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Abstract: A backdoor attack is a type of attack method that induces deep neural network (DNN)
misclassification. The adversary who aims to trigger the backdoor attack inputs the image with
a specific pattern (the adversarial mark) into the DNN model (backdoor model). In general, the
adversary mark is created on the physical object input to an image by capturing a photo. With this
conventional method, the success of the backdoor attack is not stable because the size and position
change depending on the shooting environment. So far, we have proposed a method of creating an
adversarial mark for triggering backdoor attacks by means of a fault injection attack on the mobile
industry processor interface (MIPI), which is the image sensor interface. We propose the image
tampering model, with which the adversarial mark can be generated in the actual fault injection to
create the adversarial mark pattern. Then, the backdoor model was trained with poison data images,
which the proposed simulation model created. We conducted a backdoor attack experiment using a
backdoor model trained on a dataset containing 5% poison data. The clean data accuracy in normal
operation was 91%; nevertheless, the attack success rate with fault injection was 83%.

Keywords: image sensor interface; backdoor attack; fault injection attack; mobile industry processor
interface (MIPI)

1. Introduction

Modern automobiles are equipped with an advanced driver assistance system (ADAS)
that helps with driving by recognizing surrounding vehicles and objects while driving.
A system for automatic driving that is aware of speed limits has been developed, with
the addition of notifying the driver of the recognition results. The system takes in the
physical world information using image sensors, and the automobile is controlled by
recognizing the surroundings with machine learning or deep neural networks (DNNs). The
misclassification of DNN-equipped automobiles can have life-threatening consequences;
therefore, security measures are necessary.

Research on attacks against DNNs has been reported in the literature. Model extrac-
tion [1], which is an attack method used to steal DNN models, model inversion [2], which
is an attack to reconstruct training data, and poisoning attacks [3], which attempt to mix
poison data into a training dataset, have been reported. Adversarial examples (AEs) [4]
and backdoor attacks [5] that induce misclassification by tampering with a part of the
image input to a DNN have been proposed as methods of attacking DNNs. AEs are images
that induce misclassification by adding noise that is not found by the human eye in the
image input to DNNs. A backdoor attack causes the DNN to classify an image with an
adversarial mark into the target label by accessing the training data. To demonstrate attacks
on DNNs equipped in automobiles, a method [6,7] was reported in which a characteristic

Sensors 2023, 23, 4742. https://doi.org/10.3390/s23104742 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23104742
https://doi.org/10.3390/s23104742
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6422-3703
https://orcid.org/0000-0003-1293-6415
https://doi.org/10.3390/s23104742
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23104742?type=check_update&version=2


Sensors 2023, 23, 4742 2 of 18

mark is added to input images by physically placing a small sticker on a traffic sign. How-
ever, pasting adversarial marks onto images in the physical world presents the following
two difficulties:

• It is easy for human eyes to find adversarial marks on traffic signs.
• Adversarial marks are affected by the angles and distances between the image sensor

and traffic signs.

We propose a new backdoor attack triggered by the fault injection attack on the
mobile industry processor interface (MIPI), which is an image sensor interface, as shown
in Figure 1. The fault injection attack [8,9] is an attack that induces misclassification by
injecting an attack signal into a device and has been mainly performed on cryptographic
circuits. While some methods [10–12] have been proposed to cause the misclassification of
DNNs by injecting the attack signal into DNNs, we injected the attack signal into the MIPI
to induce the misclassification of DNNs. The adversarial mark was added to the captured
image by tampering with the image data with a fault injection attack. When using this
method, the adversarial mark is not noticed by the human eye, and the mark can be input
at the target position of the image, even if the distance between the image sensor and the
photographic subject changes.

Figure 2 shows an overview of the backdoor attack. An adversary aiming to carry out
a backdoor attack mixes poison data, which consist of images tampered with adversarial
marks at specific locations and poison labels, into a training dataset to embed a backdoor
into a DNN model. The model trained with the poison dataset is called a backdoor model.
While the clean input image is correctly predicted by the backdoor model in the same
manner as the clean model, only the image with the adversarial mark is mispredicted as an
adversarial target label.

Paste stickers

Traffic sign

〇

Adversary

(a)  Conventional method

Image sensor Microcomputer
Traffic sign

Adversary

(b)  Proposed method

Input image for DNN

Input image for DNN

Adversarial mark

Adversarial markFault attack device

Attack

Image sensor Microcomputer

Figure 1. Conventional and proposed method for backdoor attack.
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Figure 2. Overview of backdoor attack.

