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Abstract: In this paper, a Janus metastructure sensor (JMS) based on the photonic spin Hall effect
(PSHE), which can detect multiple physical quantities, is proposed. The Janus property is derived
from the fact that the asymmetric arrangement of different dielectrics breaks the structure parity.
Hence, the metastructure is endowed with different detection performances for physical quantities
on multiple scales, broadening the range and improving the accuracy of the detection. When electro-
magnetic waves (EWs) are incident from the forward scale of the JMS, the refractive index, thickness,
and incidence angle can be detected by locking the angle corresponding to the PSHE displacement
peak that is enhanced by the graphene. The relevant detection ranges are 2~2.4, 2~2.35 µm, and
27◦~47◦, with sensitivities (S) of 81.35◦/RIU, 64.84◦/µm, and 0.02238 THz/◦, respectively. Under
the condition that EWs incident into the JMS from the backward direction, the JMS can also detect
the same physical quantities with different sensing properties, such as S of 99.3◦/RIU, 70.07◦/µm,
and 0.02348 THz/◦ in corresponding detection ranges of 2~2.09, 1.85~2.02 µm, and 20◦~40◦. This
novel multifunctional JMS is a supplement to the traditional single-function sensor and has a certain
prospect in the field of multiscenario applications.

Keywords: metastructure; Janus metastructure; photonic spin Hall effect; physical quantities
detection

1. Introduction

Janus is the god of creation in Roman mythology, with two different faces, one facing
the past and the other facing the future [1]. Inspired by this, researchers first named two-
sided particles with different materials on opposite sides the Janus particles [2–4]. Due to
the difference of materials on both sides, electromagnetic waves (EWs) can show different
electromagnetic characteristics when incident into Janus particles from different directions,
which adds the regulatory features of EWs in the direction dimension [5–8]. Recently,
similar Janus functions have been extended to the field of the metastructure, which refers to
quasi-periodic structures formed by artificially constructed dielectrics. The metastructure
has physical properties not found in natural structures and can modulate the amplitude,
phase, polarization, and angular momentum of EWs [9–11]. By using special methods,
such as asymmetric arrangement to break the parity of structures [12], the metastructure is
equipped with the Janus property and can regulate the electromagnetic performance of
EWs propagating in different directions, which greatly expands the application field of the
metastructure. Chen et al. [13] proposed a Janus metastructure (JMS) with transmission
reflection on the forward scale and polarization regulation on the backward scale, which
effectively compressed the working distance of the imaging system by using its asymmetric
propagation characteristics and also overcame the energy dispersion problem of the tradi-
tional pancake system. Yang et al. [14] designed and prepared a kind of JMS with cooling
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and heating dual functions. Its infrared emissivity was as high as 97.2%, which could be
used for zero-energy thermal management throughout the year.

The photonic spin Hall effect (PSHE) [15] refers to when the process of total reflection,
affected by the conservation of spin angular momentum and orbital angular momentum,
the left and right circularly polarized components of linearly polarized light are split
in opposite transverse directions perpendicular to the gradient of refractive index (RI)
according to the direction of rotation, resulting in two beams of light. The spin offset in
PSHE is very sensitive to the change of physical parameters of the system, so it has great
application potential in precise measurement [16]. With the weak measurement technique
proposed [17], the displacement phenomenon of PSHE is amplified 104 times, which is
convenient for experimental observation. Researchers have also found that the PSHE
phenomenon can be effectively enhanced by introducing a graphene layer and tuning its
chemical potential [18]. These findings provide ideas for improving PSHE in the terahertz
(THz) range.

