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Abstract: In this paper, a neural network approach is applied for solving an electromagnetic in-
verse problem involving solid dielectric materials subjected to shock impacts and interrogated by a
millimeter-wave interferometer. Under mechanical impact, a shock wave is generated in the material
and modifies the refractive index. It was recently demonstrated that the shock wavefront velocity and
the particle velocity as well as the modified index in a shocked material can be remotely derived from
measuring two characteristic Doppler frequencies in the waveform delivered by a millimeter-wave
interferometer. We show here that a more accurate estimation of the shock wavefront and particle
velocities can be obtained from training an appropriate convolutional neural network, especially in
the important case of short-duration waveforms of few microseconds.

Keywords: convolutional neural network; shock properties; mm-wave interferometry; metrology;
shock velocity; particle velocity; shock permittivity; shock refractive index

1. Introduction

The physical understanding and modelling of the shock wave propagation in solids
has many applications in defense, aeronautics, space and civil areas. In order to simulate
the behavior of solids subjected to an impact, it is mandatory to know the mechanical
and thermodynamic properties of the pristine and shocked materials. According to the
well-documented theory (see, e.g., [1]), the shock wave in dielectric material acts as a
moving dielectric interface (or boundary) that propagates faster than the sound in the
shocked solid. In the region behind this interface, called the shocked medium, the wave
modifies the refractive index of the solid at rest. Moreover, the mechanical impact gives
motion to the material, and consequently, it creates a discontinuity in the velocity profile.
The velocity of the shocked medium is called the particle velocity, and the fundamental
relationship between the shock wavefront velocity V1 and the particle velocity V2 is called
the shock polar of the material, which can be approximated as follows [2]:

V1 = C0 + s·V2 (1)

where C0 (m·s−1) denotes the speed of sound in the pristine medium at the reference state
(i.e., in the solid at rest) and s is a dimensionless constant. The determination of C0 and
s has been the subject of many studies (see, e.g., [2]) and is usually performed from the
measurement of V1 and V2 [3,4] by using research guns with light gas or powder [5], laser
shock [6] or explosives set-ups [7]. Non-invasive techniques were reported to remotely and
simultaneously derive the shock wave velocity V1, the particle velocity V2 and possibly
the refractive index N2 of the shocked medium from the measurement of two Doppler
frequencies in the waveform delivered by a radiofrequency interferometer [8–13]. The

Sensors 2023, 23, 4835. https://doi.org/10.3390/s23104835 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23104835
https://doi.org/10.3390/s23104835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2795-8548
https://orcid.org/0000-0002-4302-5406
https://doi.org/10.3390/s23104835
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23104835?type=check_update&version=1


