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Abstract: Fundamental sheep behaviours, for instance, walking, standing, and lying, can be closely
associated with their physiological health. However, monitoring sheep in grazing land is complex as
limited range, varied weather, and diverse outdoor lighting conditions, with the need to accurately
recognise sheep behaviour in free range situations, are critical problems that must be addressed.
This study proposes an enhanced sheep behaviour recognition algorithm based on the You Only
Look Once Version 5 (YOLOV5) model. The algorithm investigates the effect of different shooting
methodologies on sheep behaviour recognition and the model’s generalisation ability under different
environmental conditions and, at the same time, provides an overview of the design for the real-time
recognition system. The initial stage of the research involves the construction of sheep behaviour
datasets using two shooting methods. Subsequently, the YOLOV5 model was executed, resulting
in better performance on the corresponding datasets, with an average accuracy of over 90% for
the three classifications. Next, cross-validation was employed to verify the model’s generalisation
ability, and the results indicated the handheld camera-trained model had better generalisation ability.
Furthermore, the enhanced YOLOV5 model with the addition of an attention mechanism module
before feature extraction results displayed a mAP@0.5 of 91.8% which represented an increase of 1.7%.
Lastly, a cloud-based structure was proposed with the Real-Time Messaging Protocol (RTMP) to
push the video stream for real-time behaviour recognition to apply the model in a practical situation.
Conclusively, this study proposes an improved YOLOV5 algorithm for sheep behaviour recognition
in pasture scenarios. The model can effectively detect sheep’s daily behaviour for precision livestock
management, promoting modern husbandry development.

Keywords: improved YOLOV5; pasture; grazing sheep; behaviour recognition

1. Introduction

Recently, animal welfare has been discussed alongside intensive farming [1,2] for
livestock species such as cattle, sheep, and horses, linking natural pasture benefits to animal
health. Nevertheless, complications occur in raising livestock [3], especially in constructing
modern natural pastures and sustaining grassland resources which consequently influence
animal welfare. Likewise, it is vital to design supporting modern monitoring equipment.
Since animal behaviour is a good indicator of animal health, monitoring animal behaviour
makes a good foundation for the timely detection of abnormalities. Despite that, manual
observation makes it impossible to meet the schedule in pastures where animals are spatially
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active while being inefficient and costly when numerous animals are observed [4]. Hence,
the scenario constitutes the essentiality of using certain monitoring equipment to observe
the daily animal behaviour in specific situations (e.g., watering holes, etc.). In other words,
introducing automatic identification for analysing animal behaviour would benefit animal
well-being in open pastures while improving the efficiency of farm monitoring [5].

Presently, two predominant approaches in animal monitoring are: contact sensor
devices and video surveillance-based camera devices. Sensor devices typically consist of:
collars, cage covers, ear tags, and pedometers. These devices serve functions as positioning,
temperature monitoring, acceleration, and sound sensors. The video surveillance devices
are primarily camera-based computer vision methods. Here, the video data are combined
with deep learning models for behavioural recognition, abnormal state recognition, and
other observations of the animals’ daily behaviour. As a non-contact and cost-effective
technology, computer vision is a prominent trend in animal behaviour recognition [1,6–11].
Computer vision is consistently evident in research on smart farming in animal husbandry
for pig, cattle, and sheep species, detecting behaviours that have led to crucial indicators
for solving real-life production problems.

Researchers such as Nasirahmadi et al. have used captured images for processing to
study the lying patterns of pigs under commercial farm conditions [12,13]. Meanwhile,
Chen et al. [14] conceptualised a ResNet50 convolutional neural network and long short-
term memory (LSTM)-based method for pig drinking and water dispenser play behaviour
recognition, with classification accuracies of 0.87 and 0.93 in the body and head regions of
interest, respectively. Jiang et al. [15] proposed an algorithm based on YOLOV3 for critical
part detection in dairy cows in complex scenarios, and the algorithm detected each part
with an average accuracy of 0.93. Similarly, Cheng et al. [16] proposed a deep YOLOV5
network-based behaviour recognition model for sheep in housed scenes, showing that the
algorithm can be used in structured settings with a deep learning model in a structured
scenario. This exhibits that it is unnecessary to use a large amount of training data when
the training data and the data generated in a real application have the same features. At
the core of computer vision are the deep learning algorithms used for detection, the most
important of which are convolutional neural networks (CNNs), capable of automatically
learning invariant features in a task in a layered manner [17]. Faster region-convolutional
neural networks (R-CNNs) [18] and ZFnet [19] were used to identify the individual feeding
behaviour of pigs [20] by detecting the letters marked on the head. In surveillance videos,
Faster R-CNN was used to detect dairy goats [21].

