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Abstract: Information systems play an important role in business management, especially in person-
nel, budget, and financial management. If an anomaly ensues in an information system, all operations
are paralyzed until their recovery. In this study, we propose a method for collecting and labeling
datasets from actual operating systems in corporate environments for deep learning. The construction
of a dataset from actual operating systems in a company’s information system involves constraints.
Collecting anomalous data from these systems is challenging because of the need to maintain system
stability. Even with data collected over a long period, the training dataset may have an imbalance
of normal and anomalous data. We propose a method that utilizes contrastive learning with data
augmentation through negative sampling for anomaly detection, which is particularly suitable for
small datasets. To evaluate the effectiveness of the proposed method, we compared it with traditional
deep learning models, such as the convolutional neural network (CNN) and long short-term memory
(LSTM). The proposed method achieved a true positive rate (TPR) of 99.47%, whereas CNN and
LSTM achieved TPRs of 98.8% and 98.67%, respectively. The experimental results demonstrate the
method'’s effectiveness in utilizing contrastive learning and detecting anomalies in small datasets
from a company’s information system.

Keywords: enterprise information system dataset; anomaly detection; contrastive learning;
constructing dataset

1. Introduction

Enterprise information systems not only support and manage company-wide resources
efficiently but are also the core information technology (IT) and SW systems that encompass
a company’s business innovation activities. Operating a company without the help of
information systems has become impossible. According to the IT and SW utilization
survey conducted by the Korea Institute for Information and Communications Technology
Promotion in 2018, 93.5% of Korean companies have introduced and utilized enterprise
resource planning (ERP), while 93.8% of companies have not adopted ERP owing to their
business environment and characteristics [1].

Information systems play an important role in business management, including per-
sonnel, budget, and financial management. In the case of an abnormality in the information
system, all operations are paralyzed until its recovery. To ensure the stable operation of
important information systems, companies designate relevant departments and system
administrators and make efforts to respond to abnormal situations through monitoring.
However, the complexity of information systems makes it difficult to maintain and respond
quickly to abnormal situations. In addition to system monitoring, information system
administrators in companies are responsible for system management and related tasks,
such as system improvement and administrative work.
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In monitoring systems, notification functions, such as those for email and text mes-
sages, are available and can be customized based on predefined thresholds and situation
settings. However, configuring specific situations for monitoring systems can be challeng-
ing because the settings may need to be adjusted based on the situation and environment
unique to a company. Experienced monitoring system experts may struggle to set up
accurate notifications if they are unfamiliar with a company’s setup. Setting the threshold
for notifications considerably high can result in failures occurring before they are detected,
whereas setting them considerably low can lead to unnecessary notifications. Due to these
challenges, companies usually identify system failures only after they have occurred.

Deep learning models have been widely used for detecting abnormal states, and
deep learning-based research on abnormal state detection in corporate information systems
includes research into IT infrastructure and information systems. The detection of abnormal
states in IT infrastructure involves detecting the abnormal states of devices such as servers
and networks, whereas the detection of abnormal states in information systems aims to
detect the abnormal states of web services. Depending on the perspective, different data
features are considered important, and the data composition for learning differs. Abnormal
states in information systems may also occur as abnormal states in IT infrastructure, and
therefore both should be considered together.

In order to apply anomaly detection in corporate environments, it is necessary to use
data from real operating systems. However, to use data from a company’s information
system, methods for merging independently produced data into a deep learning dataset
are required, and the data needs to be labeled to train the system to detect anomalies.

In this study, we propose a deep learning-based anomaly detection method using
monitoring data from company information systems. We collected data from an information
system for 338 days, from 28 September 2021, to 31 August 2022. Regarding data from
information systems operated by companies, it is difficult to secure anomalous data as the
stable operation of the information system cannot be compromised. In addition, even if
data are collected over a long period, the composition of the training dataset may have more
normal data than anomalous data. To address the problem of data imbalance, we propose
the use of negative sampling, and to improve training performance with insufficient
data, we propose a data augmentation method for contrastive learning. The proposed
method contributes to the utilization of actual operating system data for anomaly detection
in corporate environments. In addition, our proposed method can further enhance the
effectiveness of existing monitoring software.

