ql,1, ql,2) =
∣∣∆ fl(ql,1, ql,2)

∣∣+ ∣∣∆gl(ql,1)
∣∣(U + E + U) +

∣∣gl(ql,1)
∣∣(Um + E) (A6)

where |·| stands for taking the absolute value of each element in the vector or matrix.
U = [U, . . . , U]T1×n and E = [E, . . . , E]T1×n are constant vectors. Um = [Um, . . . , Um]T .

According to Lemma 1, χ(ql,1, ql,2) can be approximated by an interval Type-II fuzzy
logic system:

χk(ql,1, ql,2) = wT
l,kβl,k(ql,1, ql,2) + δk(ql,1, ql,2) (A7)

where χ(ql,1, ql,2) = [χ1(ql,1, ql,2), . . . , χn(ql,1, ql,2)]
T.
∣∣δk(ql,1, ql,2)

∣∣ ≤ δl,k. δl,k is an arbi-
trary small bounded parameter and the boundary is defined as: δT

l δl + 1 ≤ kl . δl =
[δl,1, . . . , δl,n]

T .
Then, by considering AM–GM inequality, matrix transformation and (A7), (A5) can

be written as:

V̇l,2 ≤ −
(2†2+k̂l)zT

l,1zl,1

2†2 − 3
2 zT

l,2zl,2 +
12

2 +
zT

l,2zl,2θT
l ψl(ql,1,ql,2)

2 +
zT

l,2zl,2
2 +

δT
l δl
2

− 1
2 zT

l,2zl,2(θ
T
l − θ̃T

l )ψl(ql,1, ql,2)− θ̃T
l

˙̂θl − ξ2
l k̃l

˙̂kl

(A8)

where θl,k = wT
l,kwl,k and θl = [θl,1, . . . , θl,n]

T .
Then, by substituting (15), (A8) can be written as:

V̇l,2 ≤ −
(2†2+k̂l)zT

l,1zl,1

2†2 − zT
l,2zl,2 +

1
2 +

δT
l δl
2

+
zT

l,2zl,2θ̃T
l ψl(ql,1,ql,2)

2 − θ̃T
l

(
zT

l,2zl,2ψl(ql,1,ql,2)

2

)
− ξ2

l k̃l
˙̂kl

≤ −zT
l,1zl,1 − zT

l,2zl,2 −
(kl−k̃l)zT

l,1zl,1

2†2 +
1+δT

l δl
2 − ξ2

l k̃l
˙̂kl

(A9)

Then, by substituting (16), (A9) can be written as:

V̇l,2 ≤ −zT
l,1zl,1 − zT

l,2zl,2 +
kl
2 (1−

zT
l,1zl,1

†2 ) +
k̃l zT

l,1zl,1

2†2 − ξ2
l k̃l

zT
l,1zl,1

2ξ2
l †2

≤ −zT
l,1zl,1 − zT

l,2zl,2 +
kl
2 (1−

zT
l,1zl,1

†2 )
(A10)

According to (A10), it is clear that zl,1 can converge to a neighborhood of zero
Bl =

{
zl,1
∣∣∥∥zl,1

∥∥ ≤ †
}

if there is no actuator fault.
The proof is completed.

Appendix C

Proof. Step 1: Consider a candidate Lyapunov function:

Vi,1 =
zT

i,1zi,1
2

(A11)

By considering (8), the time derivative of Lyapunov function (A11) can be deduced as:

V̇i,1 = zT
i,1żi,1

= zT
i,1

[(
bi + ∑N

h=1 aih

)
(zi,2 + αi,1)− biql,2 −∑N

h=1 aihqh,2

] (A12)

By considering (18), (A12) can be deduced as:

V̇i,1 = zT
i,1

[(
bi + ∑N

h=1 aih

)(
zi,2 +

1
(bi+∑N

h=1 aih)

(
biql,2 + ∑N

h=1 aihqh,2 −
(2†2+k̂i)zi,1

2†2

))
− biql,2 −∑N

h=1 aihqh,2

]
= − (2†2+k̂i)zT

i,1zi,1

2†2 +
(

bi + ∑N
h=1 aih

)
zT

i,1zi,2

(A13)
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Step 2: Consider a candidate Lyapunov function:

Vi,2 = Vi,1 +
zT

i,2zi,2
2 +

θ̃T
i θ̃i
2 +

ξ2
i k̃2

i
2

(A14)

where θ̃i = θi − θ̂i. k̃i = ki − k̂i, in which ki ≥ δT
i δi + 1 is defined in (A18).

