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Abstract: In this paper, we propose a hierarchical multi-modal multi-label attribute classification
model for anime illustrations using a graph convolutional network (GCN). Our focus is on the
challenging task of multi-label attribute classification, which requires capturing subtle features inten-
tionally highlighted by creators of anime illustrations. To address the hierarchical nature of these
attributes, we leverage hierarchical clustering and hierarchical label assignments to organize the
attribute information into a hierarchical feature. The proposed GCN-based model effectively utilizes
this hierarchical feature to achieve high accuracy in multi-label attribute classification. The contribu-
tions of the proposed method are as follows. Firstly, we introduce GCN to the multi-label attribute
classification task of anime illustrations, enabling the capturing of more comprehensive relationships
between attributes from their co-occurrence. Secondly, we capture subordinate relationships among
the attributes by adopting hierarchical clustering and hierarchical label assignment. Lastly, we con-
struct a hierarchical structure of attributes that appear more frequently in anime illustrations based on
certain rules derived from previous studies, which helps to reflect the relationships between different
attributes. The experimental results on multiple datasets show that the proposed method is effective
and extensible by comparing it with some existing methods, including the state-of-the-art method.

Keywords: hierarchical classification; anime illustration; attribute classification; graph convolutional
networks; generative adversarial networks

1. Introduction
Recently, the anime industry has experienced significant growth, leading to an in-

crease in research on anime illustrations. Various studies, such as illustration editing [1,2],
illustration super-resolution [3], cartoon face generation [4,5], and line art colorization [6,7]
have been conducted. As the number and complexity of anime illustrations continue to
grow, there is a growing need for classification techniques. Efficient management and the
classification of numerous illustrations are critical for creators. Automated identification
and organization of specific elements within images through the classification techniques
for anime illustrations can significantly streamline the animation production process. Devel-
oping effective classification techniques requires a thorough understanding of the contents
of these illustrations.

In computer vision, image classification is an important task, which involves analyzing
and understanding visual data from the environment using computers. Multi-label image
classification, a variation of image classification, allows for multiple labels or tags to be
assigned to an image. This is different from traditional image classification, which involves
assigning a single label or class to an image. Multi-label image classification is useful
in cases where an image contains multiple objects or features relevant to the task. For
instance, medical image classification [8] involves identifying and labeling multiple organs

Sensors 2023, 23, 4798. https://doi.org/10.3390/s23104798 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23104798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8039-3462
https://orcid.org/0000-0001-5332-8112
https://doi.org/10.3390/s23104798
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23104798?type=check_update&version=1


Sensors 2023, 23, 4798 2 of 19

or structures in an X-ray image. Similarly, in recommendation systems [9], an image of a
product may contain multiple features relevant to the user, such as color, size, and material.

In multi-label image classification, it is important to consider the relationships between
labels to enhance classification accuracy. This is because objects in images frequently co-
occur, appearing together in the same image. Graph convolutional networks (GCNs) [10]
are neural networks that can predict relationships between labels on graph structures. They
are particularly useful in multi-label image classification because they can capture the
dependencies between different labels and use this information to improve classification
accuracy. For example, Chen et al. proposed a GCN-based multi-label image classification
system that used a complete graph to model the correlation between various labels [11].
This approach was effective in enhancing classification accuracy. GCN-based approaches
are likely to be highly effective for anime illustrations because objects in amine illustrations
frequently co-occur as well. Anime illustrations typically describe complex scenes with
many elements, and GCNs can help us understand the relationships between these objects
and improve classification accuracy.

Distinguishing anime illustrations from real-world images requires a different ap-
proach to image classification. Anime illustrations are artificially produced and typically
exhibit unique characteristics that are absent in real-world images. These illustrations often
feature stylized objects or characters with exaggerated or uncommon attributes that are
critical for precise classification. In addition to simple objects, it is necessary to consider the
attributes of these objects when building classification methods for anime illustrations. For
example, if we are classifying an illustration of an anime character, we may need to consider
not only the object (e.g., character) but also the attributes of that object (e.g., hair color and
eye shape). To the best of our knowledge, no research has investigated the multi-label
attribute classification task [12,13] for anime illustrations.

In previous GCN-based multi-label classification methods [11,14], labels were typically
treated equally when constructing graphs to model co-occurrence relationships between
them. This is appropriate since these labels represent “objects” rather than “attributes.”
However, attributes have a clear hierarchy with upper and lower inclusion levels indicating
semantic relationships of subordination between parent and child labels. Therefore, to
utilize GCN-based multi-label classification methods for attribute classification in anime
illustrations, it is essential to consider the hierarchy of attributes.

In this paper, we propose multi-label image classification in animation illustration with
GCNs, considering hierarchical relationships of attributes. The proposed method consists of
three key operations: hierarchical divisive clustering (HDC), hierarchical label assignment
(HLA), and GCN-based classification. We extract categorized feature representations from
anime illustrations in HDC and integrate the representations according to a pre-defined
hierarchical label structure to obtain a feature containing rich hierarchical relationships
between labels in HLA. Specifically, for the HDC part, we obtain feature representations of
the anime illustrations belonging to different categories by divisive clustering. Inspired
by the previous study [15], we use a clustering algorithm based on multiple generative
adversarial networks (GANs) organized in a binary tree structure, which can obtain more
appropriate category representations on datasets with a variety of styles, just as with
the anime illustration dataset. In the HLA part, following the pre-defined hierarchical
label structure from the dataset, the obtained feature representations are organized by
hierarchical label assignments to form a feature with rich hierarchical relationships between
labels. Additionally, because the general anime illustration datasets do not exclude a
defined attribute hierarchy, we use WordNet [16] to construct the attribute hierarchy in the
anime illustration datasets based on the logical relationships between words. Finally, the
feature with rich hierarchical relationships is inputted into GCN for classification, which
considers the hierarchy of attributes, and can improve the overall accuracy of the model.