The MIPI has a high-speed (HS) mode and a low-power (LP) mode. Image data were
transmitted at a high frequency in the HS mode, and image data were not transmitted
in the LP mode. The attack signal was superimposed on the image data in the HS mode
to add the adversarial marks in our experiments. In this paper, we present the results of
an experiment conducted with medium-resolution (120 × 120) color images. Previous
reports [13–15] have not analyzed the extent to which the image data are tampered with.
We set the image tampering model and used the poison data that are close to the pattern
generated in the actual situation.

The structure of this paper is described below. Section 2 introduces some related works
and our approach, and Section 3 explains the fault attack method that was used to trigger
backdoors. In Section 4, we examine the method of adding a tampered pattern similar to the
adversarial mark added by fault injection to embed the backdoor. In Section 5, we generate
a backdoor model using the dataset generated by the method described in Section 4 and
evaluate whether the backdoor model triggered the backdoor according to the method in
Section 3 with simulations and experiments. Section 6 summarizes and concludes.

The main contributions of this study are as follows:

• We have already reported the backdoor attack triggered by the fault injection attack
into the MIPI, which was the first approach ever [13,14]. In this paper, we devised a
simulation model that creates the pattern of the adversarial mark.

• Poison data for backdoor attacks were generated using the tampering model, and
backdoor attack experiments were performed using GTSRB [16].

• The position and size of the adversarial mark were considerably stable when using the
proposed method, resulting in a higher attack success rate than that of the conventional
method, even when medium-resolution (120 × 120) color images were used.

2. Related Works and Our Approach
2.1. Backdoor Attacks against Poison DNN Models

There are reports [5,17] about backdoor attacks that work by poisoning the training
data. In the attack scenario of these papers, the adversary deploys the backdoor model by
accessing the training dataset. Additionally, as mentioned in these papers, accessing the
training dataset can occur if a DNN user asks an annotation company for an annotation
task and the adversary belongs to the annotation company. In a different scenario, the
backdoor model can be deployed by physically or remotely replacing the model in which
the adversary is embedded with the backdoor model. This paper assumed that the backdoor
model has already been deployed in the victim’s system regardless of the method.

Backdoor attacks are often verified by adding the adversarial mark digitally [18] since
the backdoor is triggered in the case of images with the adversarial mark at similar locations
to the poison data. In experiments in the physical world, attacks [5,19] have been reported
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in which backdoors are triggered by taking pictures of the adversarial mark, i.e., pasting
the adversarial mark on the photographed object. For example, decorative objects are
located in the image frame as adversarial marks in the physical world for the case of face
recognition [17,20,21]. However, the location of an adversarial mark in the picture may
fluctuate from that in the poison data due to a change in the relative distance and angle
between the photographic subject and the image sensor in practice. It has been reported
that the attack success rate of the backdoor attack is decreased due to the fluctuation in the
location of the adversarial mark [22]. Hence, the attack success rate of backdoor attacks is
assumed to decrease in the physical world.

2.2. Fault Injection Method for Triggering Backdoor

We proposed a method whereby the fault injection attack triggers the backdoor in a
physical space. During a fault attack, an adversarial mark is added at a stable position
without being affected by the capturing environment, in contrast to the conventional
method of capturing the adversarial mark. Therefore, even in the physical world, the
addition of adversarial marks during fault injection attacks is expected to lead to a high
attack success rate.

Figure 1 shows the fault injection attack scenario. The image sensor transmits image
data to the microcontroller through the MIPI. The adversary can physically access the MIPI
so as to connect the attack devices in the victim’s system. The adversary can inject fault
injection signals at the intended time by using the attack device. Figure 1 shows the fault
injection attack scenario. The image sensor transmits image data to the microcontroller
through the MIPI. For example, the trigger can be activated by the global positioning
system (GPS) signal when the victim’s system approaches the target traffic sign. If the fault
data are injected reproducibly, the position and shape of the mark remain stable, even if
the captured image changes. In this way, the backdoor attack is triggered and causes DNN
misclassification. The original MIPI data are transmitted under the non-attacking state in
this fault attack scenario. Therefore, it is possible to add the adversarial mark by injecting
the fault data without disconnecting the original image sensor.

In the experimental system used in this study, the attack device consisted of an FPGA
board with two MIPI transmitters. The device does not affect the captured image in the
normal (i.e., non-attacking) state. In the attacking state, the device injects the fault data by
using two MIPI transmitters. The injection time is determined by observing the transmitted
data between the image sensor and the microcontroller. In this experiment, the MIPI data
were observed using an oscilloscope.

When an attack instruction from the attacking device can be issued wirelessly, the
feasibility of the attack scenario becomes practical. The adversary abuses carsharing
services and connects the attack device to the shared car. Then, even if the adversary leaves
the car, the adversary can trigger the backdoor and cause the accident at the intended time.