By considering Lemma 2, (6) and (17), the time derivative of Lyapunov function (A14)
can be deduced as:

V̇i,2 = − (2†2+k̂i)zT
i,1zi,1

2†2 +
(

bi + ∑N
h=1 aih

)
zT

i,1zi,2 + zT
i,2żi,2 + θ̃T

i (−
˙̂θi) + ξ2

i k̃i(− ˙̂ki)

= − (2†2+k̂i)zT
i,1zi,1

2†2 +
(

bi + ∑N
h=1 aih

)
zT

i,1zi,2 + zT
i,2[ fi(qi,1, qi,2) + ∆ fi(qi,1, qi,2)

+ (gi(qi,1) + ∆gi(qi,1))(vi − e(vi) + uai )− α̇i,1]− θ̃T
i

˙̂θi − ξ2
i k̃i

˙̂ki

(A15)

where e(vi) = [e1(vi,1), . . . , en(vi,n)]
T .

By considering (18), (A15) can be deduced as:

V̇i,2 = − (2†2+k̂i)zT
i,1zi,1

2†2 +
(

bi + ∑N
h=1 aih

)
zT

i,1zi,2 + zT
i,2[ fi(qi,1, qi,2)

+ ∆ fi(qi,1, qi,2) + ∆gi(qi,1)(vi − e(vi) + uai )

+ gi(qi,1)
[
−gi(qi,1)

−1
(

fi(qi,1, qi,2) +
1
2 θ̂T

i ψi(qi,1, qi,2)zi,2

+
(

bi + ∑N
h=1 aih

)
zi,1 +

3
2 zi,2 − α̇i,1

)
− e(vi) + uai

]
− α̇i,1

]
− θ̃T

i
˙̂θi − ξ2

i k̃i
˙̂ki

≤ − (2†2+k̂i)zT
i,1zi,1

2†2 − 3
2 zT

i,2zi,2 + |zi,2|Tχ(qi,1, qi,2)

− 1
2 zT

i,2zi,2θ̂T
i ψi(qi,1, qi,2)− θ̃T

i
˙̂θi − ξ2

i k̃i
˙̂ki

(A16)

in which

χ(qi,1, qi,2) = |∆ fi(qi,1, qi,2)|+ |∆gi(qi,1)|(U + E + U) + |gi(qi,1)|(Um + E) (A17)

where |·| stands for taking the absolute value of each element in the vector or matrix.
U = [U, . . . , U]T1×n and E = [E, . . . , E]T1×n are the constant vectors. Um = [Um, . . . , Um]T .

According to Lemma 1, χ(qi,1, qi,2) can be approximated by an interval Type-2 fuzzy
logic system:

χk(qi,1, qi,2) = wT
i,kβi,k(qi,1, qi,2) + δk(qi,1, qi,2) (A18)

where χ(qi,1, qi,2) = [χ1(qi,1, qi,2), . . . , χn(qi,1, qi,2)]
T . |δk(qi,1, qi,2)| ≤ δi,k. δi,k is an arbi-

trary small bounded parameter and the boundary is defined as: δT
i δi + 1 ≤ ki. δi =

[δi,1, . . . , δi,n]
T .

Then, by considering AM–GM inequality, matrix transformation and (A18), (A16) can
be written as:

V̇i,2 ≤ −
(2†2+k̂i)zT

i,1zi,1

2†2 − 3
2 zT

i,2zi,2 +
12

2 +
zT

i,2zi,2θT
i ψi(qi,1,qi,2)

2 +
zT

i,2zi,2
2 +

δT
i δi
2

− 1
2 zT

i,2zi,2(θ
T
i − θ̃T

i )ψi(qi,1, qi,2)− θ̃T
i

˙̂θi − ξ2
i k̃i

˙̂ki

(A19)

where θi,k = wT
i,kwi,k and θi = [θi,1, . . . , θi,n]

T .
Then, by substituting (19), (A19) can be written as:

V̇i,2 ≤ −zT
i,1zi,1 − zT

i,2zi,2 −
(ki−k̃i)zT

i,1zi,1

2†2 +
1+δT

i δi
2 − ξ2

i k̃i
˙̂ki (A20)

Then, by substituting (20), (A20) can be written as:

V̇i,2 ≤ −zT
i,1zi,1 − zT

i,2zi,2 +
ki
2 (1−

zT
i,1zi,1

†2 ) (A21)

According to (A21), it is clear that zi,1 can converge to a neighborhood of zero
Bi = {zi,1|‖zi,1‖ ≤ †} if there is no actuator fault.
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The proof is completed.
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