Moreover, Wang et al. modified YOLOV3 based on the filter layer, which was em-
ployed to detect key parts of cows in natural scenes [14,22]. Wen et al. [23] applied a
convolutional neural network (CNN) for a cow detection and counting system, obtaining
an accuracy of 0.957. A YOLOV5-ASFF target detection model to determine bovine body
parts, namely, individual, head, and leg, is proposed by Qiao et al. [24] in complex scenes.
The target detection model is based on convolutional neural networks for feature extraction
and is a contemporary computer vision method applied in all fields of precision agriculture.
For instance, Zhao et al. [25] utilised an improved YOLOV5-based method to accurately
detect wheat spikes in unmanned aerial vehicle (UAV) images to address false detection
and missed detection of spikes caused by occlusion conditions. Wang et al. [26] built
an image acquisition system based on a fruit pose adjustment device and used the deep
learning-based YOLOV5 algorithm for the real-time recognition of apple stems/calyxes.

A Faster R-CNN model based on the Soft-NMS algorithm was used for real-time
detection and localisation of sheep under complex feeding conditions [27]. The current lit-
erature on sheep behaviour particularly refers to studies with intensive housing conditions,
which make observation and data collection more accessible and convenient. Yet, fewer
studies are related to computer vision applications under natural grazing conditions. The
reasons could be that the large size of the pasture is not conducive to the application, and
the density of sheep in free grazing conditions is too high, consequently placing greater
demand on data acquisition and the robustness of subsequent models. To counter the
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challenge of monitoring sheep behaviour in pastures, an improved YOLOV5 recognition
algorithm is proposed in this study to detect sheep’s daily behaviour (standing, feeding,
and lying) in grazing pastures. At the same time, datasets were constructed for different
shooting methods to verify the model’s generalisation capability and provide a basis for
subsequent applications. This research has collected relevant data in conjunction with
actual pasture scenarios, focusing on the behaviour of grassland-grazing sheep to design
experimental studies.

2. Materials and Methods
2.1. Experiments and Data Acquisition

The site of the experiment is located in a grassland field of a small town of Xeltala,
Hulunbeier, Inner Mongolia Autonomous Region of China, longitude: 120.00435, latitude:
49.34809. The field had a length of 40 m and a width of 10 m and was fenced into three
small 40 m × 3.3 m areas with natural grass and watering basins, freely available for sheep
feeding and drinking.

In the experiment, two movable fences were used to adjust area size, predominantly
to facilitate comprehensive observation of the sheep’s behaviour during grazing using
the camera, making it easier to change the experimental site after the grass vegetation
was foraged. Two filming devices were selected for the experiment: a camera that was
fixed to the fence (HIKVISION Fluorite Cloud H8 model) and a handheld recording device
(Snapdragon S3 sports camera). The cameras were placed on both sides of the fence
(Figure 1a) to capture images of the sheep’s behaviour during free grazing. The camera
positions and angles were manually adjusted on both sides of the fence to observe sheep
behaviour completely.
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Figure 1. (a) Fixed cameras on both sides of the area. (b) The manual use of a motion camera for
follow-along shooting.