Sensors 2023, 23, 4835 2 of 15

Doppler effect is a phenomenon where the perceived frequency of sound, light waves or
electromagnetic waves changes depending on the relative motion of the source and observer.
The impact of the projectile on the material target induces a shock wave. The shock induces
a discontinuity change of the material thermodynamic properties before and after the shock
front (pressure, velocity, temperature and density). When the interrogation electromagnetic
wave passes through the test material, it encounters a moving interface, the shock wave,
which is reflective because of the difference in refractive index on either side of the shock
wave. The electromagnetic wave is also reflected at the back face of the target, which moves
at the speed V2. These two reflections induce two frequency Doppler shifts in the final
signal corresponding, respectively, to V1 and V2. Therefore, the Doppler effect is coupled
on the amplitude and phase of the interrogation radiofrequency signal and is related to
the moving interfaces, and consequently, to the velocities V1 and V2. The method in [8]
consists of detecting the two Doppler frequencies in the waveform by a fitting process using
the linear combination of two sine functions. This radio science paper [8] demonstrates
Equations (35)–(37) of this reference. The main conclusion is that there is an analytical
solution given by these equations with the three following hypotheses of the physical
model: shock velocity V1 and particle velocity V2 constant and no dielectric loss. Figure 1
shows a symmetrical impact configuration to study shock properties. The Teflon dielectric
waveguide has a variable length ranging from 2 m to 5 m according to the needs, and is
used for guiding the millimeter waves to the dielectric sample under shock. The 16 mm in
diameter and 80 mm long Teflon cone is glued at the back side of the target to ensure the
transition between the dielectric waveguide and the dielectric sample surface. The dielectric
cone transition allows the delivery of the millimeter wave generated by the interferometer
into the sample during a mechanical impact and to collect the electromagnetic waves
reflected by the shocked medium and the surface of the metallic impactor. The impactor
is propelled by the Pyrene gas gun and creates a shock at the front surface of the sample,
opposite to the dielectric cone interface. The shock physic experiments are plane impact
with very limited tilt, less than 5 mrad, performed generally with a light gas gun or a
powder gun. So, we analyze the signal in 1D plane configuration without 2D effects from
the side release waves. The sustained shock duration is less than 5 µs. The reflectivity
of the shock front is about 2% of the input signal, then if the shock front is too low, the
detection of the reflected signal could be an issue, depending on the device sensitivity. The
noise could be reduced by choosing the lowest oscilloscope caliber in order to avoid signal
saturation. We have observed that, for waveforms of sufficiently long duration (>5 µs),
the detection and accurate estimation of two Doppler frequencies from the two sinus
functions’ fitting technique are possible (see, e.g., [9,10] for the investigation of shocked
PolyMethylMetAcrylate dielectrics and TriAminoTrinitroBenzene solids, respectively).
However, as the waveform duration decreases and is only of a few microseconds, even less
than the pulsation period, lower Doppler frequencies may not be accurately estimated, and
consequently, the wavefront and particle velocities V1 and V2 cannot be derived from the
fitting technique reported in [8]. Short-duration waveforms occur in many circumstances,
for instance, when the waveform to be processed is less than a time period long due
to dielectric losses. Therefore, it is crucial to significantly extend the applicability of
millimeter-wave interferometry to the analysis of very short-duration waveforms of a few
microseconds. An Artificial Neural Network technique is proposed in this paper to derive
V1, V2 and the refractive index N2 as output neurons of shocked media from time-domain
samples of waveforms as input neurons delivered by a millimeter-wave interferometer.
The source frequency of the radio-interferometer is 94 GHz, and the wavelength is 3.2 mm.
The sample rate is 1 Gsamples/s, and the signal duration is generally a few microseconds.
The interrogation distance is between a few millimeters to a hundred millimeters in the
target material. Low noise electronic components, especially the IQ mixer, are used to
build the radiofrequency interferometer in order to ensure better accuracy. The accuracy
on the shock physic velocities depends on the uncertainty of the dielectric properties of
the material.
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impact with the same material as impactor and target in light blue (Teflon cone in yellow). 
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the frequency varies. CNN is generally applied for spectrograms to identify complex fea-
tures and noisy environments are taken into account. The large possible variations in the 
image or speech recognition and 2D or 1D signals are overcome by the architecture of 
CNN, thanks to the easier process of weight configurations during training and thanks to 
local correlations, in order to extract local features [20]. 

However, in the case of short signals obtained by ultrafast sensors (less than 10 µs), 
there is no conclusive scientific literature on the use of CNNs. In the case of characterizing 
the dielectric properties of energetic materials, there is no previous work including the 
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The raw signal that we would like to analyze has two frequencies, but they are sus-
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front, the particle velocity V2 and the refractive index N2 of the shocked medium can be 
estimated from a dedicated CNN, especially for waveforms less than a pulsation period. 
Indeed, only the first two microseconds are analyzed from the typical waveform, pre-
sented in Figure 2. The shock time arrival is near 230.8 µs, when the raw signal oscillation 
starts. The signal is analyzed from 230.8 µs to 233.5 µs. Between 233.5 µs and 239 µs, the 
variations of the peak-to-peak signal amplitude are associated with the dielectric loss of 
the material. After 239 µs, the shock wave enters in the Teflon cone. The high frequency 
disappears because the shock wave pressure is too low. The period 1/f1 is associated with 
high frequency, around 10 periods between the shock arrival (230.8 µs) and 233.5 µs. The 

Figure 1. (a) Detail of an impact experimental setup to estimate the shock wavefront and particle
velocities in dielectric materials using a 94 GHz interferometer (from left to right: projectile, impactor,
target support, target and Teflon cone wave guide end), and (b) 3D view of a symmetrical impact
with the same material as impactor and target in light blue (Teflon cone in yellow).