In summary, the contribution of this study can be highlighted as follows:
• We propose a GCN-based model for the multi-label attribute classification suitable for

anime illustrations.
• Considering the hierarchical relationships between attributes, we use hierarchical clus-

tering and organize the attribute representations of anime illustrations by hierarchical
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label assignments to generate a feature with rich hierarchical relationships between
labels that can be imported into the GCN-based classification model.

• We construct a hierarchical structure of attributes in the anime illustration datasets
based on the defined logical relationships between words, which helps better reflect
the relationships between different attributes in the classification process.

2. Related Works
In this section, related works are briefly reviewed in the following three categories.

2.1. Attribute Classification
The attribute classification task involves identifying the descriptive properties (or

attributes) of objects in images. Because it requires a deep understanding of the features of
the object in the target image, it is a more complex task than simply classifying the objects
themselves. It has been a topic of interest in computer vision for a long time, as it has
many practical applications. For example, attribute classification can improve image search
engines by allowing users to search for images based on specific attributes rather than just
objects. Additionally, it can enhance image recommendation systems by suggesting images
based on the attributes of the objects they depict.

In attribute classification tasks, it is common for certain attributes to be correlated
with each other. For instance, the attribute beard is typically found in conjunction with the
attribute male. In other words, if an image contains the attribute beard, it is more likely also
to contain the attribute male. Several approaches have been used to address the issue of
correlated attributes in attribute classification tasks. Some studies [13,17] have ignored the
correlations between attributes and learned them independently, whereas others [18–21]
have used a multi-task learning approach that explicitly models the correlations between
attributes. The latter approach involves training a classifier to predict multiple attributes,
with the assumption that predicting one attribute enhances the probability of predicting
related attributes. It has been demonstrated that models considering the correlations
between attributes tend to perform better in classification tasks than models that cannot
consider them.

Our approach to addressing attribute correlations was inspired by the study [13]. Al-
though the study did not specify how to utilize attribute correlations, it provided a semantic
interpretation of attributes. In this study, attributes were classified hierarchically according
to semantic information, which contains low-level visual adjectives (e.g., color, shape), inher-
ent object features (e.g., material), and high-level object components (e.g., having a tail and
wearing sunglasses). This hierarchical structure enables a more nuanced understanding of
the relationships between attributes and can improve the classifier’s performance. Since
attribute correlations are present not only in real-world images but also in anime illustra-
tions, we expect that the hierarchical structure approach will be effective in classifying the
attributes of anime illustrations as well.

2.2. Hierarchical Classification
The use of hierarchical structures in multi-label classification tasks provides valuable

insight into label relationships. In a previous study [22], the researchers categorized
hierarchical multi-label learning methods into two categories: local and global models.
These approaches aim to capture structural relationships between labels in different ways.

The local model in hierarchical multi-label classification involves constructing mul-
tiple classifiers within the hierarchy and aggregating their results to obtain an overall
classification for the entire label space. It allows for incorporating additional fine-grained
hierarchical information and can be useful in situations with strong dependencies between
labels. For example, the researchers proposed a top-down hierarchical multi-label classi-
fication method [23] using a hierarchical support vector machine, which only applies to
a node if its parent labels are positive. This local model can use additional fine-grained
hierarchical information. However, this model is susceptible to error propagation and
frequently requires the construction of multiple classification modules when building it.

On the other hand, the global model typically consists of a single classification module
that directly uses hierarchical structure information. It can incorporate global relationships
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between labels and can be more efficient than the local model, as it does not require the
construction of multiple classification modules. For example, some global models [24] use
the hierarchy to construct recursive regularization loss terms to constrain classification
parameters. This approach uses the relationships between labels in the hierarchy to reg-
ularize the model and prevent overfitting. Furthermore, as the hierarchical multi-label
classification task corresponds to the relationships among labels stored in the hierarchy,
an increasing number of studies are considering not only the information provided by the
classification target but also the corresponding representation of the hierarchical structure
of labels [25,26]. These methods assign varying weights to distinct parts of the content
representation that are the most associated with each label in the hierarchy, taking into
account the interdependence between the representation of the hierarchical structure and
the classification target. This approach is suitable for our method.