With the rapid development of sensor research, it has become one of the three key
technologies in the information industry together with computer technology and informa-
tion technology [19]. The optical sensor based on a THz band is considered a promising
physical quantity detection tool due to the advantages of having high sensitivity (S), hav-
ing no label, being nondestructive, and having real-time monitoring [20]. Therefore, it
is widely used in biomedical [21], nondestructive testing [22], and other fields. In recent
years, Cheng et al. [23] proposed a novel THz RI sensor based on PSHE for cancer detec-
tion, which exhibits S of 6.1 × 105 µm/RIU under optimal pumping power and could
distinguish normal gastric cells and corresponding cancer cells. Zhu et al. [24] designed
a Tamm structure, which was able to achieve RI detection with S = 2804 mm/RIU in a
THz band with a resolution of up to 10−8 RIU by using PSHE. Kumar et al. [25] reported a
PSHE plasma sensor based on a graphene monolayer under a THz environment. It could
realize the gas sensor and the detection limit was up to 10−5 RIU, which could be useful
for the early detection of airborne viruses such as SARS-CoV-2. All of the above reports
could realize the detection of the physical quantity in the THz range through PSHE and
could have an excellent sensing performance, but, unfortunately, the realized functions are
single. Liu et al. [26] proposed a PSHE sensor for high-precision RI detection and graphene
layers’ number detection. By locking the corresponding angle of the PSHE peak, the sensor
could detect the RI of S = 127.85◦/RIU and the 1~9 layers’ number of graphene layers with
S = 4.54◦/layer. The multifunctional sensor provided a new idea for the research of related
fields and exhibited certain research values.

In this paper, a JMS based on PSHE is proposed that can realize the multiscale multiple
physical quantities detection in the THz band, making up for the deficiency of the traditional
sensor single function. The PSHE phenomenon is enhanced by selecting the appropriate
chemical potential of graphene layers. By locking the EWs incidence angle corresponding to
the PSHE displacement peak, the JMS can simultaneously detect RI, thickness, and angle on
both forward and backward scales with different performance (as shown in Table 1). When
EWs incident into the JMS from the front, RI, thickness, and angle in the range of 2~2.4,
2~2.35 µm, and 27◦~47◦ can be detected; the S corresponds to 81.35◦/RIU, 64.84◦/µm, and
0.02238 THz/◦, respectively. Under the condition of the backward propagation of EWs, the
detection ranges of RI, thickness, and angle are 2~2.09, 1.85~2.02 µm, and 20◦~40◦ with S
of 99.3◦/RIU, 70.07◦/µm, and 0.02348 THz/◦. It is not difficult to find that the multiscale
physical quantity measurement makes the detection range of the JMS larger. In addition, the
same physical quantity has a small common detection range in the forward and backward
detection, but the corresponding detection performance is different. Therefore, the physical
quantity of a certain value can be compared for forward and backward detection to verify
whether the detection result is correct, which improves the accuracy of the JMS detection.
It is proposed that the multiscale and multifunction JMS with high S, no label, no damage,
and real-time monitoring can be applied to a variety of application scenarios and is able to
ensure the accuracy of its detection, which has certain research value.
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Table 1. The Janus performance of the JMS.

RI Thickness (µm) Angle (◦)

Forward
Range 2~2.4 2~2.35 27~47

S 81.35 ◦/RIU 64.84 ◦/µm 0.02238 THz/◦

Backward
Range 2~2.09 1.85~2.02 20~40

S 99.3 ◦/RIU 70.07 ◦/µm 0.02348 THz/◦

2. The Theoretical Model

Figure 1 shows the structure belonging to the JMS, which can be fabricated by etch-
ing [27]. In order to adapt to the common condition, the JMS is exposed to air and operates
at T = 300 K. The red and blue columns indicate that the EWs incident forward and back-
ward, respectively, at an angle θ to the z-axis. Figure 1 also exhibits the setting of a Gaussian
beam incident at a certain angle spectrum at the first dielectric surface, using green and
yellow beams to separately represent the left-handed circularly polarized component δH−
and right-handed circularly polarized component δH−. The RI of dielectrics A and B are
nA = 1.7 and nB = 2, respectively. It should be emphasized that Leiwin et al. [28] derived
the expression of effective permittivity and permeability of composite materials based
on the Mie resonance theory and that the required RI could be obtained in a wide range.
This technology has been applied in practice [29], so the dielectric RI set in this JMS is
reasonable and available. According to the Herzberger equation, in the THz band, RI of Si is
considered to be nSi = 3.419 [30]. The electric field conductivity σ of graphene is composed
of intraband σintra and interband σinter [31].
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Figure 1. The structure diagram of the JMS is arranged asymmetrically by graphene layer and
common dielectrics are filled with different colors. The entire structure is (AB)N1(GSi)3(AB)N2, where
N1 = 6 and N2 = 4. The thickness of the dielectric A, dielectric B, Si, and graphene are dA = 4 µm,
dB = 2 µm, dSi = 1 µm, and dG = 0.34 nm, respectively.
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σ =
ie2kBT