Fully dense Neural Network (NN) models were applied in [14–17] to extract frequen-
cies of interest from some waveforms, but these models are not suitable here. As they
require a fixed number of input neurons, these models cannot process waveforms with a
variable number of samples. An alternative NN technique consists of using Convolutional
Neural Network (CNN) models (see, e.g., [18,19]). CNNs have been widely used in the
field of speech recognition, acoustic analysis for leakage, and electrocardiogram analysis
for long duration signals of more than one millisecond. The first approach is to use Fast
Fourier Transform (FFT), when the frequency is constant, and/or the wavelet method,
if the frequency varies. CNN is generally applied for spectrograms to identify complex
features and noisy environments are taken into account. The large possible variations in
the image or speech recognition and 2D or 1D signals are overcome by the architecture of
CNN, thanks to the easier process of weight configurations during training and thanks to
local correlations, in order to extract local features [20].

However, in the case of short signals obtained by ultrafast sensors (less than 10 µs),
there is no conclusive scientific literature on the use of CNNs. In the case of characterizing
the dielectric properties of energetic materials, there is no previous work including the use
of CNNs.

The raw signal that we would like to analyze has two frequencies, but they are
sustained only during less than a time period. The classical frequential analyses (Fourier
Transform, wavelet, etc.) are inaccurate in this case, because there are not enough time
periods to give a conclusive result.

We show in this paper that the accurate estimation of velocity V1 of the shock wave-
front, the particle velocity V2 and the refractive index N2 of the shocked medium can be
estimated from a dedicated CNN, especially for waveforms less than a pulsation period.
Indeed, only the first two microseconds are analyzed from the typical waveform, presented
in Figure 2. The shock time arrival is near 230.8 µs, when the raw signal oscillation starts.
The signal is analyzed from 230.8 µs to 233.5 µs. Between 233.5 µs and 239 µs, the variations
of the peak-to-peak signal amplitude are associated with the dielectric loss of the material.
After 239 µs, the shock wave enters in the Teflon cone. The high frequency disappears
because the shock wave pressure is too low. The period 1/f1 is associated with high fre-
quency, around 10 periods between the shock arrival (230.8 µs) and 233.5 µs. The period
1/f2 is associated with the low frequency, first period between the shock arrival (230.8 µs)
and 233.5 µs. The sample is glued on a metallic transfer plate, which is why, in this case,
the radiofrequency interferometer does not show the impactor reflection.
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Figure 2. Typical waveform delivered by a 94 GHz interferometer during impact experiment on a
TriAminoTrinitroBenzene (TATB) material (refractive index N1 is of 1.78). The derivation of Doppler
frequencies from the fitting process gives the following estimation: N2 = 2.37 (shocked medium
refractive index), V1 = 3850 m·s−1 (shock wavefront velocity) and V2 = 385 m·s−1 (particle velocity).

The manuscript is organized as follows. Section 2 briefly describes the previously
reported method used to derive the shock wavefront and particle velocities from the
estimation of two Doppler Frequencies, and discusses the limitations of this method.
Section 3 describes the development of a new method based on Convolutional Neural
Networks to overcome the limitations of the previously reported method. In Section 4, the
performances of the two methods are compared for the derivation of the shock wavefront
and particle velocities from the same set of measured waveforms.

2. Shock Wavefront and Particle Velocities Derived from Doppler Frequencies

The shock wavefront in a dielectric material is usually modeled by a moving interface
(see, e.g., [21]), which separates the material in two dielectric regions; the region in front
of the interface is called the pristine medium with a refractive index N1, while the region
behind the interface is called the shocked medium with a refractive index N2. The incident
electromagnetic field is then subjected to the reflection by and transmission through the
dielectric interface with a Doppler frequency shift. In addition, the electromagnetic field
encounters losses in the material. Two configurations are analyzed throughout the paper,
the single and double interface configurations.

In the so-called single interface configuration, the dielectric interface models the shock
wavefront. It moves toward a millimeter-wave interferometer, and the velocity V1 of the
interface is derived from the extraction of the Doppler frequency shift in the waveform
delivered by the interferometer. The extraction requires the prior knowledge of pristine
medium refractive index N1. The single interface configuration offers an exact solution
for the waveform [8], which is used here to investigate the eventual benefits of the Neural
Network approach for estimating the shock wavefront velocity V1.