2.3. Clustering Based on the Generative Adversarial Network (GAN)
Clustering is a common unsupervised learning technique used in various computer

vision tasks to obtain excellent image category representations. In recent years, with the de-
velopment of GAN [27], this model has achieved significant success in many unsupervised
learning tasks, and the clustering task is certainly no exception. GAN can easily capture
the underlying data distribution from a given set of samples by defining a mapping from a
predefined latent before the target distribution. However, earlier versions of GANs suffer
from overfitting and mode-collapse issues due to the imbalance between the discriminator
and the generator [28]. To overcome the above weaknesses, various methods have been
proposed, including unrolled GAN [29], which introduces a surrogate objective function
that simulates a discriminator response to generator changes, VEEGAN [30], which casts
implicit probability distributions to minimize the joint distribution, and MGGAN [31],
which develops a manifold space by the pre-trained autoencoder to reconstruct all of the
samples. Although these approaches address the issues of overfitting and mode collapse,
they are unable to meet the requirements of multi-label classification with a single prior and
the capacity of a single generator transformation. Recently, researchers have introduced
a tree structure, called the hierarchical GAN-Tree [15], to facilitate the clustering by a
multi-generator mode. This method can be utilized together with the corresponding prior
distribution to generate samples with the desired level of quality and diversity. Training
multiple GANs for different data will be an appropriate way to tackle the combination of
multiple labels and the hierarchical structure.

3. Proposed Method
Figure 1 shows the architecture of the proposed method. As shown in Figure 1, the

proposed method consists of three core parts: HDC, HLA, and GCN-based classification.
We will explain these three parts in detail in the following subsections.

3.1. Hierarchical Divisive Clustering (HDC)
In this subsection, we will explain the hierarchical divisive clustering (HDC) details.

Specifically, in HDC, we adopt the hierarchical GAN-Tree [15] mentioned in Section 2.3,
which is used to perform the clustering. A hierarchical GAN-Tree is a hierarchical feature
representation that transforms the original feature-embedding into a full binary tree. In
detail, it continues to split samples into two different clusters based on the most discrimi-
native feature difference obeying the target distribution with multiple GANs. We apply
the adversarially learned inference [32] framework as the basic GAN formulation for the
hierarchical GAN-Tree in practice, which enables the generation of plausible samples from
the predefined latent distributions.

The clustering target of the hierarchical GAN-Tree is the feature set T 0 = {xt}T
t=1

composed of features extracted from images t(t = 1, 2, ..., T) in the original dataset. Without
considering the number of labels in each level, the hierarchical GAN-Tree plans to split
each parent sample into two children clusters by GAN-Set node GNi. GAN-Set node GNi

is an individual GAN framework, which includes an encoder Ei, a generator Gi, and a
discriminator Di, as shown in Figure 2. The input of each GNi is the target feature set T p,
which is drawn from the real image sample distribution Pd of its parent node (we assume
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p to be the parent node index of the child node i). GNi is trained to look for and output
the best possible approximate distribution Pi

g of the target data distribution Pd. During
the training process, the approximation is improved by the latent distribution Pi

Z in the
succeeding hierarchy of the hierarchical GAN-Tree. The latent distribution Pi

Z is derived
from the latent prior vector zt ∈ Z corresponding to feature xt, where Z is the latent space
following the prior distribution (Gaussian distribution).

Anime illustration

Hierarchical divisive clustering (HDC)

Hierarchical structure of labels

(artificially construct)

GCN model

Hierarchical label assignment (HLA)

…

…

…

……

Static GCN H
Dynamic

GCN Q

0.98

0.21

0.73

…

s

…

X
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Anime illustration
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… … … …

Label 1
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Label 2
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… … … …
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Label 2

Label 3
Label 4

Label 5

Label 6

…

Maximum A 
Posteriori (MAP)

Hierarchical Mapping
Algorithm (HMA)

Figure 1. Overview of the proposed method. It consists of three core operations: hierarchical di-
visive clustering (HDC), hierarchical label assignment (HLA), and GCN-based classification. We
extract categorized feature representations from anime illustrations in HDC, and integrate the rep-
resentations according to a pre-defined hierarchical label structure to obtain a feature with rich
hierarchical relationships between labels in HLA that can be imported into the GCN model for the
final classification.

To avoid the mode-collapse problem caused by the unstable generator Gi, hierarchical
GAN-Tree employs the splitting algorithm to exploit the highly discriminative features
embedded in the image. The splitting algorithm aims to form two mutually exclusive
and collectively exhaustive target data clusters, by utilizing the likelihood of the latent
representations to the predefined prior distributions. This algorithm is based on two types
of losses, i.e., Lnll and Lrecon. Lnll is used to maximize the utilization of the likelihood of
latent representations to the prior distributions, while Lrecon is used as a regularization to
hold the semantic uniqueness of the individual samples in the split clusters. The details of
Lnll and Lrecon are defined as follows:
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Lnll =
1
Ti

Ti

∑
t=1
−logp(zt), (1)

Lrecon =
1
Ti

Ti

∑
t=1

∥∥∥xt − Gi(zt)
∥∥∥2

2
. (2)

By optimization of the final splitting loss function Lsplit = Lnll + Lrecon using the Adam
optimizer [33], the splitting algorithm obtains the hard-assigned label from the target parent
samples for the left or right child samples. In advance, the hierarchical GAN-Tree uses a
robust stopping criterion based on the information change rate (ICR) [34] to guarantee that
the hierarchical GAN-Tree avoids overfitting to the target data samples. So far, we have
obtained feature representations of the anime illustrations belonging to different categories
by divisive clustering.

Encoder Generator

Discriminator

GAN-Set Node

GN0

Feature set

Latent

Approximate

Splitting algorithm

GN1

E1 G1

D1 GN2

E1 G1

D1

GNi

Ei Gi

Di GNn

En Gn

Dn

i n

distribution

distribution

Figure 2. Outline of the hierarchical GAN-Tree architecture. The composition of a single GAN-Set
node at the root level shows how the networks are used.

