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Abstract: An object pick-and-place system with a camera, a six-degree-of-freedom (DOF) robot
manipulator, and a two-finger gripper is implemented based on the robot operating system (ROS)
in this paper. A collision-free path planning method is one of the most fundamental problems that
has to be solved before the robot manipulator can autonomously pick-and-place objects in complex
environments. In the implementation of the real-time pick-and-place system, the success rate and
computing time of path planning by a six-DOF robot manipulator are two essential key factors.
Therefore, an improved rapidly-exploring random tree (RRT) algorithm, named changing strategy
RRT (CS-RRT), is proposed. Based on the method of gradually changing the sampling area based
on RRT (CSA-RRT), two mechanisms are used in the proposed CS-RRT to improve the success
rate and computing time. The proposed CS-RRT algorithm adopts a sampling-radius limitation
mechanism, which enables the random tree to approach the goal area more efficiently each time the
environment is explored. It can avoid spending a lot of time looking for valid points when it is close
to the goal point, thus reducing the computing time of the improved RRT algorithm. In addition,
the CS-RRT algorithm adopts a node counting mechanism, which enables the algorithm to switch
to an appropriate sampling method in complex environments. It can avoid the search path being
trapped in some constrained areas due to excessive exploration in the direction of the goal point,
thus improving the adaptability of the proposed algorithm to various environments and increasing
the success rate. Finally, an environment with four object pick-and-place tasks is established, and
four simulation results are given to illustrate that the proposed CS-RRT-based collision-free path
planning method has the best performance compared with the other two RRT algorithms. A practical
experiment is also provided to verify that the robot manipulator can indeed complete the specified
four object pick-and-place tasks successfully and effectively.

Keywords: rapidly-exploring random tree (RRT); path planning; robot manipulator; object pick-and-place;
collision-free; robot operating system (ROS)

1. Introduction

Due to the presence of various objects in the working environment, path planning for
robots is one of the most important topics in robotics research and is widely discussed [1–4].
If the robot does not have a good path planning method to choose a collision-free path,
various collision situations may occur. Once a collision occurs, unpredictable or large losses
may be caused. Therefore, many researchers devote themselves to the field of collision-
free path planning. Based on differential search methods, path planning algorithms are
divided into three categories: search-based, heuristic-based, and sampling-based. The
A* algorithm proposed by Hart et al. is a search-based path planning algorithm [5]. It
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first models the environment and then determines objective node information to avoid
ineffective exploration of the environment and find a better solution efficiently. However,
when exploring high-dimensional spaces or wide environments, the computing time of
the A* algorithm increases significantly. The ant colony system proposed by Dorigo et al.
is a heuristic-based path planning algorithm [6]. It finds a better solution through a
function, iteration by iteration, in each exploration of the environment. However, the
convergence speed of the heuristic-based algorithm cannot be guaranteed. Due to the
long computing times of search-based and heuristic-based path planning algorithms, they
are not suitable for real-time system applications. The probabilistic roadmap algorithm
proposed by Kavraki et al. is a sampling-based path planning algorithm [7]. The advantage
of the sampling-based algorithm is that it reduces the burden of modeling the environment
by using sampling points to scatter the entire space into a partial area of the environment.
This makes it easy to represent all the features of the environment. It can handle the path
planning of robots in high-dimensional spaces. However, the search efficiency and success
rate of the probabilistic roadmap will decrease when there are dense obstacles in space. The
rapidly-exploring random tree (RRT) proposed by LaValle is also a sampling-based path
planning algorithm [8]. It combines the advantages of sampling and searching abilities
in the environment. Random trees will randomly expand new nodes in the environment.
This algorithm not only inherits the advantages of the fast search speed of the probabilistic
roadmap algorithm but can also perform a wide range of exploration in the environment,
which is more powerful to deal with the online path planning of high-dimensional spaces.

Although the basic RRT algorithm can find a better path in the search space relatively
quickly, it still has some problems that need to be improved, such as spending a lot of time
exploring some invalid areas. Therefore, there have been many studies aimed at improving
the basic RRT algorithm. For example, Wang et al. proposed an RRT algorithm based
on a node control mechanism [9]. Based on this mechanism, the node expansion of the
random tree is constrained by defined conditions, which reduces the generation of invalid
nodes and thus finds a better solution more efficiently than most RRT algorithms, especially
in narrow areas of the search space. Kang et al. proposed an RRT algorithm based on a
goal-oriented mechanism [10]. It improves the search efficiency by increasing the sampling
probability of the search point that is near the target. In addition, the sampling strategy
is appropriately switched through the node counting mechanism to adapt to the complex
environment. In addition, sometimes the RRT algorithm will overfocus on the goal area,
which makes it difficult to find a path when encountering a complex environment. On
the other hand, if the algorithm only focuses on improving its adaptability, it will not be
fast enough to find a path to the goal in simple environments. Therefore, there are still
many ways to improve the path planning for robot applications. In order to improve
the computing time and environmental adaptability of the existing RRT algorithm, an
improved RRT algorithm is proposed in this paper.