The rest of this paper is structured as follows: Section 2 presents related work; Section 3
describes the construction of the dataset for anomaly detection in information systems;
Section 4 describes contrastive learning with the negative sampling method; Section 5
presents the experimental results; and Section 6 concludes the paper.

2. Related Work

Anomaly detection research focuses on IT infrastructure and information systems. In
the case of IT infrastructures, the aim is to identify abnormal states in servers and networks,
whereas in information systems, the goal is to detect abnormal states in web services. These
two domains differ primarily in their perspectives, which may lead to differences in the
collected data.

2.1. Anomaly Detection in IT Infrastructure

The detection of abnormal states in an IT infrastructure involves the use of server
metrics such as CPU usage, memory usage, and network response time. In addition to
these performance metrics, data such as service response time and processing volume are
employed to detect abnormal states in information systems. Anomalies in IT infrastructure
can lead to failures in information systems; hence, there is a need to monitor both domains
simultaneously.
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Several deep learning-based approaches have been used for anomaly detection in IT
infrastructure. Spectral residuals [2] and an ensemble model have been used to analyze
time-series access log data in real time, using data such as access count, response time, CPU
usage, and memory usage to predict response delays [3]. Unsupervised learning and a
convolutional neural network (CNN) [4] have been combined to improve the labeling of
difficult abnormal data, leading to better performance compared to that achieved when
using only spectral residuals. A CNN and log data from the Hadoop file system have been
used to achieve superior performance over that of long-short-term memory (LSTM) [5]
and MLP models through automatic log analysis [6]. Finally, using support vector ma-
chine (SVM) [7] models, researchers experimented with preprocessing and vision process-
ing techniques, with preprocessing-based learning ultimately proving more effective for
anomaly detection.

There have been several investigations carried out to detect anomalies within diverse
IT infrastructures utilizing time-series data. For instance, Shukla and Sengupta [8] focused
on identifying anomalous states within clustered sensors using an LSTM neural network
and robust statistical M-estimators. Ngo et al. [9] applied adaptive anomaly detection
to a distributed hierarchical edge computing system for real-time detection on devices
that cannot use complex deep neural networks. Using the wavelet autoencoder anomaly
detection technique, Li and Jiang [10] utilized an autoencoder to detect anomalous data in
non-stationary and non-periodic time-series data. In addition, Chang et al. [11] proposed
a hierarchical anomaly detection framework to distinguish between real and fake data to
detect various malicious intrusions on IoT devices. Yin et al. [12] proposed a model that
combines CNN and a recurrent autoencoder, using a two-stage sliding window method
for better feature extraction. Talagala et al. [13] proposed an unsupervised learning al-
gorithm for anomaly detection in high-dimensional data that used the distribution of
k-nearest neighbors.

In studies on anomaly detection applications for IoT sensors, some studies extracted
contextual information to predict the contextual information of the system [14], while
others detected anomalous states through two stages using clustering and fuzzy logic [15].

In research focused on identifying anomalies in network and communication systems,
there have been studies such as AnoML-Iot [16], Del-Iot [17], a low-weight model that
employed blockchain technology [18], and an investigation that detected indications of
anomalies in HTTP traffic [19]. All of these studies employed time-series data and applied
lightweight techniques or used edge technology for IoT models.

2.2. Anomaly Detection in Information Systems

There have been several research investigations into utilizing deep learning-based
anomaly detection methods for information systems. Two commonly used models are
the LSTM and autoencoders. In one LSTM-based study that employed the LSTM model,
the emphasis was on forecasting service quality based on web service response time
and processing volume. The data classification was performed using techniques such
as PCA and tSNE, and the LSTM model outperformed [20] other models such as the
decision tree, AdaBoost [21], multilayer perceptron, XGBoost [22], LightGBM [23], and
CatBoost [24]. In another study that used PCA and weblog data, PCA and KNN algorithms
were implemented for detecting anomalies [25].