3.2. Hierarchical Label Assignment (HLA)
In this subsection, we explain the details of the hierarchical label assignment (HLA).

In the previous phase, we transformed the original features from images into a full binary
tree structure composed of GNi. Each GNi includes a cluster T i that is awaiting allocation
with relevant hierarchical labels. Therefore, we must assign suitable hierarchical labels for
each feature set T i. Since our study is dedicated to solving the multi-label classification
task, multiple labels may be assigned to the same feature. We define the feature xt tagged
by the hierarchical label v as x(v)t .

We use maximum a posteriori (MAP) [35] to obtain the optimal potential label through
estimating the mapping from the feature x(v)t distribution to the latent distribution Pi

Z.
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The maximum posterior probability ρi
max of the uncategorized feature set T i is defined

as follows:

ρi
max = maxv

sum

∏
t=1

p(v|t ⊂ Pi
g)

= minv

[
sum

∑
t=1

p(v|Ei(x(v)t ))− Pi
Z

]
. (3)

When the maximum posterior probability ρi
max is calculated, we can set the probability

interval to obtain the remaining potential hierarchical labels for the uncategorized feature
set T i. If the posterior probability satisfies the interval [ρi

max − δ, ρi
max], the corresponding

hierarchical label v is a potential label assigned to the set T i. We set δ = 0.02 in our study,
avoiding excessive labels for each uncategorized feature set.

For each potential hierarchical label v, it will become the suitable label for T i when
the following two conditions are satisfied. First, the tagged sample x(v)t has to satisfy the
following condition:

maxt∈T i p(Ei(x(v)t )) > ICR, (4)

where ICR [34] is a probability measure to handle the average log-likelihood for the
whole feature set T i. This precondition guarantees that the sample x(v)t is qualified as the
representation of the cluster T i. Second, the parent and ancestor labels of the hierarchical
label v will not be present in the subsets of T i. If a hierarchical label v is confirmed to be
assigned to T i, this hierarchical label will no longer be suitable to the other uncategorized
feature cluster. Hence, we assign each T i of GNi with several suitable labels in a top-down
pattern. The most discriminative semantic differences mainly cause highly discriminative
feature differences, which means that the high-level labels will be more suitable for the top
feature cluster in the binary tree than the low-level ones. The hierarchical GAN-Tree first
split the highly discriminative feature cluster from the whole sample based on the splitting
algorithm. Therefore, the HLA attempts to deploy the label assignment in a semantic
coarse-to-fine pattern corresponding to the top-down traversal of the feature cluster in
the binary tree. Figure 3 shows how some of the anime illustrations in a common dataset,
Safebooru [36], are clustered and assigned labels after the HDC and HLA procedures.

To obtain the feature representations of anime illustrations that contain hierarchical
relationships between labels and can be imported into the GCN for final classification, we
adopt the hierarchical mapping algorithm (HMA) module proposed in a previous study [25].
The HMA module assigns weights Wh to different parts of the feature representation using
the content most associated with each label in the hierarchy. This enables us to obtain a
hierarchical feature representation that is most suitable for the task. First, we embed the
given hierarchical label structure into a randomly initialized matrix S ∈ RC×da , which
represents the embedding of the hierarchical category with the da-dimension. C represents
the number of categories. For the feature xt ∈ RN×D extracted from the image t, we
perform the following calculation to obtain the weights Wh ∈ RC×N :

Wh = so f tmax(AhS · tanh(Wsx>t )), (5)

where Ah ∈ RC×C represents the correlation matrix of xt based on the assigned labels in
the given label hierarchy, Ws ∈ Rda×D denotes a randomly initialized weight matrix, da is a
hyperparameter that we can arbitrarily set, and the so f tmax(·) function ensures that all
of the computed weights sum up to 1 for each category. After that, we obtain the feature
representations of anime illustrations that contain hierarchical relationships between labels,
denoted as H ∈ RC×D, by the following equation:

H = Whxt. (6)

In this way, the feature H with rich hierarchical relationships between labels is obtained.
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root node

human landscape

girl boy

animal

object, artificial

Figure 3. Clustering and label assigning in the HDC and HLA procedure on the Safebooru
dataset [36].

3.3. GCN-Based Classification
In this subsection, we apply H sequentially into a static GCN and a dynamic GCN to

obtain different representations of the label relations for specific input images for the final
classification. We first feed H into a single-layer static GCN. The output of the static GCN,
denoted as V ∈ RC×D, is defined as follows:

V = LReLU(Ast HWst), (7)

where Ast represents the correlation matrix, and Wst represents the state update weights.
LReLU(·) denotes the activation function LeakyReLU [37], which is a variant of the stan-
dard ReLU function that allows a small number of negative values to pass through. This
is useful for preventing the model from being stuck in a state where all the neurons are
deactivated, which can occur with standard ReLU. After that, V is then input into the
dynamic GCN. The output of the dynamic GCN, denoted as Q ∈ RC×D, is calculated using
the following equation:

Q = LReLU(AdyVWdy), (8)

where LReLU(·) denotes the LeakyReLU activation function, Ady denotes the dynamic
correlation matrix, and Wdy denotes the state update weights. Ady is calculated using a
conv layer with weights WA applied to V ′, followed by the sigmoid activation function
σ(·) as Ady = σ(WAV ′). As a result, this GCN flow can capture the co-occurrence between
different attributes in the illustration while utilizing the hierarchical relationships between
them, which can improve classification accuracy.