The double interface configuration takes into account the metallic impactor or the transfer
plate. Therefore, in addition to the reflection by the (ER) and the transmission through
the shock wave interface (ET), the electromagnetic field transmitted by the interferometer
experiences the reflection by and transmission through the moving interface between the
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shocked medium and the metallic plate (see Figure 3). In this study, the metallic plate is
assumed to be perfectly conductive, and consequently, the total electromagnetic reflection
occurs at its surface, called ERc. Following [8], both the velocity V1 of the shock wavefront
and the velocity V2 of the metallic interface between the impactor (metallic plate) and the
shocked medium may be derived from the measurement of two Doppler frequencies in the
reflected electric field ER = ER1 + ER2 + ER3 + . . . .
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Figure 3. Scheme of the double interface configuration. The incident electric field Ei is normal to the
shock wavefront, that is, the moving interface between the pristine material and shocked medium,
with E1, first reflection; ER i, following transmission/reflection/transmission; ET, first transmission;
ERc i, reflections on the metallic plate. The pristine material thickness is d1. The shocked medium
thickness is d2.

As illustrated in Figure 2, typical measured waveforms actually exhibit two oscillations,
whose frequency and magnitude are used here to estimate the velocities V1 and V2 (it is
assumed here that the refractive index N1 of the studied pristine material is known). This
estimation may be performed from a fitting process which approximates the waveform by
the linear combination s(t) of two sine functions given by the following:

s(t) = A1·sin(2πf 1·t + ϕ1) + A2·sin(2πf 2·t + ϕ2) (2)

where the fitting parameters are f 1 and f 2 (i.e., the unknown Doppler frequencies), A1, A2,
ϕ1 and ϕ2. We have observed that, for waveforms of sufficiently long duration (>5 µs), the
fitting process allows for the detection of the two Doppler frequencies of interest, but as the
waveform duration decreases, the accuracy of the lowest frequency estimation degrades
gradually, and as a result, velocities V1 and V2 cannot be estimated precisely.



Sensors 2023, 23, 4835 6 of 15

3. Shock Wavefront and Particle Velocities Derived from CNN Approach

The proposed approach requires the careful selection of the triplets (V1, V2, N2) that
are used in the simplified electromagnetic model of moving dielectric interface(s) reported
in [8] for computing the waveforms and training the CNN.

An Artificial Neural Network (NN) with Multi-Layer Perceptron (MLP) [14] is an
assembly of layers, each composed of several neurons, or nodes. As a biological neuron,
each neuron linearly combines the outputs of the previous layer and applies an activation
function to obtain the output. This function is often non-linear. Once the architecture of
the NN is chosen, the learning process is launched. This stage consists of adjusting the
parameters of each node to fit on a combination of inputs and outputs of the network. Here,
the input is the N samples of the time-domain waveform delivered by the millimeter-wave
interferometer during an impact experiment on dielectric materials, and the single output
is the velocity V1 of the shock wavefront, or the particle velocity V2, or else the refractive
index N2 of the shocked medium. Figure 4 shows an example of such NN. It consists of
three layers; the first layer has five inputs and one bias, the second layer has three neurons
and one bias and the third layer is composed of one output neuron which provides the
estimation of the quantity of interest (that is, V1, V2 or N2). The bias is used to influence
the output without interfering with the weights and the inputs. In the second layer, the
output of each node is computed as follows using relation (3).

Output = f(w1 × Input1 + w2 × Input2 + w3 × Input3 + w4 × Input4 + w5 × Input5 + wb × b) (3)

where f is the scoring function, b denotes the bias, wb designates the weight of the bias,
Inputi are the inputs i and wi is the weight of Inputi.
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In our investigation, the measurement data used in the input layer of the NN are
annotated, i.e., they are known before they are processed in the NN. This case is also known
as “supervised learning”, which is generally used to sort two types of problems as follows:

• Regression problems, where the problem is to estimate a quantity variable (V1, V2 or
N2 in our study);

• Classification problems, where the problem is to predict a qualitative variable (i.e., a
state, a category, etc.).

For any architecture, it would be possible here to process the waveform as a regression
or classification problem, because it would either be possible to obtain the accurate value
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of a velocity as output after the waveform processing, or to determine a range in which
the velocity may be included. Anyway, for reasons of diagnostic accuracy, the analysis of
waveforms will be considered here as a regression problem.