Path planning is important for any robot. In addition, we can find a wide range of
industrial applications for robot pick-and-place operations on robot manipulators [11–13].
This research includes the discussion of path planning, object picking and placing, collision
avoidance, and control of the robot manipulator. Many improved RRT algorithms have
been used in robot manipulators to achieve good results. However, most of them only
established a simulated environment to present simulation results. In order to illustrate
the proposed RRT algorithm, let a real robot manipulator perform object pick-and-place
tasks in real time. The robot operating system (ROS) is used to design and integrate the
hardware and software of an object pick-and-place system. Since ROS can transmit or
receive different types of data at the same time through “messages” and “services”, it is
one of the most popular platforms for research in robotics. Moreover, MoveIt, which is
open-source motion planning software, has been widely used in industry and research. It
is easy to integrate with ROS to set up new robots, and it is already available for more than
150 robots. Therefore, in the design of motion planning, MoveIt is used to complete the
required motion of the robot manipulator.
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There are six sections in this paper. In Section 1, the background is introduced. In
Section 2, an implemented object pick-and-place system based on ROS is described. In
Section 3, three sampling strategies used in the RRT algorithms are described. In Section 4,
a basic RRT algorithm and an improved RRT algorithm based on an existing RRT algorithm
are described. In Section 5, an experimental environment with four pick-and-place tasks
is setup, and some simulation and actual experimental results are presented to illustrate
that the implemented object pick-and-place system using the proposed RRT algorithm can
allow a robot manipulator to pick and place objects in real time. Finally, conclusions and
future work are described in Section 6.

2. ROS-Based Object Pick-and-Place System

The system architecture diagram of the implemented ROS-based object pick-and-place
system is shown in Figure 1. The input of this system is the RGB image captured by
Microsoft Azure Kinect DK (a RGB-D camera), and the outputs are the control commands
of Universal Robots UR5 (six-degree-of-freedom (DOF) robot manipulator) and Robotiq
2F-85 (a two-finger parallel gripper). Azure Kinect DK has the features of a wide field
of view and easy installation; it is directly installed on a bracket to capture images on
the table. UR5 has some features, such as a light weight, a user-friendly interface, and
collision detection capability. The related unified robot description format (URDF) files for
the specific MoveIt applications are also provided. These features make experiments easy
to perform and avoid collisions between the robot manipulator and surrounding objects
during the experiment. Robotiq 2F-85 is easily integrated into robot manipulators. It has
the feature that it can avoid damage to the gripper itself and prevent the robot manipulator
from injuring the object during the grasping task.
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The object detection module is implemented by the you only look once (YOLO) algo-
rithm [14] to obtain the position information of the object on the table from the captured
RGB image. The task strategy module is used to decide the destination of the robot ma-
nipulator when a pick-and-place task is given. The path planning module is implemented
by the improved RRT algorithm, which can quickly select a collision-free path so that the
robot manipulator and the two-finger gripper can successfully complete the given tasks
in real-time.

In the system integration of the proposed pick-and-place system, ROS is used to handle
the communication between each module. The robot motion information is calculated
by MoveIt through ROS. The version of ROS Melodic with Ubuntu 18.04 is used. MoveIt
is an open-source motion planning software that is a state-of-the-art implementation of
robot motion and path planning. Thus, it is used for the motion planning of the robot
manipulator. MoveIt provides a variety of functional packages for users to choose from and
integrates various functional plugins such as kinematics, collision detection, and motion
planning so that it can provide the desired motion planning for various robots. Moreover,
MoveIt is a package of ROS, and it is highly integrated with ROS so that the results of
motion planning by MoveIt can be easily transmitted to the robot manipulator through
ROS. Users can use the 3D visualization tool RViz to visually present the motion planning
results in the ROS. For MoveIt, the unified robot description format (URDF) and semantic
robot description format (SRDF) are used to describe robots. The proposed RRT algorithm
is designed for the robot manipulator UR5 in this paper, but it can be used for the other six
DOF robot manipulators. MoveIt imports the URDF file to set the parameters of the robot
and the simulated environment, then sends a request to the default library, the open motion
planning library (OMPL), to design a suitable motion trajectory. After calculating a path,
MoveIt will divide this path into the same distances and add information such as speed,
acceleration, and the consumed time of the robot at each piece of the path. In addition,
OMPL is the main library of sampling-based planning algorithms, which includes many
modules of common RRT algorithms. Because of its modular program design, it is easy
for users to add custom motion planning algorithms. Therefore, MoveIt is adopted as the
motion planning software for the robot manipulator in this paper.