The handheld device (Figure 1b) was operated manually with a tripod, following the
sheep’s daily behaviour through image recording. The two devices had different recording
specifications; the camera device recorded in MP4 format at 1920 × 1080 and 30 frames per
second, and the handheld device recorded in MP4 format with a pixel size of 1920 × 1440 at
30 frames per second. The experiment was conducted from 22 August 2022 to 19 September
2022, with a total of 22 sheep observed, with two sheep being observed in the experimental
area each day in rotation to ensure that each sheep was included in the image data captured
by both devices. All 22 sheep in our study were from the Hulunbeier breed, comprising
13 ewes and 9 rams, aged between one and two years. The selection criteria specifically
required the exclusion of ewes with lambs or in labour to ensure that the research had only
comprised healthy animals. More than 500 h of valid video for the experimental data were
recorded. The behaviours observed during the experiment were feeding, standing, lying,
walking, and running.
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2.2. Dataset Construction

This study focuses on constructing a sheep behaviour dataset using the pictures of
22 sheep of different perspectives and states throughout the experiment. The images in the
dataset were manually selected, considering the different lighting conditions throughout
the day. The photos were selected based on the lighting conditions, and some nighttime
observation photos were taken by the fixed camera video. The complete image dataset en-
compasses sheep feeding scenes in different weather conditions in the grassland, producing
a complex data scene.

The pictures of sheep behaviour were taken both via video and handheld camera. A
total of 1656 pictures were captured, of which 703 pictures were taken by fixed cameras
and 953 pictures were captured by handheld devices. The sheep in the dataset had three
behaviours: feeding, standing, and lying (Table 1, Figure 2). We then labelled the images
to produce a label file that conformed to the YOLO training format. The images and tag
files were divided into a dataset of 1490 images (1101 standing tags, 1952 feeding tags, and
600 lying tags) and a validation set of 166 images (105 standing tags, 210 feeding tags, and
67 lying tags). After this, we separated the data between the stationary camera and the
handheld device for comparison training to test the model’s ability on different acquisition
methods and scenes and the influence of the acquisition methods and scenes on the model.

Table 1. Definition of sheep behaviour.

Behaviour Name Definition

Feeding When the sheep’s head is positioned below the body in the picture

Standing When the sheep’s head is positioned above or horizontal to the body in
the picture

Lying When the sheep’s body is on the ground in the picture
The table describes how we determine the behaviour of the sheep when selecting photographs.
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2.2.1. Scenario Dataset Construction

To verify the effect of the scene on behavioural recognition, separate datasets were
constructed for the scenes presented above, with photos taken by both the fixed camera
and handheld camera (Table 2). The angle of view of the sheep captured by the two camera
types differed, with the fixed camera capturing a top view at about 30◦ and the handheld
camera capturing a flat view at about 180◦ (Figure 3).

Table 2. Overview of different scenario datasets.

Shooting Style Overview of the Dataset

Fixed cameras
The dataset consists of 703 images, including 632 images in the training
set and 71 images in the validation set, with 416 standing labels, 263 lying

labels, and 936 foraging labels.

Handheld camera
The dataset consists of 953 images, with 857 images in the training set
and 96 images in the validation set, with 685 standing labels, 337 lying

labels, and 1016 foraging labels.
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2.2.2. The Difference between Scenarios

Two primary shooting scenarios were included to construct the scenario dataset: fixed
and handheld cameras. While both methods produced different shooting angles, the
primary difference was the impact of natural lighting on the resulting images. For the
fixed camera, we conducted 24 h of shooting throughout the day, capturing the varying
effects of sunlight on the camera images (Figure 4). The scenarios were complex and
diverse, resulting in significant differences between the images. In contrast, we conducted
manual shooting at a closer distance with a higher proportion of sheep in the frame for the
handheld camera. The impact of lighting on the images was less pronounced, resulting in
fewer differences between pictures. Overall, these different shooting methods enabled us
to capture various scenarios and lighting conditions, providing a comprehensive dataset
for our research (Table 3).

Table 3. Introduction to different scenario datasets.

Datasets Features

Fixed cameras datasets
These pictures are categorised according to significant lighting

influence, distinct variations between images, and a considerable
range in the proportion of captured sheep within each image.