In studies utilizing autoencoders, regular data were evaluated by adding noise pat-
terns to generate abnormal data. Shin et al. [26] constructed a conditional multimodal
autoencoder that outperformed unimodal and multimodal models. Lee [27] used a deep
autoencoder for anomaly diagnosis in a database management system (DBMS) and demon-
strated its potential for automatic DBMS diagnostic reports.

In studies utilizing multivariate time series data, Audibert et al. [28] used DNN-
based methods to detect anomalies. Additionally, Schmidl et al. [29] conducted a recent
evaluation study comparing 158 methods for anomaly detection, which included models
such as LSTM-based VAE-GAN [30], LSTM-VAE [31], LSTM-AD [32], Spectral Residual
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(SR), SR-CNN, RobustPCA [33], AutoEncoder (AE) [34], Bagel [35], and EncDec-AD [36].
The study concluded that simpler methods perform almost as well as more complex ones.

In studies utilizing contrastive learning, both image data [37,38] and graph data [39-41]
have been used. Since contrastive learning incorporates data augmentation, it is predomi-
nantly applied in research areas where data augmentation can be easily carried out. Simi-
larly, research in the field of anomaly detection is mainly concentrated on areas where data
augmentation is more viable.

Previous research has focused mainly on developing anomaly detection models and
evaluating their effectiveness. Studies conducted using data resembling enterprise environ-
ments have used data from companies with large internet data centers. However, obtaining
big data to train deep learning models is challenging for typical enterprises, and replicating
similar studies in real-world scenarios is difficult due to differences in information system
infrastructure across companies.

The objective of this study is to develop an anomaly detection model for information
systems using deep learning techniques. To achieve this, we collected data from the
operating system of a company’s information system to construct a dataset. In addition,
we incorporated feature data that had been previously used in anomaly detection research.
Finally, we compared the proposed method with CNN and LSTM models.

3. Dataset Construction

In order to construct a deep learning dataset for anomaly detection, we gathered data
from our company’s operational information system, which includes one IIS-based web
server and four Tomcat-based web application servers. We developed a monitoring system
to collect performance information from the system. We collected access log data from the
web server and performance monitoring data from the monitoring system to create a deep
learning dataset for anomaly detection. The process of collecting and processing data from
an actual enterprise information system is depicted in Figure 1.
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Figure 1. Process of constructing a deep learning dataset for anomaly detection in actual
information systems.
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Labeled data is required to detect anomalous states using deep learning. In this study,
the anomalous states were systemically labeled based on expert observations using the

collected data, resulting in 48,333 data frames.

3.1. Collecting Data from the Performance Monitoring System

The performance monitoring system provides diverse information on the servers and
web application servers to assess the performance of the information system. Moreover,
the collected monitoring data could be extracted as separate data and utilized for further
analysis. In this study, we employed the open-source software ScouterAPM (2.15 Version)
for performance monitoring. ScouterAPM enables the checking of different web programs
and database indicators based on Java and has the advantage of being open source, which
makes it easily applicable and usable for businesses.

Figure 2 displays the operational dashboard of ScouterAPM, which can monitor a
range of indicators for web application servers, including CPU and memory information of
servers that run the information system, as well as various metrics of the web application

server. The system also allows the storage of monitored performance metrics.
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Figure 2. Monitoring dashboard of ScouterAPM, an open-source performance monitoring software.
Ten types of performance monitoring data (lines) and response time based on user requests (dots).

In this study, we selected all relevant metrics that could affect the occurrence of
anomalies in the information system, and we chose 10 performance monitoring metrics.
We collected performance monitoring data for 338 days. Table 1 summarizes the collected

data, which comprises 389,376 rows.
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Table 1. Ten types of data collected through the performance monitoring system.