πh̄2(ω + i/τ)
(

µC

kBT
+ 2 ln(e−

µC
kBT + 1)) +

ie2

4πh̄
ln
∣∣∣∣2µC − h̄(ω + i/τ)

2µC + h̄(ω + i/τ)

∣∣∣∣, (1)

where ω, kB, h̄, e, T, µC, and τ represent the angular frequency, Boltzmann’s constant,
Planck’s constant, electron charge, temperature, chemical potential, and carrier relaxation
time, respectively. There is a specific functional relationship between the conductivity
and the chemical potential of graphene, which is different from that of ordinary dielectric.
Assuming that the electronic energy band of a graphene layer is not affected by adjacent
elements, the effective dielectric constant εG of graphene can be written as [31]:

εG = 1 +
iσ

ωε0dGL
, (2)

where ε0 is the vacuum dielectric constant. So, the RI of graphene layer is written as
nG = (εG)1/2. For the ordinary dielectric and graphene layers, their transfer matrix can be
expressed as [32]:

Mi =

(
cos(kizdi) − i

ηi
sin(kizdi)

−iηi sin(kizdi) cos(kizdi)

)
, (3)

where i can be represented by A, B, Si, and graphene, symbolizing the transmission matrix
of different ordinary dielectrics. kjz = ω/cnisinθi is the component of the wave vector on the
z-axis; the speed of light in a vacuum is symbolized by c. The definition of s-wave and
p-wave can be referred to Ref. [33]. ηi is the light conductivity; for s-wave, ηi = (ε0/µ0)1/2nicosθi.
For p-wave, then ηi = (ε0/µ0)1/2ni/cosθi. ε0 and µ0 are vacuum dielectric constants and
permeability, respectively. The transmission matrix of (AB)6(GSi)3(AB)4 is [32]:

M =
26

∑
i

Mi =

(
m11 m12
m21 m22

)
. (4)

The reflection and transmission coefficients symbolized by r and t can be expressed
as [32]:

r =
(m11 + m12η0)η0 − (m21 + m22η0)

(m11 + m12η0)η0 + (m21 + m22η0)
. (5)

t =
2η0

(m11 + m12η0)η0 + (m21 + m22η0)
. (6)

The R = |r|2 and T = |t|2 separately represent reflectance (R) and transmittance (T).
The absorptance (A) is written through [32]:

A = 1− R− T. (7)

Gaussian beams with a certain angle spectrum can be expressed as [34]:

∼
Ei± = (eix + ioeiy)

ω0√
2π

exp[−
ω2

0(k
2
ix + k2

iy)

4
], (8)

where ω0 represents the beam waist and o is the polarization operator. Left-handed and
right-handed circular polarized beams are represented by o = 1 and o = −1, respectively.
The horizontal and vertical polarization states are separately symbolized by H and V. A
matrix of coefficients between an incident and reflected electric fields can be expressed
as [34]: ∼EH

r
∼
E

V

r

 =

[
rp kry cot θi(rp+rs)

k0

− kry cot θi(rp+rs)
k0

rs

]∼EH

i
∼
E

V

i

, (9)
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k0 symbolizes the number of waves in free space. rp and rs represent the Fresnel reflection
coefficients of the p-wave and s-wave, respectively. According to Equations (8) and (9), the
expression of the spectrum of the reflection angle can be obtained [34]:

∼
E

H

r =
rp√

2
[exp(+ikryδH

r )Ẽr+ + exp(−ikryδH
r )Ẽr−],

∼
E

V

r = irs√
2
[− exp(+ikryδV

r )Ẽr+ + exp(−ikryδV
r )Ẽr−].