Handheld camera datasets
The pictures were taken under consistent lighting conditions,

resulting in minimal lighting variation between them and
providing clear and detailed captures of the sheep.
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2.3. Data Enhancement

To make the model training converge faster to achieve better results and obtain a robust
model, we used common data augmentation, where we changed the data systematically
or randomly using code. For images, common data enhancements including flipping,
adjusting colours, and adding random noise were applied (Figure 5). We also used the
Mosaic data enhancement method proposed in the YOLOV4 [28] paper. The basic idea of
Mosaic data enhancement is to stitch multiple images together to produce a new image.
These images can be from different datasets or the same dataset. The stitched images can
be used to train a grazing sheep behaviour recognition model to improve the model’s
generalisation ability.
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2.4. Model Improvement Implementation
2.4.1. YOLO Series Models

The You Only Look Once (YOLO) [29] family is a fast target detection model for
object recognition in images or videos, which differs from traditional classification and
localisation models (e.g., the R-CNN family) by predicting multiple targets in a single
step. The YOLO family of models includes YOLOV1, YOLOV2, YOLOV3, etc., with
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the latest version currently being the YOLOV8 model. The series of models consists of
three main parts: a backbone network for extracting image features, a feature fusion
layer for combining different scale features for prediction, and a YOLO detection head
to give multiple predictions. The primary choice in this article is the YOLOV5s model
(network structure as shown in Figure 6) for improving daily behaviour recognition during
sheep grazing. Three main modules were chosen to strengthen the network. Firstly, the
convolutional block attention module (CBAM) [30] was included to adjust the relationship
between channel and space to enhance the performance of convolutional feature extraction.
Then, the idea of the bidirectional feature pyramid network (BiFPN) [31] was introduced
in the feature fusion stage to configure weights on features of different scales for fusion.
Lastly, the residual variant selective kernel networks-skip connect (SKNet-sc) was added.
The SKNet-sc introduces the attention mechanism to the fused feature map to enhance the
feature role and improve the accuracy for subsequent detection.
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2.4.2. CBAMs

Factoring in many lighting conditions and diverse recognition scenes to improve
extract image features, we introduced the CBAM. The CBAM can enhance the ability of
convolutional neural networks (CNNs) to extract features by introducing channel and
spatial attention mechanisms to improve network performance.

Sanghyun et al. [30] proposed a CBAM (Figure 7) that combines feature channel
information and feature spatial information, which can be divided into two submodules:
the channel attention module (CAM) and the spatial attention module (SAM). The channel
attention module is mainly used to adaptively adjust the importance of each channel
to improve the representation of features. The spatial attention module captures the
spatial relationships in the feature map. By combining the CAM and SAM, the CBAM can
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adaptively adjust the channels and spatial relationships to improve the performance of
the CNN.
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2.4.3. BiFPN Network Architecture

BiFPN is a shorthand for bidirectional feature pyramid network, which is a neural
network architecture commonly utilised in computer vision tasks, especially in object
detection and segmentation. This architecture is an extension of the feature pyramid
network (FPN) and aims to address the challenge of detecting objects at varying scales in
an image. The BiFPN is made up of multiple layers that refine and aggregate features from
different levels of the feature pyramid. The significant innovation of the BiFPN lies in its use
of both bottom-up and top-down pathways to transmit information across layers, allowing
for bidirectional flow of information. This approach captures more detailed features at
different scales, resulting in superior object detection and segmentation performance. We
have introduced this structure into YOLOV5; the specific network fusion structure is shown
in Figure 8a. The main idea was to set different weights for different features, then add
them together, and finally perform activation and convolution to obtain the fused features,
as shown in Figure 8b.

2.4.4. SKNet-sc Module

SKNet refers to selective kernel network, a neural network architecture developed to
enhance the performance of convolutional neural networks (CNNs) in image recognition
tasks. SKNet focuses on learning the importance of different convolutional kernel sizes
at each network layer and selectively combining them to capture both local and global
features in the input image. SKNet-sc is based on SKNet [32] with the addition of a resid-
ual connection. SKNet employs dynamically selected convolutions to improve accuracy
through three main operations: split, fuse, and select. Following these operations, a skip
connection is established between the output and input to integrate the fused and filtered
features with the original ones. The features are then scaled up to provide a foundation for
subsequent detection using the detection head. The network structure is shown in Figure 9.
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2.4.5. Improved YOLOV5 Model

In this study, three modules were chosen to improve YOLOV5. Before feature ex-
traction, a CBAM was added to increase the channel and spatial attention to improve
convolution performance. A subsequent convolution was performed to extract features us-
ing a BiFPN structure for feature fusion after feature extraction. The combining of features
and weights of different sizes and scales to fuse features makes full use of the SKNet-sc
structure for each of the three scales before detection. An attention mechanism was added
to the fused features so that the feature map amplified more critical features and improved
accuracy. The improved network model is shown in Figure 10.