We will now describe the process of the final classification and the calculation of the
loss function. The output of the dynamic GCN, Q = [q1, q2, . . . , qC]

>, is used for the final
classification. Specifically, we input each vector qc of the final category representation Q



Sensors 2023, 23, 4798 9 of 19

into a fully connected layer to obtain the predicted scores sc for category c. These scores
are then concatenated to form the final score vector s = [s1, s2, . . . , sC]>. According to the
previous works [11,14,38,39], the loss function LG(y, s) can be defined as follows:

LG(y, s) =
C

∑
c=1

yclog(σ(sc)) + (1− yc)log(1− σ(sc)), (9)

where y ∈ RC represents the ground truth labels for an image, and yc = {0, 1} indicates
whether label c is present or absent in the image.

4. Comparison Experiments
In this section, we present experimental results to demonstrate the effectiveness of our

proposed method. In Section 4.1, we introduce the anime illustration datasets used in the
experiment and explain how we constructed the hierarchical structure for the labels in the
datasets. In Section 4.2, we describe the experimental conditions and the implementation
details. In Section 4.3, we introduce this experiment’s comparison methods and evaluation
metrics used in this experiment. Finally, in Section 4.4, we present the experimental results.

4.1. Anime Illustration Datasets and Construction of Label Hierarchy
To verify the effectiveness and scalability of the proposed method, we used the follow-

ing four datasets of anime illustrations to perform the experiments.
• Safebooru [36]: The Safebooru dataset is a comprehensive anime illustration dataset

with over 1.0 million illustrations and 30 million labels. It is a subset of the Danbooru
dataset, the largest dataset in the field of anime illustration, where illustrations tend
to be non-pornographic and non-violent, and each illustration is accompanied by
metadata, such as content labels and the names of the artists. We randomly selected
25,000 anime illustrations from the dataset, of which 75% were used as the training set
and 25% as the test set, following the division of the original dataset.

• DAF:re [40]: The DAF:re (DanbooruAnimeFaces:revamped) dataset is a crowd-sourced,
long-tailed dataset with almost 50,000 images spread across more than 3000 classes. It
is also a subset of the Danbooru dataset, and is mainly used for animated character
recognition, but unlike the usual dataset for character recognition, each image in
this dataset is labeled with attributes other than the label indicating the character
names. According to the description by the authors of this dataset in [40], the pro-
portion of images in the training set, validation set, and test set are 70%, 10%, and
20%, respectively.

• FG-BG [41]: The FG-BG dataset is a dataset of anime illustrations used for character
background segmentation. It consists of 18,500 illustrations from the Danbooru dataset,
including illustrations with transparent backgrounds that only contain characters,
illustrations with pure backgrounds that do not contain characters, and ordinary
illustrations with characters and backgrounds. Following the previous study [41], we
divided this dataset into a training set containing 75% of the images and a test set
containing 25% of the images, and it should be noted that the proportions of the three
types of images mentioned above in the subset are the same as the whole dataset.

• iCartoonFace [42]: The iCartoonFace is a benchmark dataset of 389,678 images of
5013 characters annotated with character names and other auxiliary attributes. In
character recognition of anime illustrations, this dataset is exceptional due to its large-
scale nature, high quality, rich annotations, and coverage of multiple occurrences,
including near-duplications, occlusions, and appearance changes. The difference with
the DAF:re dataset, which is also used for character recognition, is that this dataset
is not a subset of the Danbooru dataset. In our experiments, we randomly selected
25,000 anime illustrations from the dataset, of which 75% were used as the training set
and 25% as the test set following the division of the original dataset.
To construct accurate and convincing hierarchical relations for the labels in the datasets,

we used the semantic relations of words defined in a large dictionary, WordNet [16], where
words are grouped into a hierarchy defined by superordinate and subordinate relations. To
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select labels from the datasets for classification, we first filtered out the 500 most frequently
appearing labels. Because some of these 500 labels are difficult to classify into a semantic
hierarchy, we must remove them and use the remaining tags to build the hierarchy. In our
experiment, the following labels are removed.
• Labels of the title of the work, the name of the character, the name of the illustrator,

etc. (e.g., hatsune miku).
• Labels describing information about the illustration, not the content of the illustration

(e.g., absurdres).
• Labels describing the art style to which the illustration belongs (e.g., traditional media,

monochrome, sketch).
• Labels describing the character’s facial expression, movement, or pose (e.g., happy

standing).
• Labels describing the layout of the illustration (e.g., upper body, cowboy shot).

After removing the above labels, the remaining 359 labels were matched with words
in WordNet [16] to construct the hierarchical relationship. Finally, seven layers of the
hierarchical structure were constructed. Figure 4 shows a part of this hierarchy. As
depicted in the figure, the directly connected parent and child nodes are labeled with an
inclusive relationship.

girl eyes hair

green
eyes black

hair

twintailsclosed
eyes pink

hair

human

organgender

boy

eye
color

eye 
condition

hair
color

hair
type

Figure 4. Part of the label hierarchy of the anime illustration datasets.