No. Item Description
1 ActiveService Running service count
2 ApiTimeByService API time by service
3 ElapsedTime Average response time
4 RecentUser Recent request user
5 ServiceCount Number of service calls per hour
6 TPS Transactions processed per second
7 GcCount Garbage Collection operation count
8 GcTime Garbage Collection time
9 HeapUsed Heap memory usage
10 SqlTimeByService SQL execution time by service

The features collected by the performance monitoring system can be categorized as
follows: items 1-6 are indicators that affect the performance of the web server, whereas
items 7-9 are indicators that affect the memory performance of the web application server.
Item 10 is an indicator that describes the performance of the database. Ten performance
monitoring data points were collected from the four servers operated by the company.

The collected performance monitoring data are in the form of time-series data at 5-min
intervals. Each dataset includes server-specific values for the performance indicators. To
detect anomalies, the 10 features are combined to create a time-series dataset. These datasets
are merged into a single dataset based on the time required for deep learning. Figure 3
illustrates the process of transforming individual performance monitoring data into a
single dataset based on time, and Figure 4 presents a visualization of the 10 performance
monitoring data indicators.

Time | /MIS-WAS/MIS-WAS-D | /MIS-WAS/MIS-WAS-B | /MIS-WAST/MIS-WAS__ | /MIS-WAST/MIS-WAS__

61728 2022-04-30 0755 718136 . 6,130.08 . 5,064.03 729978
61729 2022-04-30 0800 7,197 66 6,146.31 5,089.25 732302
61730 | 2022-04-30 08105 721167 6,16824 5,100.78 734596
61731 | 2022-04-30 0810 723582 6,183.57 5,12523 736939
61732 | 2022-04-30 0815 725049 6,199.01 5,13818 7738625

[

Time  ActiveService = ApiTimeByService | ElapsedTime | GoCount | GeTime | HeapUsed | RecentUser ServiceCount | SqiTimeByService  TPS

2022-04-30 0755 5064.03 150 05
2022-04-30 0800 508925 150 05
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Figure 3. Transforming individual performance monitoring data into one dataset based on time.

All the data collected in this study are in the form of time-series data. Anomalies in
the enterprise’s information system cannot be identified by a single indicator. For instance,
a delay in the response time using the ElapsedTime feature alone does not necessarily
indicate a problem with the system. This is because the enterprise’s information system
may involve complex operations or various data joins, resulting in longer completion times,
which does not signify an anomaly. Similarly, a temporary drop-in service count does not
necessarily indicate an anomaly. There may be times when many users do not use the
system, such as during lunchtime or departmental meetings, which is a normal occurrence.
Therefore, we collected various data features to utilize in our research. In Section 3.3, the
data collected in this section will be transformed into a suitable form for deep learning,
along with the web server access log data collected in Section 3.2. Typically, data needs to
be segmented into specific intervals or forms for deep learning purposes, and when solving
classification problems with supervised learning, each data point needs to be labeled, as
we conducted in our study.
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Figure 4. Visualization of performance monitoring data: 10 indicators. Note that the y-axis scale of
each plot varies. The red segments indicate abnormal periods.

3.2. Data Collection from Web Server Access Log

Load-balancing methods are commonly used in information systems to ensure high
availability. Health check functions play a crucial role in this regard by monitoring the
operating status of servers. One such health check method sends packets regularly to a
specific port on a web application server connected to the web server and calls the URL to
check the service status of the server, thereby examining any abnormal state. In this study,
we collected data utilizing access logs to check for abnormal server states using a URL.

The advantage of confirming health check logs by URL calling is the ability to detect
momentary service disruptions, and cases in which the server did not respond are recorded.
To label the data, we checked the access logs of the web application server to see if there was
any record of “GET/HTTP/1.1” being called with the response being 200, which indicates
a normal state. If the call was not received, it was recorded as an abnormal state. Although
access logs are recorded in text format, they contain multiple pieces of information, such as
date, time, calling method, address, and response status, in a single line. Therefore, regular
expressions were used to separate the data.

Figure 5 illustrates the absence of response records for 2165 s between 8:13:47 and
8:49:52, which was used to determine the occurrence time of the anomalous state. The
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anomalous time interval, along with the previously collected performance data, was used
to automatically label and construct a dataset for anomaly detection.