In view of the state-of-the-art (see, e.g., [15,16]), a fully connected dense model—i.e., each
neuron in a layer receives an input from all the neurons of the previous layer—can accu-
rately estimate the spectral content of some waveforms. The major drawback of this model
is that the number of input neurons is fixed, and consequently, the same NN cannot process
the variable number of waveform samples. Another limitation is that NN-based spectral
analysis is not automated, so the signal processing is applicable to specific waveforms.
Therefore, a fully connected dense model is not suitable to solve our inverse problem, either
from using regression or classification methods. Another approach, based on a Convolu-
tional Neural Network (CNN), is implemented here for the two configurations described
in Section 2. The following is a well-known technique in raw signal processing [18,19]: The
convolutional layers are filters that extract patterns from the signal; then, these patterns
are processed by the dense layers to fit the output. The CNN is implemented here using
Python 3.7.6 with the module Keras 2.8.0 [22] and the backend TensorFlow 2.9.3 [23]. The
number of convolutional and dense layers is computed by fitting various architectures on
the validation waveform data. The architecture of the network is identical for the following
two configurations:

• In the single medium configuration, two networks are studied; the first network has the
shock wavefront velocity V1 as single output and the second has only the refractive
index N2 of the shocked medium as output;

• For the double medium configuration, three networks are studied; the first network has
the shock wavefront velocity V1 as output, the second one has the particle velocity V2
and the third one has the refractive index N2 of the shocked medium.

The waveform samples are normalized from a Glorot normal initialization [24]. This
approach was found to be more efficient than a single CNN with two or three outputs.
The inputs for the networks are the refractive index N1 of the pristine material, the operat-
ing frequency (94 GHz) of the millimeter-wave interferometer, the time step used for the
sampling of waveforms and the samples of waveforms delivered by the interferometer.
The first architecture was made with a 16-layer neural network, inspired by the A.Dore
Thesis [25,26]. Then, the architecture was enlarged to 18 layers in order to improve the
precision and the generalization prediction. For this publication, the train set is 246,000 sam-
ples, the validation set is 30,000 samples and the test set is also 30,000 samples. For the
comparisons between the DFA and NNA, the number of samples is 1000 for the single
medium configuration and for the double medium configuration. The final network has
four convolutional layers and seven dense layers (see Table 1). The convolutional layers
perform the filtering operation, while the dense layers create linear combinations with
bias. The maximum pooling layer selects the maximum value in a range of neurons. Batch
normalization is a well-known technique in neural networks to overcome overfitting, which
may occur when the algorithm performs well on training data but performs badly on any
other data. This regularization technique allows the algorithm to keep its generalization
ability [27]. The global average pooling layer makes the average in the selected range and
flattens the filters from the previous convolutional layer to decrease the data size for the
next layer, and consequently, to reduce the calculation time without interfering with the
training process. Figure 5 sketches the action of every layer.



Sensors 2023, 23, 4835 8 of 15

Table 1. Final CNN for each parameter V1, V2 and N2 as output.