As shown in Figure 1, the image information is sent by the object detection module,
and the motion information is calculated by MoveIt through ROS. Since ROS can transmit
or receive different data through messages and services, the proposed system integrated
through ROS can be applied to various input and output devices, so it has good appli-
cability. In the communication mode between the object detection module, task strategy
module, MoveIt, and UR5, there are mainly three two-way communication services in the
implemented pick-and-place system, which are, respectively, named Service1, Service2,
and Service3.

In order to ensure that the task strategy module can indeed receive the object posi-
tion information from the object detection module, Service1 is used to make the control
command of the task strategy module for the robot manipulator to move only after it has
received the object position information. The nodes of the server and client of Service1 are
the task strategy module and the object detection module, respectively. The request sent by
the task strategy module to the server has a status value of 0 (false) or 1 (true) while the
control command is received. The response is given by the object detection module as the
client after it receives the request for the object coordinates (x, y) on the table. The nodes of
the server and client of Service2 are the task strategy module and MoveIt, respectively. The
request sent by the task strategy module as the server is the target position (x, y, z) of the
end effector and the quaternion of the robot manipulator pose (w, x, y, z). The response
given by MoveIt as the client after receiving the request is the result of forward and inverse
kinematics and the motion trajectory obtained by RRT. The nodes of the server and client of
Service3 are MoveIt and UR5, respectively. The request sent by MoveIt as the server is the
joint motion trajectory of the robot manipulator. The response given by UR5 as the client
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after receiving the request is a status value of 0 (false) or 1 (true), depending on whether
UR5 is busy or not.

3. Sampling Strategy

Random sampling is the sampling strategy used by the basic RRT algorithm. The
algorithm randomly samples the entire space to determine sampling points. The simulation
result of 1000 random samplings in a 200× 200 two-dimensional space is shown in Figure 2,
where the black point is the goal point. It can be seen that the sampling points randomly fall
throughout the entire space. For the RRT algorithms, random sampling can fully explore
the environment, find a path from the start point to the goal point, and avoid obstacles in
the environment. However, due to its randomness, it spends a lot of time exploring invalid
areas in most environments. Therefore, many improved sampling strategies were proposed
to reduce computing time.
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Goal-biased sampling is an improved sampling strategy over random sampling. By
adding a random variable rand and set: if rand is less than the specified probability p, then
the point will be selected as a sampling point. Otherwise, use the original random sampling
method to randomly sample the space. This sampling strategy causes the random tree
of the RRT algorithm to take the goal point to sample with a certain probability. In this
case, random trees can approach the goal area faster and reduce computing time while
maintaining random sampling to fully explore the environment. The simulation result
of 1000 goal-biased sampling points in a 200 × 200 two-dimensional space is shown in
Figure 3. It can be seen that more sampling points fall within the goal area.
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Bounded sampling is a sampling strategy to limit the sampling area to a radius from
the goal point and let the random tree explore toward the goal area. The simulation result
of 1000 bounded sampling in a 200 × 200 two-dimensional space is shown in Figure 4. It
can be seen that the sampling points are limited within a radial space centered on the goal
point. Compared with the RRT algorithm using a goal-biased sampling strategy, the RRT
algorithm using bounded sampling can make the random tree explore the goal area stably.
By gradually reducing the sampling radius, this algorithm can find a path to the goal point.
However, since such bounded sampling may be overly focused on exploring towards the
goal area, random trees can easily get trapped in some complex environments.
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4. Changing Strategy RRT Algorithm

In the design of the sampling-based path planning method, two items, such as com-
puting time and path length, are usually considered. For offline path planning, the path
length is usually the main consideration. On the other hand, for online path planning,
computing time is the priority consideration. Real-time object picking and placing tasks
require online path planning, so we mainly focus on how to reduce the computing time of
the improved RRT algorithm.