9718 2 -4 - - [30/Apr/20822:08:13:45 +8968] "GET / HTTP/1.1" 268 13651
9719 | 2 - 4 - - [30/Apr/2022:08:13:47 +898@] "GET / HTTP/1.1" 208 13651
8728 2 -4 - -|[30/Apr/20822:08:13:47 +89808] "GET / HTTP/1.1" 268 13651
9721 2 o == [33)'Apr‘;'2322:68:4\9¢\52 489881 "GET / HTTP/1.1" 288 13651
SFaay 2 -4 - - [30/Apr/20822:08:49: +8988] "GET / HTTP/1.1" 268 13651
9723 2 - 4 - - [3e/Apr/2022:88:49:52 48988] "GET /common/dhx/dhtmlx/skins/we
9724 2 -4 - - [38/Apr/20822:08:49:52 "GET /common/dhx/dhtmlx/sources;
date time_from ime_to | second
2022-04-30  2022-04-30 06:4735  2022-04-30 0652 I
2022-04-30  2022-04-30 071346  2022-04-30 072047 421

2022-04-30  2022-04-30 081347  2022-04-30 08:49:52 2165
2022-04-30  2022-04-30 0921352 2022-04-30 09:41:24 1172

Figure 5. Transforming access log data into labeled data for detecting abnormal states.

3.3. Automatic Labeling of Collected Data

In order to construct data for deep learning, it is necessary to label normal and
abnormal states in the performance data. Typically, expert judgments and reports that
record actual abnormal states are required to identify and label the abnormal states in the
data. However, in this study, we were able to label the data automatically using a health
check log.

In Figure 6, it can be observed that an anomaly occurred from “2022-04-30 08:13:47”
to “2022-04-30 08:49:52” (“Year-Month-Date hours:minutes:seconds” format), lasting for a
total of 2165 s. Based on this data, the period from “2022-04-30 08:15,” which is 13 min after
the anomaly started, until the end of the anomaly at 49 min was labeled as 1 to indicate the
anomaly in the transformed performance monitoring data. The same labeling method was
applied to all other anomalies. To indicate a normal status, data that did not contain any
anomalies was labeled as 0.

date time_from time to | second
2022-04-30 2022-04-30 064735 2022-04-30 06:52:46 3n
2022-04-30 2022-04-30 071346 2022-04-30 072047 421
2022-04-30  2022-04-30 081347 2022-04-30 08:49:52 2165
2022-04-30 2022-04-30 092152 20224 1172

Time | ActiveService ApiTimeByService | ElapsedTime = GcCount GcTime | HeapUsed = RecentUser lyStatus
2022-04-30 08:00 0 0 0 0 0 5089.25 0 150 0
2022-04-30 08205 0 0 0 0 0 510978 0 150 0
2022-04-30 08210 0 0 0 0 0 312523 0 13 0
2022-04-30 08:15 0 0 0 0 0 5138.18 0 0 0 00 1

Figure 6. Transforming access log data into labeled data for detecting abnormal states.

After reviewing the labeled anomaly data, we found that anomalies occurred fre-
quently during the early morning hours owing to backup, server batch program operations,
and other factors that caused a delayed response. Since detecting anomalies during busi-
ness hours, when employees use the system, is important to the company’s information
system, we only used data from 7:00 am to 8:00 pm. Consequently, we obtained a deep
learning dataset consisting of 210,600 rows.

When constructing abnormal state data from performance monitoring data, it is crucial
to consider the time-series nature of the data, which were collected at 5 min intervals. To
ensure causality, 20 min of data were used to construct the abnormal state data, including
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15 min of data prior to the occurrence of the abnormal state. Additionally, to match the size
of the abnormal data, normal data were constructed using 20 min of data.

4. Contrastive Learning with Negative Sampling Method

Additionally, to conduct comparative experiments, we utilized established models
such as CNN and LSTM as well as our own approach of contrastive learning with negative
sampling. In all cases, we augmented the training data using negative sampling.

4.1. Convolutional Neural Network (CNN)

A CNN is a deep learning algorithm with two types of layers: convolutional and
pooling layers. It offers the advantage of not requiring manual feature extraction and
has demonstrated exceptional performance in domains such as image, video, and speech
recognition.