(10)

Here δH
r = (1 + rs/rp)cotθi/k0 and δV

r = (1 + rp/rs)cotθi/k0. Ẽr± can be written in a
similar style to Equation (8). ϕs and ϕp symbolize the phase of rs and rp. For the reflected
light, the PSHE lateral displacement of the left-handed and right-handed components can
be expressed as [34]:

δH
± = ∓ λ

2π [1 +
|rs |
|rp | cos(ϕs − ϕp)] cot θi,

δV
± = ∓ λ

2π [1 +
|rp |
|rs | cos(ϕp − ϕs)] cot θi.

(11)

In this paper, we only discuss the case of left-handed circularly polarized component
displacement δH−.

3. Analysis and Discussion of Performances

By varying the external voltage, the µC of the graphene can be adjusted [31]. How
to change the graphene layer µC, refer to Ref. [35]. In order to explain the generation of
δH− peak and the choice of µC, taking the EWs propagation from the forward direction
at the frequency of 5.52 THz to detect the RI of dielectric B nB as an example. Figure 2
displays the real and imaginary parts of the graphene surface conductivity σ at different µC.
According to Equation (1), µC affects the σ and the σ increases with the rise of µC. According
to Equation (2), the change of σ will further change the permittivity of graphene layers,
which are at different positions in the structure, thus affecting the effective permittivity and
impedance of the whole structure. As a result, when EWs propagate through the structure,
the electromagnetic properties such as reflection coefficient will be changed. Here, it takes
the four classical µC of 0.2 eV, 0.4 eV, 0.6 eV, and 0.8 eV. Figure 3 shows the relationship
between the absolute values |rs| and |rp| of Fresnel coefficients and the θ at different µC.
The solid yellow and dashed green lines severally symbolize the reflection coefficient curves
of |rs| and |rp|. The variation of µC will affect the σ, thus altering the Fresnel coefficients
and regulating δH−. Moreover, the energy is localized and the reflection gap is created,
where |rs| and |rp| drop quickly to produce defect peaks as a result of the introduction of
the defect layer. Under various µC, the reflection gap is produced at different θ. As can be
seen from Figure 3a–d, the θ corresponding to the curve peaks of |rs| and |rp| gradually
become smaller. When µC = 0.6 eV, the peak value of |rp| reaches the minimum at 18.67◦,
where the defect peak generates |rp| = 0.002. By the beam displacement of Equation (11),
the division of the spin correlation primarily depends on the part of |rs|/|rp|, thus the
|rs|/|rp| might reach a high value close to the defect peak of rp|, resulting in the peak
of δH−. In Figure 4, this theory is put to the test. Figure 4a,b displays the δH− values
at various µC and, as µC rises, the δH− peak progressively shifts to a small angle. δH−
produces the highest peak at 18.76◦; δH− = 2.46 × 10−4 m when µC = 0.6 eV. δH− peaks at
µC of 0.2 eV, 0.4 eV, and 0.8 eV are small, the values are 2.94 × 10−6 m, −1.02 × 10−6 m,
and −1.14 × 10−6 m, belonging to θ of 19.48◦, 29.7◦, and 33.07◦, respectively. To choose the
suitable µC with greater certainty, Figure 3c shows the changing pattern of the δH− peak
values corresponding to different µC within the nB range of 2~2.4. It is evident that the
peak value of δH− at µC = 0.6 eV is substantially higher than values at other µC and that it
varies greatly with the RI. The choice of µC = 0.6 eV has great sensing performance because
the multiple physical quantities detection is accomplished by locking the δH− peak.
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Figure 2. The real and imaginary parts of the graphene surface conductivity under different µC.
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Figure 3. The reflection coefficient curves of |rs| and |rp| with different µC; (a) µC = 0.2 eV,
(b) µC = 0.4 eV, (c) µC = 0.6 eV, (d) µC = 0.8 eV.