2.5. Model Evaluation

This study used model evaluation metrics commonly utilised in target detection,
including Precision, Recall, F1-score, average precision (AP), mean average precision
(mAP), frames per second (FPS), and model size to evaluate our experimental model.
Precision indicates the proportion of results predicted to be true for a behaviour of sheep;
Recall indicates the proportion of all data predicted to be true for a behaviour. The F1-score
is used to assess the relationship between Precision and Recall evaluations. AP is the
average accuracy for each classification of sheep’s behaviour. The mAP is an average of the
average accuracy of the three behavioural classifications, resulting in the average accuracy
of the model as a whole, which is the main evaluation indicator of the model. At the same
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time, the calculation of mAP adopts the calculation method of multiple IOU thresholds.
The mAP@0.5 is the average accuracy of the three behaviours when the IOU threshold is 0.5.
The mAP@0.75 is the average accuracy of the three behaviours when the IOU threshold is
0.75. The mAP@0.5:0.95 represents the average mAP of different IOU thresholds (from 0.5 to
0.95, step size 0.05). FPS is used to evaluate the speed of object detection, which refers to
the number of images that can be processed per second.
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For the above model evaluation metrics, the specific formulas are as follows: true
positive (TP) is the number of positive samples detected correctly. False positive (FP) is
the number of negative samples detected as positive. False negative (FN) is the number of
positive samples detected as negative.

Precision =
TP

(TP + TN)

Recall =
TP

(TP + FN)

F1 =
2× Precision× Recall
(Precision + Recall)

AP =
∫ 1

0
P(r)dr
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mAP =
∑K

i APi

K

3. Results
3.1. Recognition Results for Different Scenes

The scenes captured by the fixed camera and the scenes captured by the handheld
camera were separately processed in the YOLOV5 model for training and comparison.
Different shooting methods and scenes were used to compare different effects of the
recognition model on the same detection target. The model trained by the dataset of the
same shooting method positively affected its own verification set, which could reach more
than 90% mAP@0.5. The training results are shown in Table 4.

Table 4. Model evaluation results for different scenarios.

Filming Methods Behaviour P
(%)

R
(%) F1 AP

(%)
mAP@0.5

(%)

Fixed cameras
Feeding 92.4 91.2 0.92 94.6

91.1Standing 88.6 78.2 0.83 84.9
Lying 95.6 87.8 0.92 94.0

Handheld cameras
Feeding 92.7 91.2 0.92 93.7

91.7Standing 91.5 84.8 0.88 90.1
Lying 93.4 88.5 0.91 91.3

While the model performs relatively well for each scenario individually, its accuracy
in recognising standing behaviour is notably lower than for the other two behaviours. This
could be attributed to the fact that standing behaviour closely resembles feeding behaviour
and can be easily mistaken for it. Additionally, the dataset for standing behaviour is smaller
than that for feeding behaviour, which further contributes to the model’s lower accuracy in
identifying standing behaviour. To verify the generalisation ability of the models in the
respective scenes, cross-validation was utilised. We cross-validated the validation sets of
each of the two models (using the model for the fixed camera to validate the validation
set for the handheld camera and using the model for the handheld camera to validate the
validation set for the fixed camera scenes). The validation results are presented in Table 5.

Table 5. Representation of Model cross-validation results for both scenarios.

Filming
Methods Validation Models Behaviour P

(%)
R

(%) F1 AP
(%)

mAP@0.5
(%)

Fixed
cameras

Handheld camera
dataset generated model

Feeding 91.3 89.2 0.90 91.6
83.5Standing 80.8 75.1 0.78 78.8

Lying 91.0 71.7 0.80 80.0

Handheld
cameras

Fixed camera dataset
generated model

Feeding 74.2 87.5 0.80 84.3
74.2Standing 91.0 62.9 0.74 72.0

Lying 93.7 62.5 0.75 66.3

Through cross-validation, it can be seen that the mAP@0.5 of the two models decreased
in contrast with the previous comparison. The generalisation ability of the fixed camera
model is not as good as that of the handheld camera model, but the mAP@0.5 of the two
models is still above 70%, indicating that they still possess a certain level of generalisation
ability. To determine the effect of the model, the entire dataset was put into the model for
training, and the specific results obtained are shown in Table 6.
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Table 6. YOLOV5 training overall dataset results.