In our experiment, a CNN learning model for anomaly detection was constructed using
two convolutional, two pooling, and two fully connected layers. To prevent overfitting,
a dropout rate of 0.01 was applied. As the input data were 10 x 4 x 1, padding was
applied to maintain the data size as they passed through the layers. Additionally, this paper
utilized 50 epochs, a batch size of 10, a learning rate of 0.001, the Adam optimizer, and the
cross-entropy loss function.

4.2. Long Short-Term Memory (LSTM)

LSTM is an extension of the recurrent neural network proposed to address the long-
term dependency problem. It comprises four gates that determine whether to retain or
forget the previous information input through the Forget Gate, thereby enabling the model
to remember and utilize past data. In contrast to recurrent neural networks, LSTM has
demonstrated good performance in processing natural language and time-series data. To
use LSTM, the data must be transformed into a sequential format before being fed into
the model.

In our experiment, we transformed the collected time-series data into a matrix format
with a 10 X 4 structure that can be further transformed into a 40 x 1 format. We constructed
a classification model using an LSTM architecture that can accept 40 features as input
and produces two results after processing the input. Our experiment utilized 50 epochs,
a batch size of 10, a learning rate of 0.0001, the Adam optimizer, and the cross-entropy
loss function.

4.3. Data Augmentation and Contrastive Learning

Contrastive learning is a self-supervised method in the field of machine learning that
involves learning by comparing input samples. The primary objective is to construct a
representation space where similar data points are positioned closely while dissimilar ones
are placed far apart. By doing so, the model can learn a representation space that captures
the distinctive features of each data point, resulting in improved performance on new
tasks [42].

Contrastive learning utilizes data augmentation techniques to generate additional
data and improve its generalization ability on new data by repeatedly applying various
transformations to the input data and comparing the generated data to find similar data
points. This approach enables the model to learn more generalizable features. In contrast
to previous self-supervised learning methods that were developed from unsupervised
learning, contrastive learning defines comparison targets from the training data, which
makes it easier to implement self-supervised learning. This innovative learning method
has demonstrated high performance in recent computer vision research [42].

Incorporating data augmentation in contrastive learning is common practice; however,
it may exacerbate data imbalance problems, especially when dealing with real-world data
where there are fewer anomaly data points.
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Furthermore, to address this problem, this study employs data augmentation in con-
trastive learning to generate similar data for training, as illustrated in Figure 7. Moreover,
negative sampling is utilized to balance the normal and anomaly data and is used as input
data to tackle the imbalance problem. Both the original data and the augmented data go
through the convolution layer, consisting of two convolutions and one max-pooling, with
ReLU as the activation function. The model learns to represent similar data points closely
and dissimilar data points far apart by calculating similarity based on the representations
obtained from the two data sets using the loss function from SimCLR. The trained model
undergoes downstream learning by being applied again to the existing CNN model and
fine-tuned to create a single learning model. Our system employs 50 epochs, a batch size of
10, a learning rate of 0.001, the Adam optimizer, and the cross-entropy loss function.
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Data
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Figure 7. The architecture of the contrastive learning model.

In contrastive learning, both the original and augmented data are used as inputs for
comparison. Various methods can be applied for data augmentation in the field of image
or video processing, and data transformations, such as rotation, reduction, enlargement, or
cropping, do not affect data identification.

However, for the data used in our experiment, the meaning of each value is crucial.
Furthermore, although the order of the feature values may not be significant, if the feature
values are swapped, the meaning of the data can change. Therefore, we utilize Algorithm 1
as the data augmentation method for contrastive learning. We merged the 10 min period
before the anomaly occurrence, which was assumed to be a normal state, with the 10
min period of normal state data in close proximity to the anomaly occurrence to generate
augmented data.