Similar to how changes in wave vectors and phases are influenced by changes in
µC, RI modulation will have an impact on the size of the Fresnel reflection coefficients
|rs| and |rp|. As a result, both δH− peak and θ vary accordingly. So, RI detection can
be accomplished by locking the corresponding θ of the δH− peak. The dielectric B layers
are selected as the detection region. When EWs propagate forward at 5.52 THz, Figure 5a
indicates that continuous θ of the δH− peak exhibits a good linear fitting relationship
(LFR) in the range of nB from 2 to 2.4. In this scope, the values of δH− are greater than
6.89 × 10−5 m, which can ensure basic detectability. Using the linear fitting method,
equidistant locations along the horizontal axis are chosen in order to produce the LFR.
Figure 5b exhibits the LFR between nB and θ. In the range of RI of 2~2.4, the LFR is
θ = 81.35 nB − 142.4. R2 is applied to evaluate the quality of linear fit. R2 = 0.9928 proves
that the sensor is reliable and S can reach 81.38◦/RIU. Figure 6 displays the RI detection
performance under the condition of EWs backward propagation at f = 5.62 THz. As
exhibited in Figure 6a, with the increase in nB from 2 to 2.09, the θ of the δH− peak exhibits
linear change along with δH− > 5.87 × 10−5 m. Figure 6b demonstrates the LFR between nB
and θ. Between RI from 2 to 2.09, the LFR is θ = 99.3nB−156.3 and the S is up to 99.3 ◦/RIU.
R2 = 0.9928 indicates that the detection is reliable. Because EWs incident forward and
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backward separately have different RI detection performance in the common range of
2~2.09, an unknown RI is detected simultaneously. The δH− peak is examined to have a
maximum at θ = 20.3◦ on the forward scale and a maximum at θ = 42.3◦ on the backward
scale. Through the corresponding forward and backward LFR, the unknown RI can be
obtained as 2, which can mutually verify the accuracy of the test results.
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Figure 4. When µC changes and EWs are incident from the front; (a,b) the comparison plots of δH−
under nB = 2. (c) Plots of δH− peak values under different nB.
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Figure 5. Schematic diagrams of the RI detection when EWs propagate forward; the detection scope
is nB from 2 to 2.4. (a) Continuous varying δH− peaks. (b) The LFR between nB and θ; the LFR is
θ = 81.35 nB–142.4.
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Figure 6. Schematic diagrams of the RI detection when EWs propagate backward; the detection scope
is nB from 2 to 2.09. (a) Continuous varying δH− peaks. (b) The LFR between nB and θ; the LFR is
δH− = 99.3 nB − 156.3.
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The precise measurement of thin film thickness has important application in industrial
production [36]. The JMS proposed can realize the micron thickness change detection by
locking the θ of the δH− peak. On the forward scale, by investigating the changes in θ
with dB from 2 to 2.35 µm, the relationship between θ and dB is established and depicted
in Figure 7. Figure 7a displays the phenomenon of continuous variation of δH− in the
range of dB = 2~2.35 µm; δH− is greater than 2.18 × 10−4 m. The results show a linear
distribution in a certain measurement range and, by further exploring the relationship
between the two physical quantities, a fitting curve of θ and dB is obtained. The LFR is
θ = 64.84 dB−109.6. The R2 is found to be high, at 0.9904. S, an important indicator of sensor
performance, is measured to be as high as 64.68 ◦/µm, indicating the high performance of
the sensor manufacturing.
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Figure 7. Schematic diagrams of the thickness detection when EWs propagate forward; the detection
scope is dB from 2 µm to 2.35 µm. (a) Continuous varying δH− peaks. (b) The LFR between dB and θ;
the LFR is θ = 64.84 dB−109.6.

When EWs are incident backward, the detection range of dB is 1.85~2.02 µm. The
difference between forward and backward detection is of practical significance to sensor
applications as the wider measurement range expands the working range of the thickness
sensor. As shown in Figure 8a, the δH− peak values are greater than 2.18 × 10−4 m in the
dB scope of 1.85~2.02 µm. Figure 8b selects six data points at the same intervals for linear
fitting to verify the strong LFR. The results exhibit that, as the thickness varies from 1.85 to
2.02 µm, the LFR is θ = 70.07 dB−102.3, with an R2 of 0.9993. The S is 70.07◦/µm, indicating
further possibilities for sensor fabrication.