4.2. Experimental Conditions and Implementation Details
We used ResNet-101 [43] as the backbone of the GCN-based attribute classification

model. The negative slope of the LeakyReLU activation function, which was used in the
GCN module, was set to 0.2. To improve the model’s generalization ability of the model, we
used data augmentation techniques on the input images. We randomly cropped the images,
resized them to 448× 448 pixels, and horizontally flipped them, which can artificially
increase the size of the training set by creating new images from the existing ones and
help the model learn to be more robust to variations in the input data. To optimize the
model, we used stochastic gradient descent as the optimizer. We set the momentum decay
to 0.9 and the weight decay to 1.0× 10−4. The learning rates for the different modules of
the model were initially set at 0.5 for the GCN module, and 0.05 for the backbone CNN.
Additionally, for our hierarchical GAN-Tree, we follow the DCGAN setting [44] for the
generator, discriminator, and encoder networks, i.e., 56 × 56 with a prior multi-generator
function [15] for all of the datasets.

4.3. Comparison Methods and Evaluation Metrics
To evaluate the effectiveness of the proposed method for multi-label attribute classifi-

cation of anime illustrations, we compared it with several other methods. These methods
were as follows.
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• ResNet-101 [43], an extensively used CNN for image classification tasks.
• DAN [12], a method that uses CNNs to learn discriminative features for multi-label

attribute classification on real-world images.
• SSGRL [45], a method that uses CNNs and a graph propagation mechanism to

improve the multi-label classification performance.
• ML-GCN [11], a method that uses GCNs to model the correlations between labels in

the multi-label classification task.
• ADD-GCN [14], a method that constructs dynamic graphs to describe label relation-

ships in images and uses an attention mechanism in the feature extraction to improve
the GCN-based multi-label classification performance.

• DSGCN [39], a method that uses domain-specific semantic features from the image in
the multi-label classification task for anime illustrations.

• P-GCN [38], a state-of-the-art method that uses a GCN to improv the multi-label
classification performance, which is an extended version of ML-GCN.
The proposed method used ResNet-101 as its backbone, and these methods were

trained using similar hyperparameters for a fair comparison. We evaluated the performance
of each method on multi-label attribute classification for anime illustrations and compared
their results with the proposed method to verify its effectiveness.

We adopted the following evaluation metrics following previous studies [11,14,38,39]:
Averages of overall precision (OP), recall (OR), and F1 score (OF1); averages of per-class
precision (CP), recall (CR), and F1 score (CF1). These metrics are calculated as follows:

OP =
∑k Nc

k

∑k Np
k

, CP =
1
C ∑

k

Nc
k

Np
k

, (10)

OR =
∑k Nc

k

∑k Ng
k

, CR =
1
C ∑

k

Nc
k

Ng
k

, (11)

OF1 =
2×OP×OR

OP + OR
, CF1 =

2×CP×CR
CP + CR

, (12)

where C is the number of classes, Np
k is the number of retrieved images for the k-th label,

Nc
k is the number of images that are correctly retrieved for the k-th label, Ng

k is the number
of ground truth images for the k-th label.

The metrics above consider only the final leaf node predictions and ignore the hierarchy
of labels. It means that all leaf nodes are treated as equal without any special treatment
of the different relationships of the nodes in the hierarchy. To emphasize the hierarchical
nature of the labels, we do not expect classification errors at different parts of the hierarchy
to be penalized in the same way. Therefore, we used hierarchical precision (HP), hierarchical
recall (HR), and the hierarchical F1 score, (HF1) following previous studies [46,47]. First,
let Cg

m be the set of ground truth labels and Cp
m be the set of predictive labels for image

m. Before calculating HP, HR, and HF1, we perform data augmentation on Cg
m and Cp

m to
obtain Ĉg

m and Ĉp
m, respectively. Specifically, the augmentation set includes all nodes in

the original set and all ancestor nodes from the root of the hierarchical structure to these
nodes. In this way, the closer the nodes are in the hierarchy, the more ancestor nodes they
share. In other words, data augmentation for leaf nodes enables the classification error to be
evaluated more highly if the classification result is more closely related to the ground-truth
in the hierarchy. For example, if Cg

m = {H} for the hierarchical structure in Figure 5, then
Ĉg

m = {A, C, F, H}. HP, HR, and HF1 are calculated by the following formulas:
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HP =
∑m

∣∣∣Ĉg
m ∩ Ĉp

m

∣∣∣
∑m

∣∣∣Ĉp
m

∣∣∣ , (13)

HR =
∑m

∣∣∣Ĉg
m ∩ Ĉp

m

∣∣∣
∑m

∣∣∣Ĉg
m

∣∣∣ , (14)

HF1 =
2×HP×HR

HP + HR
. (15)

When measuring the precision, recall, and F1 score for each image, the label c is
predicted as positive if the score sc calculated in Section 3.3 is greater than 0.5.

B C

A

J

GF

D

E

H I K L

Figure 5. An example of the hierarchical structure of labels, where H is the ground truth of the image.