The basic RRT algorithm, as a sampling-based path planning method, is mainly de-
signed to perform random sampling in the configuration space [15]. A schematic illustration
of the basic RRT algorithm for finding a path from a starting point (S) to a goal point (G)
in a two-dimensional space is shown in Figure 5. It can be seen that the random tree fully
explores the environment. The advantage of this method is that it does not require model-
ing the entire environment. Such path planning algorithms can explore two-dimensional
spaces faster than other path planning algorithms. Therefore, it is suitable for solving the
path planning problem in complex or constrained environments.
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The proposed algorithm is named changing strategy RRT (CS-RRT), which is improved
on the basis of the method of gradually changing the sampling area based on RRT (CSA-
RRT) [9]. The pseudocode of the CSA-RRT algorithm is shown in Algorithm 1. It needs
to calculate the distance Dmax between the two nodes q f ar and qgoal , where q f ar is the
node farthest from the goal point qgoal . Since the tree only has the initial node qstart at
the beginning, the algorithm will initially use qstart as q f ar to calculate Dmax, which is the
initial sampling radius R of bounded sampling. When the dimension of the space is s, the
maximum distance Dmax is calculated by:

Dmax =
√
(qgoal(1) − q f ar(1))

2 + . . . + (qgoal(s) − q f ar(s))
2 (1)

The CSA-RRT algorithm uses the random sampling method to randomly select a sam-
pling point qrand in the space. The distance Drand between qrand and qgoal is calculated by:

Drand =
√
(q goal(1) − qrand(1))

2 + . . . + (q goal(s) − qrand(s))
2 (2)

Compare the distance between Drand and R to make sure that the sampling point
qrand is inside R. If Drand is less than R, then qrand is considered a valid sampling point.
Conversely, if Drand is greater than R, it means that qrand is outside R, and the algorithm
will resample until qrand is inside R. If a new node qnew is successfully added to the random
tree in an iteration, it means that there is no obstacle between qnew and the nearest node
qnear. When the new point qnew is closer to the goal point qgoal , it becomes the nearest node.
At this time, the value of R is changed to the distance from the new nearest node qnew to the
goal point qgoal . Conversely, it means that an obstacle is encountered during the expansion
process. At this time, a step size ε of k times is added to R, which means that the sampling
area is expanded so that the random tree can avoid nearby obstacles. The value of k is a
positive integer for adjusting the sampling radius, which needs to be manually adjusted
according to the complexity of the environment. This allows the algorithm to explore the
direction of qgoal as much as possible while having the ability to randomly explore the
environment. The comparison results of the CSA-RRT algorithm and the 10% goal-biased
RRT algorithm are shown in Figure 6. It can be seen that the CSA-RRT algorithm can reduce
the generation of invalid nodes more than the goal-biased RRT algorithm.
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RRT algorithm. (b) CSA-RRT algorithm.

The CSA-RRT algorithm has the advantage that the invalid nodes of the CSA-RRT
algorithm are much lower than those of the goal-biased RRT algorithm. However, the
computing time of the CSA-RRT algorithm is not much faster than that of the goal-biased
RRT algorithm. After observation, we found that although the sampling radius R will
gradually shrink as qnew gets closer to the goal area, thereby reducing the generation of
invalid points. However, on the other hand, because of the reduction in R, qrand selected by
random sampling becomes more and more difficult to fall within R. As shown in Figure 7,
when the new point qnew is close to the goal point qgoal , R will become smaller and smaller.
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This results in a very small chance that the sampling point qrand will fall within R. As a
result, the CSA-RRT algorithm spends a lot of time doing computation at certain stages.
Therefore, the CSA-RRT algorithm has the advantage of generating fewer invalid nodes,
but it still cannot significantly reduce the computing time of path planning. This becomes
more apparent when sampling in larger environments.

Algorithm 1: CSA-RRT algorithm

1. T← InitTree(qstart);
2. R← Dmax;
3. for i = 1 to n do
4. qrand ← RandomSample();
5. if Distance(qrand,qgoal) > R then
6. continue;
7. end if
8. qnear ← NearestNeighbor(qrand, T);
9. qnew ← Extend(qrand,qnear, ε);
10. if CollisionFree(qnear,qnew) then
11. AddNewNode(T,qnew);
12. R← Distance(qnew,qgoal);
13. else
14. R← R + k × ε;
15. continue;
16. end if
17. if Distance(qnew,qgoal) < ρmin then
18. return T;
19. end if
20. end for
21. return Failed;
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R when the new point is close to the goal point.