Algorithm 1. Abnormal Data Augmentation Algorithm

Input: Normal Dataset is N, Abnormal Dataset is AbN
Output: Augmented Dataset

1: forifrom 0 to length of N

2: newArr < AbN [i]

3: newArr [0] <+ N [0]

4 newArr [1] + N [1]

5 Argli] <+ newArr
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5. Experiment and Results
5.1. Experimental Environment

The performance of the proposed model was evaluated through a 10-fold cross-
validation, with 90% of the data used for training and 10% for testing. The experiments
were repeated 10 times, and the results of each repetition were averaged. The experiments
were conducted on a computer with an Intel Xeon E5-2670 CPU (2.30 GHz) and an NVIDIA
GeForce RTX 2080 Ti.

In terms of evaluating the performance of the comparative models, the cases for
identifying the anomaly state are presented in Table 2, where true positive (TP) indicates
the correct identification of an actual anomaly state, true negative (TN) represents the
correct identification of an actual normal state, false positive (FP) refers to the incorrect
identification of a normal state as an anomaly state, and false negative (FN) represents the
incorrect identification of an anomaly state as a normal state.

Table 2. Confusion matrix for performance evaluation.

Actual
Abnormal Normal
Predicted
Abnormal P FP
Normal EN TN

Six evaluation measures were employed to assess the experimental results, including
accuracy (ACC), true positive rate (TPR), false positive rate (FPR), precision, recall, and F1
score. ACC reflects the proportion of all correctly classified states, while TPR represents
the percentage of actual anomalies that were accurately predicted, and FPR represents the
percentage of actual normal states that were incorrectly predicted as anomalies. Precision
is defined as the ratio of true positives to the total number of positive predictions, while
recall is the ratio of true positives to the total number of actual positives. The F1 score
is the harmonic mean of precision and recall. Equation (1) provides the definitions of
these measures.

ACC: (TP + TN) / (TP + FP + EN + TN)
TPR: TP / (TP + FN)
FPR: FP / (FP + TN) )
Precision: TP / (FP + TP)
Recall: TP / (FN + TP)
F1 Score: 2 x (Precision x Recall) / (Precision + Recall)

In the context of a company’s information system, the accurate detection of anomalous
states is of higher priority than mistakenly classifying normal states as anomalous. This is
because failing to detect the actual anomalous states poses a greater risk than misclassifying
normal states. Thus, in this study, we emphasize the importance of TPR as a critical measure
for evaluating a model’s ability to correctly identify anomalous states.

5.2. Performance Comparisons

We conducted experiments to compare the performance of CNN and LSTM models
with our proposed contrastive learning model for anomaly detection. Specifically, we
conducted experiments with and without negative sampling to evaluate the significance of
applying this method. Table 3 presents the experimental results with negative sampling,
whereas Table 4 presents the results without negative sampling.
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Table 3. Experiment Results of CNN, LSTM, and Contrastive Learning without Negative Sampling.
(Bold:Best performance).

Metric CNN LSTM Contrastive Learning
ACC 0.9897 0.9913 0.9957
TPR 0.9191 0.9048 0.9333
FPR 0.0068 0.0043 0.0011
Precision 0.8681 0.9097 0.9749
Recall 0.9191 0.9048 0.9333
F1 Score 0.8929 0.9073 0.9536

Table 4. Experiment Results of CNN, LSTM, and Contrastive Learning with Negative Sampling.
(Bold:Best performance).

Metric CNN LSTM Contrastive Learning
ACC 0.9858 0.9860 0.9916
TPR 0.9880 0.9867 0.9947
FPR 0.0164 0.0147 0.0116
Precision 0.9836 0.9853 0.9885
Recall 0.9880 0.9867 0.9947
F1 Score 0.9858 0.9860 0.9916

The experimental results presented in Tables 3 and 4 reveal that the incorporation of
negative sampling improves the TPR and F1 scores. All CNN, LSTM, and the proposed
contrastive learning model with negative sampling achieved an ACC greater than 98%,
demonstrating high classification performance. With regards to TPR, which was the main
emphasis of the study and measures the ability to correctly detect anomalies, the CNN,
LSTM, and contrastive learning models with negative sampling achieved performance
levels of 98.80%, 98.67%, and 99.47%, respectively. Based on these results, negative sampling
has been proven to be effective for CNN, LSTM, and contrastive learning models.