3. Fault Injection on the MIPI Data to Trigger the Backdoor

The adversarial mark should be input at the same location of the input image as that
in the location training data to trigger the backdoor attack. The adversarial mark, which
induces the misclassification, is usually added when a picture is taken [5,20]. However,
the position and shape of the adversarial mark may not be constant depending on the
shooting environment.

3.1. Overview of the MIPI Data Lane

The MIPI is a standard interface used in the cameras and displays of mobile devices,
and the MIPI physical layer (D-PHY) is often used for the camera and display serial
interface. The MIPI is configured with a one-clock lane and one or more data lanes. The
MIPI data lane switches between the HS mode with a differential 0.2 V signaling for data
transfer and the LP mode with single-ended 1.2 V signaling for control and handshake
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data, as shown in Figure 3. Image data are transmitted in a row-by-row fashion during the
HS mode, in which the data rate in our experiment was around 1 Gbps.

HS modeLP mode LP mode

1.2 V

0.2 VData lane

Line data 
(around 1 Gbps)

V
ol

ta
ge

time

Figure 3. Overview of the MIPI waveform.

While CMOS inverters drive the LP mode signal, the HS mode signal is driven by the
differential current driver, as shown in Figure 4.

LP

LP

HS

Transmitter Receiver

CMOS voltage driver

Terminator 
for HS modeDifferential current driver

Raspberry pi

Image sensor

Figure 4. Overview of the MIPI data transmission block.

3.2. Technique of Tampering MIPI Data

In this work, we used our previously proposed method [13,14] to attack the MIPI. A
block diagram of the attack device is shown in Figure 5, where the image sensor and MCU
(Raspberry Pi), which are the victim devices, are on the right side, and the MIPI connects
them. From the attack device on the left side, a fault attack signal is injected into the two
differential channels of the MIPI through 10 pF capacitors. The attack device has two
HS drivers, and the attack state (deactivate or activate) is controlled by the attack signals
generated on an FPGA.

The adversary should inject the attack current into the data lane during HS mode to
add the adversarial mark. Moreover, the adversary should not inject the fault signal into
the data lane during the LP mode so as not to prevent the handshake. When the attack
is activated (ON), the MIPI signal can be overwritten with twice the current by sending
the same signal (+1, +1) from the two HS drivers. Figure 6a shows the state of received
data in the attacking state. If the attack signal is inverted with the image signal, the signal
amplitude will be 0.2 V, and the Raspberry pi receives the attack data. However, if the
attack signal is the same as the image signal, the signal amplitude will be 0.6 V, which is
larger than the typical signal amplitude. Nevertheless, the attack data are still received by
the Raspberry pi, thanks to the operation margin. The signal amplitude is also adjustable
by the attack signal frequency and the capacitance of the coupling capacitor. Thus, the
attack signal is activated. The attack signal simply repeats the 0 and 1 signals at 500 MHz
to reduce the impedance of the capacitors.

When the attack is deactivated (OFF), the two HS drivers send opposite signals
(+1, −1) to cancel each other’s currents so as not affect the transmitting data. In addition,
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the superimposition of the DC signal is prevented by the capacitor. Hence, the data
transmitted from the image sensor are received by the Raspberry pi, as shown in Figure 6b.

－

＋

●

●

●

●

Image sensor

＋

－

＋

－

Attack HS 
driver 1

Attack HS 
driver 2

10 pF

10 pF

MIPI Board

Microcomputer

FPGA

ON OFF

－1+1

+1+1

ON OFF

MIPI

Attack device

Attack device

Figure 5. Block diagram of attack device against the MIPI.

0V

0.4V

1        1         0        1
0V

0.2V

1        0         1        0
0V 0.2V

1        0         1        0

0.6V

Attack data

Image data

Received data

1        1         0        1 0.2V

× × × ×

1        1         0        1 0.2V

(a) Attacking-state (b) Non-attacking state

Figure 6. Superimposed signals with different states.

3.3. Experiment of Fault Injection Attack during Image Capturing

Figure 7 shows the experimental setup. The equipment used in the experiments are
also summarized in Table 1. The timing of the attack was adjusted by observing the MIPI
data lane with an oscilloscope. The oscilloscope outputs the attack trigger to the field-
programmable gate array (FPGA) during the transition from the LP mode to the HS mode
at the FS by setting the hold-off time. FPGA outputs were converted to the MIPI D-PHY
signal using the MIPI board. Attack signals are connected to the MIPI through capacitors.
The attack signal was superimposed on the two MIPI data lanes using the four HS drivers
on the MIPI board because the Raspberry pi camera module alternately transmits one line
of image data in 8 bit units through two data lanes. The attack signal was activated for a
given period of time to add a small adversarial mark on the top-left of the array image.