Behaviour P
(%)

R
(%) F1 AP

(%)
mAP@0.5

(%)

Feeding 92.5 89.0 0.91 92.7
90.1Standing 92.0 77.1 0.84 85.8

Lying down 96.6 85.0 0.92 92.1

In summary, the results indicate that the YOLOV5 model performs equally well on
each dataset, but cross-validation on different datasets shows that the model generalisation
ability is different. Hence, for real-world applications, data from more scenarios need to be
collected to improve the robustness of the model.

3.2. Improved Results for YOLOV5

Before improving the model, we trained three versions of YOLOV specifically, YOLOV5,
YOLOV6, and YOLOV7 on our dataset. During training, we kept the network structure of
the three models constant and ensured consistent training parameters. The final training
results are shown in Table 7. The results indicate that YOLOV6 and YOLOV7 did not
perform well on this dataset, despite their unique network structure improvements. Thus,
we ultimately chose YOLOV5 for further improvement.

Table 7. Comparison between YOLO versions.

Model mAP@0.5
(%)

mAP@0.75
(%)

mAP@0.5:0.95
(%)

Model Size
(MB)

FPS
(Frame/s)

YOLOV5s 90.1 68.3 63.1 27.1 48
YOLOV6s 90.9 67.8 61.6 36.2 45
YOLOV7 91.3 66.2 61.0 71.3 38

To improve the recognition accuracy of the model, we refined the YOLOV5 model.
We employed the CBAM before feature extraction, used BiFPN in feature fusion, and
used SKNet-res to add a feature attention mechanism after feature fusion. We performed
ablation experiments to explore the influence of each module on the final experimental
results. Table 8 reveals the effect of each module on the experimental results in the ablation
experiment. After adding the CBAM, mAP@0.5 increased by 0.9%, mAP@0.75 increased
by 1.1%, mAP@0.5:0.95 increased by 0.4%, and the model size did not change. After re-
placement with the BiFPN module, mAP@0.5 increased by 1.1%, mAP@0.75 increased by
2.2%, mAP@0.5:0.95 increased by 0.5%, and the model’s size increased by 0.3 MB. After
adding SKNet-res, mAP@0.5 increased by 0.4%, mAP@0.75 and mAP@0.5:0.95 decreased to
varying degrees, and the model’s size increased by 110.9MB. Notably, SKNet-res has more
parameters, and the effect of training after adding it is relatively poor. After that, the three
modules were arranged and added to the network. Compared with the mAP@0.5 indicators
in YOLOV5s, the indicators are improved, but the mAP@0.75 and mAP@0.5:0.95 do not show
a stable improvement. The three modules were then added to the network at the same
time. For all three indicators, mAP@0.5 increased by 1.7%, mAP@0.75 increased by 2.6%, and
mAP@0.5:0.95 increased by 0.3%. Due to the SKNet-res module’s addition, the model’s size
increased by 111.2 MB. In addition to evaluating the performance of the models, we anal-
ysed their inference speed using a Tesla P100 (16G) graphics card and measured the frames
per second (FPS) for each model. Our results indicate that the inference speed decreased as
additional modules were added, with the SKNet-sc module having the greatest impact on
the performance of the models. This information is crucial for optimising the performance
of the models and ensuring that they can operate efficiently in real-world scenarios.
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Table 8. Results of ablation experiments.

YOLOV5s CBAM BiFPN SKNet-sc mAP@0.5
(%)

mAP@0.75
(%)

mAP@0.5:0.95
(%)

Model
Size (MB)

FPS
(Frame/s)

√
90.1 67.3 63.1 27.1 48√ √
91.0 68.4 63.5 27.1 35√ √
91.2 69.5 63.6 27.4 48√ √
90.6 67.0 62.0 138.0 26√ √ √
91.1 68.1 63.3 27.4 48√ √ √
90.9 67.9 63.0 138 22√ √ √
90.6 68.0 63.0 138.3 26√ √ √ √
91.8 69.9 63.4 138.3 22

Table 8 shows that adding a single module and combining the three modules to train
the model improved the mAP@0.5. However, different performances are seen for mAP@0.75
and mAP@0.5:0.95. Although the three modules were added to the network structure, the
model’s size increased exponentially, mainly due to the large number of calculations of
SKNet-res. Table 8 illustrates that removing the SKNet module maintains the performance,
as the model size is relatively small and the inference speed remains normal. From the
practical engineering point of view, the final model selection includes the CBAM and BiFPN
module model.