A sampling-radius limitation mechanism is adopted to solve this problem that qrand
is difficult to fall into R when qnew is close to qgoal . An additional statement is used to
determine whether the random tree is approaching qgoal . Whenever qnew is added to the
random tree, R and Dmax are compared before the next sampling. If R is greater than one-
fifth of Dmax, it means that the random tree is still far away from qgoal . Thus, it continues to
use the random sampling of the CSA-RRT algorithm to select qrand. On the other hand, if
R is smaller than one-fifth of Dmax, it means that the random tree is close to qgoal . At this
time, a sampling-radius limitation mechanism based on bounded sampling is adopted to
limit the sampling area within the radius R from the goal point. In this way, the problem
that qrand cannot successfully fall within R when it is close to the goal point can be solved.
This makes the proposed CS-RRT algorithm not only quickly find valid nodes but also
reduce the computing time of path planning. In the case of two-dimensional simulations,
the CS-RRT algorithm improves by about 0.5 times compared with the CSA-RRT algorithm.

In addition, the CSA-RRT algorithm has the advantage that it can quickly find an
initial path to the goal area. However, as shown in Figure 8, if the CSA-RRT algorithm
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is performed in a complex environment and the value of k is not adjusted properly, the
tree may be trapped due to focusing too much on the goal point. As a result, the random
tree keeps expanding in the same area but cannot find an escape path until the number
of node expansions of the algorithm reaches the maximum limit of expansions and fails.
In order to solve this problem, a node counting mechanism is adopted to appropriately
switch the sampling strategy to an appropriate sampling method in complex environments.
It can avoid the search path being trapped in some constrained areas and improve the
adaptability of the proposed CS-RRT algorithm to various environments.
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The CSA-RRT algorithm with the node counting mechanism will calculate the distance
Dmin from the node qmin that is closest to the goal point qgoal and set the node count variable
nodecnt to zero during initialization. As shown in Algorithm 2, in the sampling stage, the
algorithm will choose which sampling method to use according to the value of nodecnt. If
nodecnt is less than the set threshold, the sampling method of CSA-RRT is used to make
the random tree quickly extend to the goal point. Otherwise, the random sampling method,
which fully explores the environment, is used.

Algorithm 2: SelectSample( nodecnt,qgoal ,R );

1. if nodecnt < 20 then
2. qrand ← RandomSample();
3. if Distance(qrand,qgoal) > R then
4. continue;
5. end if
6. else
7. qrand ← RandomSample();
8. end if
9. return qrand;

After completing the collision detection stage in each iteration, the algorithm calculates
the Euclidean distance Dnew from qnew to qgoal , no matter if qnew is successfully added to
the random tree. After this, compare Dnew with Dmin in the CheckEnvironment() function.
The pseudocode of the CheckEnvironment() function is shown in Algorithm 3. If Dnew is
smaller than Dmin, then nodecnt is set to zero. At this time, qnew is closer to qgoal , which
means that the tree is approaching the goal area, so there is no need to change the sampling
strategy. After that, change qnew into qmin as the basis for the next check of the expansion
status. On the other hand, if Dnew is greater than Dmin, it means that qnew is not closer
to qgoal . At this time, nodecnt+1. If Dnew continues to be greater than Dmin for the next
few times, it is considered that the random tree is trapped in the current area. Then the
algorithm will switch the sampling method to random sampling in the SelectSample()
function to try to escape the current area until Dnew is smaller than Dmin. In addition, an
upper limit is set to avoid the algorithm wasting too much time using random sampling to
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explore the space. Therefore, when nodecnt reaches the set upper limit, it will reset to zero
immediately. A schematic illustration of node count adjustment is shown in Figure 9.
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Algorithm 3: CheckEnvironment( Dnew, Dmin, nodecnt )

1. if Dnew < Dmin then
2. Dmin ← Dnew;
3. nodecnt← 0;
4. else
5. nodecnt← nodecnt + 1;
6. end if
7. if nodecnt > 100 then
8. nodecnt← 0
9. end if