Additionally, we adopted the average precision (AP) and the mean average precision
(mAP) that were often used in multi-label classification tasks [14]. We calculate AP and
mAP as follows:

AP(yc) =
1

Lyc

N

∑
n=1

Pryc(n)× (Rryc(n)− Rryc(n− 1)), (16)

mAP =
1
C

C

∑
c=1

AP(yc), (17)

where Lyc is the number of images relevant to the label yc, N is the total number of retrieved
images for the label yc, n is the rank in the list of retrieved images, Pryc(n) and Rryc(n) are
the precision and recall at the rank n. After sorting the scores s in descending order, the
mAP can be calculated.

Generally, the average overall F1 (OF1), average per-class F1 (CF1), hierarchical F1 score
(HF1), and mAP are considered the most important metrics for evaluating performance.

4.4. Experimental Results and Discussions
Tables 1–4 show the quantitative experimental results of the proposed method and

the comparison methods of the four datasets mentioned in Section 4.1, respectively. The
experimental results show that the proposed method outperforms the other comparison
methods overall in the multi-label attribute classification task for anime illustrations, which
reflects the generalization of the proposed method across multiple datasets. In addition,
the experimental results show that our GCN, which considers hierarchical relationships
of labels, achieves higher performance than baseline networks (such as ResNet-101 [43])
that create the same latent space as ours and state-of-the-art GCN-based methods, such as
P-GCN [38]. Furthermore, the proposed method shows higher HP, HR, and HF1 than the
comparison methods in experiments conducted on various datasets. This confirms that
the proposed method can more appropriately search for valuable relationships between
labels in the hierarchical structure. In summary, the results confirm the effectiveness of
considering the hierarchical structure of attribute information in multi-label classification
tasks. In addition, Table 5 shows the computational time and space consumption of the
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proposed method and the comparison methods. Specifically, we select several GCN-based
methods with high overall accuracy in the quantitative evaluation as comparative methods,
and calculate their floating point operations (FLOPs) as the measure of time complexity,
and the memory access cost (MAC) as the measure of space complexity, respectively. From
this table, we can see that the proposed method exhibits similar or less computational time
consumption while maintaining a space complexity closer to that of the comparison meth-
ods. In other words, the proposed method achieves better classification performance while
maintaining similar or lower computational time and space consumption as compared to
the previous methods.

Table 1. Performance comparison between our model and other image classification models on the
Safebooru dataset [36]. We mark the best results in bold.

Method OP OR OF1 CP CR CF1 HP HR HF1 mAP

ResNet-101 [43] 61.0 56.5 59.3 60.4 55.2 58.1 59.1 40.8 48.3 60.4
SSGRL [45] 69.0 57.2 64.2 70.2 58.2 61.3 60.9 47.2 53.2 68.6
DAN [12] 64.9 51.0 58.1 66.5 56.8 61.2 51.0 38.8 44.1 64.6

ML-GCN [11] 63.8 60.5 62.4 60.1 54.2 58.0 60.8 52.1 56.1 62.3
ADD-GCN [14] 69.6 64.1 67.2 66.4 60.2 62.0 61.7 52.8 56.9 68.1

DSGCN [39] 73.1 66.8 70.2 69.9 57.1 66.3 61.4 59.8 60.6 71.1
P-GCN [38] 69.1 58.9 63.1 72.8 58.9 64.2 65.3 58.8 61.9 70.2

Ours 73.4 68.3 71.1 69.8 56.4 65.9 67.9 62.9 65.3 71.3

Table 2. Performance comparison between our model and other image classification models on the
DAF:re dataset [40]. We mark the best results in bold.

Method OP OR OF1 CP CR CF1 HP HR HF1 mAP

ResNet-101 [43] 63.4 52.3 57.3 58.1 53.2 55.5 45.9 43.1 44.5 56.2
SSGRL [45] 69.1 54.6 61.0 64.8 54.8 59.4 51.0 42.3 46.2 60.1
DAN [12] 62.7 51.9 56.8 59.5 52.3 55.7 52.9 45.6 49.0 57.4

ML-GCN [11] 64.5 56.8 60.4 62.3 56.4 59.2 53.6 44.6 48.7 59.8
ADD-GCN [14] 65.2 54.0 59.1 61.9 54.4 57.9 55.0 47.4 50.9 58.9

DSGCN [39] 69.6 57.6 63.0 66.0 58.1 61.8 54.7 44.6 49.2 62.7
P-GCN [38] 67.7 60.1 63.7 64.3 56.5 60.1 57.1 49.2 52.9 62.0

Ours 72.1 59.7 65.3 68.4 56.1 61.7 60.8 52.4 56.3 63.5

Table 3. Performance comparison between our model and other image classification models on the
FG-BG dataset [41]. We mark the best results in bold.

Method OP OR OF1 CP CR CF1 HP HR HF1 mAP

ResNet-101 [43] 53.2 49.9 51.5 49.2 42.1 45.4 41.1 39.5 40.3 48.5
SSGRL [45] 60.2 51.3 55.4 56.5 51.9 54.1 45.6 37.3 41.0 54.6
DAN [12] 58.5 54.9 56.6 54.1 46.3 49.9 45.2 43.5 44.3 53.4

ML-GCN [11] 61.2 56.3 58.7 59.2 52.1 55.4 50.2 44.0 46.9 60.1
ADD-GCN [14] 62.6 58.7 60.6 57.9 49.6 53.4 48.4 46.5 47.4 57.1

DSGCN [39] 63.7 58.6 61.0 61.5 54.2 57.6 52.2 45.8 48.8 59.5
P-GCN [38] 68.5 56.5 61.9 62.7 57.6 60.0 49.6 46.5 51.9 60.7

Ours 67.9 59.8 63.6 62.5 58.1 60.2 59.4 50.4 54.5 61.8
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Table 4. Performance comparison between our model and other image classification models on the
iCartoonFace dataset [42]. We mark the best results in bold.