3.3. Model Applications

This study accomplishes the recognition of some individual sheep behavioral elements
in a free ranging scenario, showing the robustness and applicability of the method. The
improved YOLOV5 model is small, can be embedded in a camera after pruning for a
more flexible application, and can be configured to a server for online real-time detection,
facilitating the monitoring of pasture-related information. After constructing the model and
studying the real-time detection system, we propose an application scenario for the model
that we have tested but not yet applied in the above-mentioned experimental scenario. We
plan to apply it in our further research. In the following section, we describe the model’s
application scenarios and the design of a real-time detection system for testing the model.

3.3.1. Sheep Behaviour Recognition Scenarios

To better apply the model and detect the behaviour of sheep in grazing scenarios, we
place the camera above the water source for sheep behaviour recognition (Figure 11). We
use video from the camera to observe the sheep’s state by detecting their daily behaviour
remotely, such as feeding.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 19 
 

 

 

Figure 11. Sheep identification scene map. 

3.3.2. Real-Time Recognition System Design 

This real-time monitoring system is based on a streaming server for detecting sheep 

behaviour, which can be viewed in real time on the client side with statistical analysis of 

some information. The system is divided into three main parts, one division is the camera, 

the second division is the server, and the third division is the client (Figure 12). The effect 

of real-time recognition and viewing is achieved through video streaming services. The 

camera needs to support common push streaming protocols, including Real-Time Mes-

saging Protocol (RTMP), etc.; the server side needs an intranet fixed internet protocol (IP) 

and a simple real-time server (Srs) as a streaming media server which supports common 

streaming media transmission protocols as well as pull and push streaming services. An 

improved YOLOV5 sheep behaviour recognition model is running on the server faction 

to change the input source to a streaming address. The recognised images are encapsu-

lated into a video and pushed to the playback address; the client can view the recognised 

video in a web browser. 

 

Figure 12. Real-time system application scenario diagram. 

4. Discussion 

When performing model training comparisons with photos from different shooting 

styles, the data from the two shooting styles differed; however, their label ratios were es-

sentially the same. The models differed by only 0.6% on their respective validation sets’ 

mAP@0.5, while mAP@0.5 with models from different shooting styles across the entire dataset 

Figure 11. Sheep identification scene map.



Sensors 2023, 23, 4752 14 of 17

3.3.2. Real-Time Recognition System Design

This real-time monitoring system is based on a streaming server for detecting sheep
behaviour, which can be viewed in real time on the client side with statistical analysis
of some information. The system is divided into three main parts, one division is the
camera, the second division is the server, and the third division is the client (Figure 12). The
effect of real-time recognition and viewing is achieved through video streaming services.
The camera needs to support common push streaming protocols, including Real-Time
Messaging Protocol (RTMP), etc.; the server side needs an intranet fixed internet protocol
(IP) and a simple real-time server (Srs) as a streaming media server which supports common
streaming media transmission protocols as well as pull and push streaming services. An
improved YOLOV5 sheep behaviour recognition model is running on the server faction to
change the input source to a streaming address. The recognised images are encapsulated
into a video and pushed to the playback address; the client can view the recognised video
in a web browser.
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4. Discussion

When performing model training comparisons with photos from different shooting
styles, the data from the two shooting styles differed; however, their label ratios were
essentially the same. The models differed by only 0.6% on their respective validation
sets’ mAP@0.5, while mAP@0.5 with models from different shooting styles across the entire
dataset differed by less than 1%. Cheng et al. [16] investigated the performance of sheep
behaviour in housing on different picture features, with various features based on different
shooting angles to build features, pointing out that very few data are needed to achieve
good results when the scene is fixed. Yang et al. [4] used a fully convolutional network
(FCN) to segment images of lactating sows with different scenes, variable illumination,
etc. When selecting data for the training model, there is a limit to the number of photos
for the same scene. The model convergence cannot continue to improve accuracy after
reaching a certain number of iterations. When performing behavioural recognition of sheep
in grassland, multiple scenes of data collection are used to maintain the robustness of
the model.