In short, the proposed CS-RRT algorithm is based on the CSA-RRT algorithm and uses
the sampling-radius limitation mechanism and the node counting mechanism to solve the
problems existing in the CSA-RRT algorithm. The sampling-radius limitation mechanism
allows the random tree to finish the sampling stage more quickly when it is close to the
goal area, so that the proposed CS-RRT algorithm can further reduce the computing time.
The node counting mechanism makes the algorithm avoid overfocusing on the goal area, so
the proposed CS-RRT algorithm also has good adaptability to the environment. The results
of the proposed CS-RRT algorithm performed in two different environments are shown in
Figure 10. When encountering simple environments, as shown in Figure 10a, the proposed
CS-RRT algorithm can quickly find a path. When encountering complex environments,
as shown in Figure 10b, the proposed CS-RRT algorithm can also prevent trapping by
switching sampling strategies. Comparing the results shown in Figure 8, we can see that
the CSA-RRT algorithm is trapped in this environment. With these improvements, the
proposed CS-RRT algorithm indeed not only reduces computing time but also improves
environmental adaptability.
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5. Simulation Results and Experimental Results
5.1. Simulation Results of Robot Manipulator

The simulation setup of the robot manipulator and experimental environment is shown
in Figure 11. In order to demonstrate the performance of the motion planning of the robot
manipulator based on the proposed CS-RRT algorithm, a series of tasks (Task 1~Task 4)
is designed, and then the success rates and average computing time after 50 experiments
of each algorithm, the proposed CS-RRT, CSA-RRT, and the 10% goal-bias RRT algorithm,
provided by the open motion planning library (OMPL), are compared. The tasks are
described as follows:
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Task 1: The implemented pick-and-place system uses the YOLOv4 algorithm to obtain
the position of Object A on the table and then commands the robot manipulator
to grasp the Object A. This task verifies the motion planning performance of
algorithms in an open space without obstacles.

Task 2: The implemented pick-and-place system commands the robot manipulator to
place the grasped object at a certain location on the upper layer of the cabinet. The
sides of the cabinet can be considered obstacles for the movement of the robot
manipulator. This task verifies the motion planning performance of algorithms
from open space to restricted space.

Task 3: The implemented pick-and-place system commands the robot manipulator to
move from the upper layer of the cabinet to the lower layer and grasp the Object
B that was placed on the lower layer of the cabinet. This task verifies the motion
planning performance of algorithms in two restricted spaces.

Task 4: The implemented pick-and-place system commands the robot manipulator to
move from the lower layer of the cabinet to the grasping position in Task 1 and to
place the grasped object. This task verifies the motion planning performance of
algorithms from a restricted space to an open space.

Figure 12 illustrates the motion flow from Task 1 to Task 4. Note that the gray and
orange robot manipulators indicate the initial and finish positions of each task, respectively.
Four simulation results for each task are illustrated as follows:
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In the experimental scenarios of Task 1, as shown in Figure 12a, the robot manipulator
is commanded to move from its initial position to grasp the object on the table. Figure 13a,b
are bar graphs of the success rate and the average computing time of the three algorithms
executed 50 times in Task 1, respectively. From the results in Figure 13, it can be seen that
the success rate and the average computing time of the proposed CS-RRT and the 10%
goal-biased RRT are the same. We infer that the proposed CS-RRT needs to compute the
sampling radius at each iteration. Therefore, searching in an open space without obstacles,
does not have the advantage of taking less computing time. In addition, CSA-RRT makes
it difficult for the sampling points to fall within the sampling radius when they are close
to the goal area. Therefore, the computing time of the CSA-RRT is higher than that of the
proposed CS-RRT.
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Remark: The experiment sets the maximum path planning time to 1 second because it is
basically not regarded as real-time motion planning after more than 1 second.
In addition, the robot manipulator may rotate a full circle and cause damage to
surrounding objects due to the randomness of the RRT algorithms. Thus, we
restrict each axis of the robot manipulator to rotating between plus and minus
180 degrees.

In the experimental scenarios of Task 2, as shown in Figure 12b, the robot manipulator
is commanded to move from the finished position of Task 1 to a specific position on the
upper layer of the cabinet to place the grasped object. Although moving in a straight
line is the fastest way to reach the destination, it will collide with the sides of the cabinet.
Therefore, for the robot manipulator to reach its destination safely, it needs a collision-free
path to avoid collisions with the sides of the cabinet. Task 2 tests the motion planning
performance of algorithms from an open space to a restricted space. From the results shown
in Figure 14, it can be seen that the proposed CS-RRT has the highest success rate and the
shortest average computing time. Therefore, the proposed CS-RRT has better performance
than the other two algorithms when planning a motion in a restricted environment.