Index of Layer Type of Layer Keras Name Activation Function Properties

1 Convolution Conv1D Rectified Linear Unit (ReLU) 72 filters, length 10

2 Normalization BatchNormalization

3 Convolution Conv1D ReLU 144 filters, length 10

4 Normalization BatchNormalization

5 Pooling MaxPooling1D

6 Convolution Conv1D ReLU 288 filters, length 10

7 Normalization BatchNormalization

8 Pooling MaxPooling1D

9 Convolution Conv1D ReLU 576 filters, length 10

10 Normalization BatchNormalization

11 Pooling GlobalAveragePooling1D

12 Dense Dense ReLU 50 neurons

13 Dense Dense tanh 60 neurons

14 Dense Dense tanh 40 neurons

15 Dense Dense tanh 30 neurons

16 Dense Dense ReLU 20 neurons

17 Dense Dense tanh 10 neurons

18 Dense Dense hard sigmoid 1 neuron
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The learning process is performed from the simulated waveforms provided by the
electromagnetic model developed in [8]. The model is applied to create waveforms with
multiple initial parameters. It allows using larger networks and prevents overfitting, which
may occur when a limited number of experimental data is available. Moreover, the main ad-
vantage of using simulated inputs for the CNN training is that we can generate a large data
set which makes possible the derivation of the accurate estimation of velocities or refractive
index. The main idea is that the waveform is composed of two main contributions. The
first is the electric field directly reflected by the shock wavefront. The second contribution
combines multiple reflections of the electric field inside the dielectric sample. For each
of contributions, the reflection and transmission coefficients are computed. The adequate
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number of reflections in the shocked medium (see Figure 3) is derived from the numerical
convergence of the total reflected electric field. Table 2 reports the mean difference between
the computed waveforms. The chosen number of reflections in the shocked medium is set
to four, as the difference with the waveform with five internal reflections does not exceed
0.004%. The learning process is performed with the Adam optimizer with the coefficients
given in [28] and with a mean squared error loss. The maximum number of full training
cycles or epochs is set to 200. However, the learning rate decreases if the loss is constant over
five epochs. In practice, the maximum number was never reached, as the loss converged
rapidly. To ensure that the loss is not on a plateau, ten more epochs are computed after
reaching numerical convergence. To avoid overfitting, new validation data are computed
at each epoch.

Table 2. Mean difference of the total reflection between signals for different number of internal
reflections in the shocked dielectric sample.

Number of Considered Reflections in the Shocked Medium Total Reflection Mean Difference (%)

1 and 2 5.7

2 and 3 0.5

3 and 4 0.05

4 and 5 0.004

5 and 6 0.0004

The refractive index of both the pristine material and the shocked material, denoted,
respectively, by N1 and N2, and the velocity V1 of the shock wavefront and the particle
velocities V2 are randomly generated for each waveform. The time duration of waveforms
is also randomly modified to account for various experimental conditions. The quantities of
interest are normalized before the validation step during the learning phase. The boundaries
for each parameter are listed in Table 3. These bounds are chosen to be representative of the
experimental values. Following [29], the refractive index of the dielectric material increases
when submitted to a shock wave. Therefore, during the learning stage, N2 is computed as
the summation of N1 with a random number ranging from 0 to 1. All the signals for the train
set, the validation set and the test set are generated with the Table 3 parameter ranges (N1,
N2, V1, V2, measurement duration). Thus, V1, V2 and N2 are the initial parameters chosen
to determine the frequencies and the amplitude values and are therefore directly known
and correlated to these values. So, it is very helpful for the uncertainty analysis, because the
pristine values (V1, V2, and N2) are compared directly to the retrieved ones using the DFA
or NNA method. Therefore, the frequencies and the amplitudes are intermediate values.
Especially for the DFA, they are the output of the double sinus method, and the associated
V1, V2 and N2 are calculated back with the physical model using Equations (35)–(37) in
reference [8].

Table 3. Parameters boundaries for the learning step of the CNN.

Parameter Minimum Value Maximum Value

Material at rest refractive index N1 1 2

Shocked material refractive index N2 1 3

Particle velocity V2 (m s−1) 300 500

Shock wavefront velocity V1 (m s−1) 3000 5000

Measurement duration (µs) 2 3.5
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4. Results and Discussion
4.1. Single Medium Configuration

To compare the performances of the two methods reported in Sections 2 and 3, that
is, the technique based on the extraction Doppler frequencies [8] (DFA, which stands for
Doppler Frequency Approach) and the proposed Neural Network Approach (NNA), one
thousand random waveforms with a length of 10,000 points based on the Table 3 ranges are
computed and processed. With the chosen CNN, the output values are obtained from the
predict method from the Keras 2.8.0 module [22]. As the fitting process is direct, the value is
simply calculated by the Fast Fourier Transform and directly compared with the outputs of
the CNN. The procedure is sketched in Figure 6. The number of samples versus the relative
prediction error are presented in Figure 7 on V1 and N2 for the NNA and DFA. The error
displayed on the graph abscissa is the difference between the values used to generate the
signal and the values predicted by the NNA or DFA after the analysis of this same signal.
No difference is obtained between the DFA and NNA for the single medium configuration.
For the shock wavefront velocity V1 and the refractive index N2 of the shocked medium,
the two methods provide similar results and accuracy. Following these encouraging results,
the neural network is applied in Section 4.2 to the double medium configuration, which
consists of a much more realistic model for the practical situation.
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4.2. Double Medium Configuration

For the double medium configuration, one thousand random waveforms with a length
of 10,000 points based on the Table 3 ranges are computed from the electromagnetic model
reported in [8] and are used for training the CNN. As in Section 4.1, the output values
are obtained by using the predict method from the Keras 2.8.0 module. For deriving the
velocity V1 or V2 from the DFA, the resolution is not straightforward; as the number of
comparison points increases, the fitting process using two sine functions (see Section 2)
must be performed automatically by using an initial guess vector for the parameters. The
fitted waveform is computed and correlated with the input waveform. Let the correlation
coefficient ρX,Y of two investigated waveforms X and Y be defined as follows:

ρX,Y =
cov(X, Y)

σXσY
(4)

where cov denotes the co-variance operator, while σX and σY designate the standard de-
viation of X and Y. If ρX,Y is smaller than a prescribed threshold, the input waveform is



Sensors 2023, 23, 4835 11 of 15

discarded because the fitting process is considered to be unsuccessful. This method is
repeated until 1000 waveform samples with a length of 10,000 points have been obtained.
Two examples of computed waveforms are plotted in Figure 8, as well as the result of the
DFA and corresponding correlation coefficients. The procedure is sketched in Figure 9. For
comparison purposes, we determine the difference between V1, V2 and N2 estimated from
the DFA and NNA, with the exact values selected for the waveform computation. The mean
value M of the difference and the standard deviation for each method are reported in Table 4.
A systematic error (i.e., the mean is not zero) is present for both methods, but it is smaller
for the NNA than for the DFA. The NNA also yields a smaller standard deviation than
the DFA. As expected, the higher the correlation coefficient ρX,Y (or equivalently, the more
accurate the derivation of Doppler frequencies and magnitudes), the more accurate the
estimation of V1, V2 and N2 provided by the DFA. However, as the correlation coefficient
increases, the systematic error on the estimation of V1, V2 and N2 provided by the NNA is
constant, even for short-duration waveforms. The number of samples versus the relative
prediction error are presented in Figure 10 for the DFA and NNA. Theses distributions
are displayed for three different correlation coefficients, 0.9, 0.99 and 0.999. The relative
prediction error is the difference between the predicted values and the true values of V1,
V2 and N2. Table 4 is the analyzed table of Figure 10. The mean value and the standard
deviation for CNN are, respectively, less than 1.1% and 11.4% for the parameter V1. The
mean value and the standard deviation for CNN are, respectively, less than 1.6% and 9.4%
for the parameter V2. The mean value and the standard deviation for CNN are, respectively,
less than 0.1% and 0.1% for the parameter N2. So, compared to the DFA in Table 4 and
Figure 10, the mean values of the NNA test set are near zero, showing a more precise
method as a centered distribution, and the standard deviations of the NNA test set are
reduced, showing less dispersed values. For the very large correlation coefficient, the meth-
ods of the NNA and DFA are quite similar. This seems logical, because the DFA is more
precise in this case. However, we continue to observe large deviations for the DFA method.
As typical experimental values for the correlation coefficient are between 0.9 and 0.99 [10],
the NNA should then be preferred when processing short-duration waveforms, especially
for estimating the particle velocity V2 and refractive index N2 of the shocked medium.
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Table 4. Mean and standard deviation of the difference between V1, V2 and N2 estimated from DFA
and NNA, with the exact values selected for the waveform computation.

Method Name V1 V2 N2 ρX,Y

M (%) σ (%) M (%) σ (%) M (%) σ (%)

Neural Network Approach −0.1 9.8 0.6 9.4 −0.1 −0.1
0.9Doppler Frequency Approach −5.9 38.1 37.9 115.2 1.4 1.4

Neural Network Approach −1.1 10.0 0.1 9.2 −0.1 −0.1
0.99Doppler Frequency Approach −9.6 29.8 32.2 100.7 7.0 7.0

Neural Network Approach −1.0 11.4 −1.6 9.3 0.0 0.0
0.999Doppler Frequency Approach −7.6 33.3 −6.5 35.9 2.6 2.6
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5. Conclusions

In this paper, a convolutional neural network is proposed for solving an electromag-
netic inverse problem involving solid dielectric materials subjected to mechanical impacts.
From the computed waveforms delivered by a millimeter-wave interferometer, the convo-
lutional network provides more accurate estimations of the shock wavefront velocity in
the shocked materials, the particle velocity, as well as the refractive index of the shocked
medium, for short-duration waveforms of a few microseconds less than a time period
long, compared to the Doppler Frequency Analysis, based on the fitting parameters of the
sum of two sine functions. These results significantly extend the application of millimeter-
wave interferometry to the investigation of dielectric materials subjected to steady shocks.
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Work is ongoing to improve the network architecture in order to reduce the standard error
prediction for each parameter.
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