We selected the YOLOV5 model for improving the behavioural recognition model.
As shown in Table 7, YOLOV5 outperforms other models with only small differences in
recognition accuracy, but with fewer parameters and faster inference speed. Additionally,
previous studies on digital agriculture have extensively used and applied YOLOV5, which
has demonstrated both high accuracy and fast inference speed. Therefore, we chose to
utilise and improve the YOLOV5 model for our study. Qi et al. [33] proposed an improved
SE-YOLOV5 network model for identifying tomato virus diseases, which achieved a 1.87%
increase in mAP@0.5 compared to the original YOLOV5 model. The SE-YOLOV5 model can
effectively detect regions affected by tomato virus diseases. Wang et al. [34] proposed an
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enhanced YOLOV5-based method for detecting cow oestrus behaviour, which increased
the model’s accuracy in identifying cow oestrus events by 5.9%. To improve the model,
we explored the progress of the model accuracy by adding different modules. Hence, the
recognition effect was improved by adding several modules. The final mAP@0.5 showed
an improvement of 1.7%, as shown in Table 8. The results in Figure 13 demonstrate
the successful performance of the model in recognising sheep behaviour. Nevertheless,
obscuration hindered the accuracy of judging the behaviour of the sheep. For instance, if the
sheep’s position was relatively close to the picture, the sheep was unidentifiable, resulting
in low accuracy. Additionally, the angle of the camera view has a significant impact on the
quality of the image, and it may be beneficial to use multiple cameras to capture different
perspectives of the sheep’s behaviour and obtain more comprehensive data.
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Real-time detection is a valuable application for models, as they can be integrated
into real-time monitoring systems to maximise their benefits. This paper presents a design
solution for a real-time system, providing guidance for model deployment. Wang et al. [35]
developed the YOLO-CBAM convolutional neural network model to detect Solanum rostra-
tum Dunal seedlings and conducted real-time testing using an inspection vehicle equipped
with cameras, image processors, and other devices. Real-time detection systems can either
rely on server-side detection through network transmission or deploy models on edge
devices for detection, with the choice mainly determined by the specific detection scenario.

Since this study focuses on the daily behavioural recognition of sheep in pastures, in
the future, more scenarios in sheep abnormality recognition and sheep social behaviour
can be combined to ensure more sensitive and timely recognition of abnormal sheep
(those exhibiting behavioural abnormalities such as movement disorders and aggressive
behaviour) in the pasture.

5. Conclusions

From the focal point of sheep behaviour recognition in the pasture, this study utilised
different shooting methods to model sheep’s daily behaviour (standing, feeding, lying)
based on the YOLOV5 algorithm in the pasture terrain. It can be conclusively stated
that identifying sheep behaviour using two angles is feasible, giving the model a certain
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generalisation ability. Based on the YOLOV5 algorithm, the model was improved. The
improvement was achieved by adding the CBAM, BiFPN module, and SKNet-sc module
to the model, resulting in model mAP@0.5 enhancement, generating the highest value
of 0.918, an increase of 1.7%. The study enables livestock researchers to observe sheep
behaviour visually and clearly, thereby saving time and labour in various studies. This
advancement facilitates researchers in acquiring data more rapidly, holding significant
implications for remote observation and diagnosis within the realm of precision farming.
However, there are certain limitations to this study. Firstly, the study site is relatively small,
and it is recommended that in a real pasture application, cameras should be positioned
at water sources and specific locations such as fence boundaries to enable multi-angle
detection. Additionally, the sheep involved in the study were limited to a single breed and
grazing scenario. To address these limitations, we plan to expand our research in two key
ways. Firstly, we aim to investigate the behaviour of sheep in multiple breeds and flocks.
Secondly, we plan to incorporate additional behaviours such as running, walking, and social
interactions into our video-based behavioural recognition system. These improvements
will enhance the utility of our research findings and facilitate remote observation and
diagnosis in the context of precision farming.
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