In the experimental scenarios of Task 3, as shown in Figure 12c, the robot manipulator
is commanded to move from the upper layer of the cabinet to a specific position on the
lower layer of the cabinet. Since the robot manipulator has entered the upper cabinet, the
environment of the two restricted areas in Task 3 is more complex than that in Task 1 and
Task 2. In this experiment, we found that the default step size ε using OMPL is too small.
As a result, the random tree of the three algorithms grows slowly, and the motion planning
cannot be completed within the specified time. Therefore, the step size ε is increased by
three times in Task 3. In other words, the expansion distance of each iteration of the random
tree is increased. From the results shown in Figure 15, we can see that the proposed CS-RRT
has the highest success rate and the shortest average computing time too. Therefore, the
proposed CS-RRT has better performance than the 10% goal-biased RRT algorithm and
CSA-RRT when planning in a complex environment.
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In the experimental scenarios of Task 4, as shown in Figure 12d, the robot manipulator
is commanded to move from the lower layer of the cabinet to the top of the table. This task
verifies the motion planning performance of algorithms from a restricted space to an open
space. From the results shown in Figure 16, we can see that the success rate and the average
computing time of the proposed CS-RRT and 10% goal-biased RRT are the same. However,
the average computing time of CSA-RRT under Task 4 is still longer than that of CS-RRT
and 10% goal-biased RRT. Judging from the fact that the success rate of all three algorithms
is 100 percent, we infer that once the robot manipulator comes out of the cabinet, there are
multiple ways to move to the destination. Since the restricted area is near the initial point in
Task 4, once the robot manipulator leaves the restricted area, all three algorithms can easily
find a collision-free path to the destination in an open space with only a few explorations.

Based on these results shown in Figures 13–16, the simulation results of three algorithms
in the four scenarios of Tasks 1~4 are summarized in Table 1. Compared with goal-biased
RRT and CSA-RRT, the implemented pick-and-place system based on the proposed CS-RRT
algorithm has a higher success rate and requires less computing time. We can see that the
results of CS-RRT are similar to those of the 10% goal-biased RRT when planning is performed
in non-complex environments, such as Task 1 and Task 4. However, the advantages of the
proposed CS-RRT in terms of success rate and computing time can be seen when planning is
performed in complex environments with space restrictions, such as Task 2 and Task 3.
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Table 1. Simulation results of three algorithms in the four scenarios of Tasks 1~4.

Success Rate (%) Average Computing Time (Second)

Task Goal-Biased RRT CSA-RRT CS-RRT Goal-Biased RRT CSA-RRT CS-RRT

Task 1 100 100 100 0.015 0.019 0.015

Task 2 94 96 98 0.097 0.096 0.071

Task 3 94 94 96 0.143 0.087 0.083

Task 4 100 100 100 0.013 0.016 0.013

Average 97 97.5 98.5 0.067 0.0545 0.0455

5.2. Experimental Results of Real Robot Manipulator

In the practical experimental demonstration, a real pick-and-place system with a depth
camera (Microsoft Azure Kinect DK), a six DOF robot manipulator (UR5), and a two-finger
parallel gripper (Robotiq 2F-85) is presented to illustrate the efficiency of the proposed CS-RRT
algorithm applied in the pick-and-place system. The camera is installed above the table
and the YOLOv4 algorithm is used to obtain the position coordinates of Object A, which is
randomly placed on the table. Code runs on the robot with ROS implemented in Python.
The communication method of ROS Services is used to ensure that the task strategy module
actually receives the coordinate information and MoveIt is used to execute the motion planning
results of the proposed CS-RRT algorithm to complete the four pick-and-place tasks described
in the previous section. The video of the demonstration of the real pick-and-place task can be
viewed on this website: https://youtu.be/lcdy2byIG_g (accessed on 20 January 2023). The
snapshots of the real robot manipulator performing Task 1, Task 2, Task 3, and Task 4 are,
respectively, shown in Figures 17–20. The procedure can be described as follows:

Step 1: Obtain the position coordinates of object A randomly placed on the table through
the camera installed above the table and the YOLOv4 algorithm.