Method OP OR OF1 CP CR CF1 HP HR HF1 mAP

ResNet-101 [43] 49.6 46.9 48.2 47.0 33.3 39.0 28.2 18.2 22.1 44.3
SSGRL [45] 51.4 50.0 50.7 51.5 39.3 44.6 30.3 19.3 23.6 46.1
DAN [12] 58.0 55.5 56.7 57.2 44.1 49.8 32.7 21.4 25.9 52.5

ML-GCN [11] 61.3 56.1 58.6 60.3 46.5 52.5 34.2 25.6 29.3 54.8
ADD-GCN [14] 60.5 54.8 57.5 59.1 45.3 51.3 35.7 25.1 29.5 53.6

DSGCN [39] 62.3 54.7 58.3 61.7 49.9 55.2 40.5 30.4 34.7 56.8
P-GCN [38] 63.9 57.8 60.7 59.9 53.0 56.2 48.9 34.1 40.2 58.7

Ours 65.4 59.8 62.5 60.9 52.4 56.3 53.8 42.4 47.5 60.5

Table 5. Comparison of computational time consumption (FLOPs) and space consumption (MAC)
between our model and other image classification models.

Methods FLOPs MAC (byte)

ML-GCN [11] 5.21 G 101 M
ADD-GCN [14] 3.58 G 72.5 M

DSGCN [39] 3.71 G 77.6 M
P-GCN [38] 6.18 G 96.3 M

Ours 3.64 G 75.4 M

We also perform qualitative evaluations to demonstrate the effectiveness of our
method. Specifically, we demonstrate some examples in the experiments in Figures 6–8. In
these figures, we show examples of the experiments on the Safebooru [36], DAF:re [40], and
FG-BG [41] datasets, respectively. To control variables, we compare the performance of our
method with comparison methods based on GCN. To visualize the specific classification
performance of these methods, we draw heat maps consisting of the prediction scores
of labels for each method. The x-axis of the heatmaps represents the top nine predicted
leaf labels by various GCN-based methods on average, and the y-axis of the heatmaps
represents our proposed method and four GCN-based comparison methods mentioned in
Section 4.3: ML-GCN [11], ADD-GCN [14], DSGCN [39], and P-GCN [38]. In addition to the
heatmaps, we also show part of the hierarchical structure where the ground truth labels of
the illustration are located for a clear indication of how the consideration of the hierarchical
relationship of the labels in the proposed method affects the final classification results. In
the examples presented in Figures 6–8, the predicted scores of the true labels are increased
and those of the false labels are decreased overall after introducing the hierarchical struc-
ture. Specifically, in the example shown in Figure 6, the label black hair, which is incorrectly
classified as negative by most of the other comparison methods, is correctly classified as
positive after introducing the hierarchical structure because of the increase in the score
of long hair, which has a close relationship with black hair in the hierarchical structure. In
addition, the proposed method shows better classification accuracy than other methods
for general anime character illustrations (Figure 6), illustrations that focus on character
facial features (Figure 7), illustrations with complex backgrounds, and illustrations with no
characters (Figure 8), which confirms its high versatility in classifying different styles and
types of anime illustrations. Therefore, the effectiveness of our method is verified.
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Figure 6. The heatmap displays the prediction scores of labels for an anime illustration from the
Safebooru dataset [36]. The darkest red indicates the highest score, and the darkest blue indicates
the lowest. We also show part of the hierarchical structure where the ground truth labels of the
illustration are located and mark these labels in green font.
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Figure 8. The heatmaps display the prediction scores of labels for two anime illustrations from
the FG-BG dataset [41]. The darkest red indicates the highest score, and the darkest blue indicates
the lowest. We also show part of the hierarchical structure where the ground truth labels of the
illustrations are located and mark these labels in green font.

5. Conclusions
In this paper, we proposed a new hierarchical multi-label attribute classification model

for anime illustrations using GCN. As existing multi-label classification models fail to
consider the hierarchical relationship of attributes in images, we use hierarchical clustering

https://www.zcool.com.cn/work/ZNjE5MzI5Mjg=.html
https://makoto-kaminaga.jimdofree.com/digital-art/
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to organize attribute information of anime illustrations into a hierarchical feature via
hierarchical label assignments. This feature is used to construct a GCN-based classification
framework that captures more comprehensive relationships between attributes from their
co-occurrences. Our proposed approach outperforms previous methods, including the
state-of-the-art, on multiple datasets, demonstrating excellent scalability and effectiveness.
However, we acknowledge that our study only considers the most frequent labels and does
not evaluate the classification accuracy for labels with lower frequencies. Moreover, it is
still uncertain whether the manually constructed hierarchical structure of labels, based on
predetermined rules, is the best structure for the images in the anime illustration datasets.
In addition, we did not verify the impact of varying proportions of training data on the
final classification results. In future work, we will perform these experiments further.
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