The proposed JMS can also detect the θ of EWs within a certain incidence frequency
range. When EWs propagate in the forward and backward directions, Figures 9a and 10a
show a good linear relationship between θ and f via the δH− peak. As the angle θ increases
in the range of 27◦~47◦ and 20◦~40◦, the δH− peak produces a blue shift, respectively.
Meanwhile, the corresponding δH− peaks still remain larger than 9.93 × 10−5 m and
1.05 × 10−6 m, proving basic detectability. With the purpose of exploring their linear
relationship, the correlative LFRs δH− = 0.02238θ + 4.911 and δH− = 0.02348θ + 7.64 are
presented in Figures 9b and 10b; 0.02238 THz/◦ and 0.02348 THz/◦ are the S compared
with the magnetized plasma angle sensor with S up to 1.325 × 10−4 THz/◦ [37]. The JMS
is more responsive to the changes in θ. R2 are all 0.99, indicating the high quality of the
LFR. The above research presents that the sensor exhibits multiscale different θ detection
ranges and the LFRs of detection are excellent, with sensitive response and exact detection,
thus providing a novel and stable way to detect weak θ change in the THz band.
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Figure 8. Schematic diagrams of the thickness detection when EWs propagate backward; the detection
scope is dB from 1.85 µm to 2.02 µm. (a) Continuous varying δH− peaks. (b) The LFR between dB
and θ; the LFR is θ = 70.07 dB−102.3.
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Figure 9. Schematic diagrams of the angle detection when EWs propagate forward; the detection
scope is θ from 27◦ to 47◦. (a) Continuous varying δH− peaks. (b) The LFR between θ and frequency;
the LFR is f = 0.02238θ + 4.991.
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the LFR is f = 0.02348θ + 7.64.



Sensors 2023, 23, 4747 10 of 12

Finally, to more intuitively describe the advantages of the JMS, Table 2 summarizes the
sensors with excellent performance reported in the past and compares them with the JMS
designed in this work. From the evaluation aspects of Janus and multifunction and physical
quantities detection performance, the JMS proposed in this paper has a more advanced
application value.

Table 2. The performance of the traditional sensors compared with the proposed JMS.

Refs. Janus Multifunction Physical Quantities Detection

[38] No No RI
Range 1.362~1.366

S 303,376 nm/RIU

[39] No No Thickness
Range 0~0.5 µm

S /

[40] No No Angle Range 0~45

S 55.67 pm/◦

[37] Yes No RI
Forward

Range 1.35~2.09

S 132 MHz/RIU

Backward
Range 1~1.57

S 40.7 MHz/RIU

[41] No Yes
RI

Range 2~2.7

S 32.3 THz/RIU

Angle Range 25◦~70◦

S 0.5 THz/◦

This work Yes Yes
RI

Forward
Range 2~2.4

S 81.35◦/RIU

Backward
Range 2~2.09

S 99.3◦/RIU

Thickness Indicated in the article

Angle Indicated in the article

4. Conclusions

To sum up, this paper theoretically studies multiple physical quantities of JMS based
on the PSHE. Through the asymmetric arrangement of different dielectrics, the parity of
the metastructure is broken and the metastructure is endowed with Janus property to
realize multiscale physical quantities detection. Graphene is introduced into the structure
to enhance the PSHE through its tunable chemical potential. By locking the θ corresponding
to the PSHE displacement peak, the JMS can detect RI, thickness, and angle on both forward
and backward scales, exhibiting different detection performance, which not only broadens
the detection range but also improves the detection accuracy. For RI detection, the JMS
detection ranges are 2~2.4 and 2~2.09 on the forward and backward scales, respectively,
with S of 81.35◦/RIU and 99.3◦/RIU. The JMS can detect the thickness ranges of 2~2.35 µm
and 1.85~2.02 µm on the opposite scales, with S of 64.8◦/µm and 70.07◦/µm. Addition-
ally, angles in the range of 27~47 and 20~40 can also be detected by the JMS, with S of
0.02238 THz/◦ and 0.02348 THz/◦. The proposed multiscale and multifunctional JMS has
the advantages of high S, no label, no damage, and real-time monitoring, which can be
applied to various application scenarios and can provide a new way for the design of novel
multifunction devices.
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