Step 2: Move to the top of Object A.
Step 3: Move downward to grasp Object A.
Step 4: Move upward from the table.
Step 5: Move to the outside of the upper layer of the cabinet.
Step 6: Move into the upper interior of the upper layer of the cabinet.
Step 7: Move downward to place Object A.
Step 8: Move to the outside of the upper layer of the cabinet.
Step 9: Move to the outside of the lower layer of the cabinet.
Step 10: Move to the top of Object B in the lower layer of the cabinet.
Step 11: Move downward to grasp Object B.
Step 12: Move to the outside of the lower layer of the cabinet.
Step 13: Move to the top of the initial position of Object A, where it was originally placed

on the table.

https://youtu.be/lcdy2byIG_g
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Step 14: Move downward to place Object B on the table.
Step 15: Move to the top of the object placed on the table.
Step 16: Return to the initial position of the robot manipulator.
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Figure 17. Snapshot of the robot manipulator during the object pick-and-place in Task 1. (a) Initial
position. (b) Move to the top of Object A. (c) Move downward to grasp Object A. (d) Move upward
to the top of the table.
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Figure 18. Snapshot of the robot manipulator during the object pick-and-place in Task 2. (a) Move to
the upper layer of the cabinet. (b) Reach the outside of upper layer of the cabinet. (c) Move into the
upper interior of the cabinet. (d) Move downward to place Object A.
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Figure 19. Snapshot of the robot manipulator during the object pick-and-place in Task 3. (a) Move
back to the outside of the upper layer of the cabinet. (b) Move to the outside of the upper layer of the
cabinet. (c) Move to the outside of the lower layer of the cabinet. (d) Reach the outside of the lower
layer of the cabinet. (e) Move to the top of Object B, placed in the lower layer of the cabinet. (f) Move
downward to grasp Object B.
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Figure 20. Snapshot of the robot manipulator during the object pick-and-place in Task 4. (a) Move
back to the outside of the lower layer of the cabinet. (b) Move to the outside of the lower layer of
the cabinet. (c) Reach the top of the initial position of Object A where it was originally placed on the
table. (d) Move downward to place Object B on the table. (e) Move to the top of the object placed on
the table. (f) Return to the initial position of the robot manipulator.

6. Conclusions and Future Work

An ROS-based object pick-and-place system is implemented, and a CS-RRT algorithm
is proposed so that the robot manipulator can efficiently pick-and-place objects in real time.
There are three main contributions in this paper. (1) Path planning for robots is one of the most
important topics in robotics research. In the research on robot manipulators for picking and
placing objects in a constrained environment, most of the research only completed simulation
results to verify the effectiveness of their path planning methods. Many improved RRT
algorithms have been proposed, but they are rarely applied to actual robot manipulators for
object pick-and-place tasks in real time. Both simulation and actual experiments are used to
demonstrate that the proposed CS-RRT algorithm and the implemented system can allow
the robot manipulator to effectively avoid obstacles and pick-and-place objects in real time.
(2) Some disadvantages of existing RRT algorithms are addressed, and two mechanisms of
sampling radius counting, and node counting are adopted in the proposed CS-RRT algorithm.
The sampling-radius limitation mechanism, by limiting the sampling radius, can make the
random tree finish the sampling stage faster when the tree is close to the goal point. It can
reduce the computing time of the proposed CS-RRT algorithm. The node counting mechanism
allows the algorithm to switch to an appropriate sampling method in a complex environment.
It can avoid excessive exploration in the direction of the goal point so that the random tree
does not trap itself in constrained areas. It can make the proposed CS-RRT algorithm have
better environmental adaptability. In addition, an experimental environment with four object
picking and placement tasks has been established. Experimental results show that the object
pick-and-place system based on the proposed CS-RRT algorithm has a higher success rate
and lower computing time compared with the other two path planning algorithms. (3) The
robot operating system (ROS) is used to implement the object pick-and-place system. By
implementing the proposed CS-RRT algorithm in the open motion planning library (OMPL),
MoveIt can be used to plan the motion of the robot manipulator. According to the imported
URDF file, MoveIt can also perform motion planning for different robot manipulators, so the
proposed method can be easily applied to different robot manipulators.

There are two parts to the future work: (1) In the part of switching strategy and step
size adjustment, switching sampling strategy can improve the adaptability of the proposed
algorithm to the environment, but its own parameters need to be manually designed according
to the environment. In addition, the step size also needs to be chosen according to the
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environment. Therefore, some optimization methods can be used in the future to select
appropriate parameters for the switching strategy and step size according to the environment.
(2) In the part of the sampling method where the distance needs to be calculated. In the
path planning of the six-dimensional joint space of the robot manipulator, more parameters
are needed to calculate the distance, which increases the computing time of the proposed
algorithm. Therefore, the number of calculation distances can be reduced in the future to
reduce the computing time needed to meet the system requirements.
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