The proposed model achieved an ACC of 99.16%, a TPR of 99.47%, a FPR of 1.16%, and
an F1 score of 99.16%. Furthermore, the proposed approach surpassed the CNN and LSTM
models with negative sampling in all the evaluation metrics. The experimental results
indicate that the proposed data augmentation technique for contrastive learning and the
dataset construction method are effective in detecting anomalies in information systems.

The presented ROC curves in Figure 8 demonstrate the high classification performance
of the experimental models. Among the three models, our proposed contrastive learning
method exhibited the most superior performance, while the LSTM model showed relatively
lower performance.

5.3. Discussion

The detection of system anomalies in real-world business environments is crucial
because system administrators often handle various tasks simultaneously and may not
detect anomalies immediately. In this paper, we propose a method to address the data
imbalance issue in real-world settings by using a performance monitoring system for
data collection, negative sampling to overcome the challenge of collecting insufficient
anomaly data, and contrastive learning in numerical data to achieve good performance with
limited data. Firstly, we propose a data collection method that can be easily implemented
by companies to gather training data for deep learning models that suit their specific
environment. Secondly, as our experimental results show, using negative sampling to
balance the data distribution between anomalous and normal instances leads to better
performance than using imbalanced data for training. Finally, we experimentally confirmed
that the data augmentation method for contrastive learning can be applied to numerical
data and achieve good performance.
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Figure 8. The ROC curves for the CNN, LSTM, and proposed Contrastive Learning Model. (The
blue dotted line represents the reference line, while the gray line represents the magnified image of a
particular point).

We applied our proposed method to deep learning models, including contrastive
learning models, and compared their performance to commonly used models such as CNN
and LSTM. Our experiments show that satisfactory results can be achieved through proper
data processing; however, we believe that better sampling methods could further improve
performance. We also tested the spectral residual-CNN model for anomaly detection [4], but
it is not included in our results. However, anomalies were not detected in the data collected
for this study, possibly due to disparities in usage patterns between actual companies and
the system usage patterns at IDC.

Our study is particularly significant because there are relatively few studies that focus
on a company’s information system, which is critical for its operations. By implementing
our proposed method as a module for anomaly detection in a company’s monitoring
system, data can be collected for learning, and a more user-friendly and practical function
can be provided compared to the current alert systems. This can greatly aid in the operation
of a company’s system.

6. Conclusions

In this paper, we propose a deep learning approach for detecting anomalies in real-
world corporate environments. To address the challenge of imbalanced data between
normal and anomalous states, we proposed a contrastive learning method with negative
sampling. Additionally, we presented a data augmentation technique that can achieve
high performance even with limited training data. Enterprise information systems are
critical for managing personnel, budgets, and financial resources, and malfunctions can
have a significant impact on business operations. Despite having designated departments
and system administrators to monitor and respond to anomalies, the complexity of these
systems makes it difficult to detect and respond to them quickly.

In order to address this challenge, we collected 338 days of actual operational data
from enterprise information systems and proposed a contrastive learning approach that can
detect anomalous states in information systems before or immediately after they occur. We
used negative sampling to address the data imbalance issue and generated augmented data
by modifying less influential points while maintaining the anomalous state. The proposed
approach achieved high performance with ACC, TPR, and FPR scores of 99.16%, 99.47%,
and 1.16%, respectively, outperforming CNN and LSTM models. The proposed method
can be integrated into an enterprise’s monitoring system to collect data for learning and
provide a more user-friendly and practical function than the current alert system.
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The deep learning model we proposed in this study can be integrated into an APM
(application performance management) system to detect anomalies in real-time data. Addi-
tionally, a supplementary system can be developed to continuously collect real-time data
and alert system administrators when anomalies occur. This approach would be more
advanced than the current monitoring system and provide a significant advantage for
companies in maintaining system operations.

In future research, we can explore differentiating significant feature data to identify
anomalies in information systems, conduct comparative analysis of new deep learning
models, and investigate real-time data processing for anomaly detection.
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