The attacking method was applied to the captured image shown in Figure 8. The RAW
processing method used in the Raspberry Pi was not used in this experiment. The MIPI
attack experiment used the RAW data of 1200 × 1200 pixels of the RAW data taken with
the Raspberry pi camera module. The original processing software processes RAW image
transformation to an RGB format to facilitate the same processing method in the simulation
of the tampering pattern, which we describe later. It was found that the adversarial mark
was stable at the upper-left corner when comparing the two images.
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Table 1. Experimental equipment.

Raspberry pi Raspberry pi 4
camera module Raspberry pi camera module v2

Oscilloscope Keysight DSOS204A 2 GHz
Attacking FPGA Xilinx KC705

MIPI board Gazogiken ITL-MTR25

Raspberry pi

FPGA

MIPI board

Camera module

Transmit attack signal

Oscilloscope

Attack signals are connected 

to MIPI through capacitors.

MIPI

MIPI

Figure 7. Experimental setup.

・Different dotted color
・Constant position
・Constant size

Expanded image

Captured image with fault injection

(a) Captured image on a frame

(b) Captured image on the next frame

Figure 8. Adversarial mark generated by the fault injection against the MIPI.
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4. Generating Tampering Pattern to Embed the Backdoor
4.1. Image Data Tampering Model

The image with the tampering noise has to be mixed into the training dataset as the
poison data to conduct the backdoor attacks. Therefore, the adversary should prepare a
number of tampered images; however, image data collection with tampering is demanding
work. Because of this, we planned to create the tampered image in the simulation. In this
section, we identified the optimal model that can be used to create the tampered image in
the simulation. As explained in Section 3.2, the received data will be successfully tampered
with according to the attack signal value when the attack signal is synchronized with the
transmitted image and the amplitude is doubled. However, the amplitude of the attack
signal will be degraded, and the phase will not be synchronized in real applications.

Because the image and attack signal in this experiment are of a high-frequency wave-
form of 960 MHz and 500 MHz, the signals may become blunt, and the amplitude may
be smaller than expected. Figure 9 shows a schematic diagram for a scenario in which
the amplitude of the attack signal is blunted. The received data are set to 1 if the signal is
positive and 0 if the data are negative. The value of the received signal is defined by the
value at the time when the image data were captured. As shown in Figure 9a, the received
data successfully carry out tampering in the ideal situation when the amplitude of the
attack signal is doubled and the phase is synchronized. Figure 9b shows the signal when
the amplitude of the attack signal is half that of the image signal. We confirmed that the
transmitted image data were received and that the tampering failed.

1          1        0         1

0

0

0

0.2V

− 0.2V

0.1V

− 0.1V

Transmitted image data

Attack signal

Received data 1        0          1        0

0

0.2V

0

0

0.4V

−0.2V

−0.4V

Receive attack data

(a) If the attack data ideally tampers 
with the image data

(b) If tampering with image data fails
due to the blunting of the attack data

Receive image data

1         0         1        0
1        0         1        0

1         1         0         11          1           0          1

Figure 9. Received waveform data when data tampering succeeds and fails.

In addition, the timing of the attack signal and the image signal could not be syn-
chronized in the experiment. Therefore, it was assumed that there was a phase difference
between the attack signal and the image signal. Figure 10 shows the signals when the phase
difference between the attack signal and the image signal is 20 degrees (a) and 40 degrees
(b). When the phase difference is (a) 20 degrees, the attack signal is received, but when the
phase difference is (b) 40 degrees, the attack signal tampering fails, and the transmitted
image data are received. Thus, tampering of the image signal may fail depending on the
phase difference between the attack signal and the image signal.
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0

0

0

0.2V

− 0.2V

0.4 V

− 0.4 V

0
0.2 V

0

0

0.4 V

− 0.2 V

−0.4 V

(a) Attack signal phase: 20 degrees

20 degrees 40 degrees

(b) Attack signal phase: 40 degrees

1          1           0          1 1          1           0         1

1          1           0        1

1         0          1           01         0          1           0

1         0          1           0

Transmitted image data

Attack signal

Received data

Receive attack data Receive image data

Figure 10. Received data of the waveform when the attack signal phase is (a) 20 degrees and
(b) 40 degrees.

By looking at Figures 9 and 10, we can deduce that the amplitude and phase difference
are important parameters for tampering with the image data. Therefore, to create the
image data tampering model, it is necessary to set parameters related to the amplitude of
the attack signal and the phase difference between the attack signal and the image signal.
We created the image data tampering model shown in Figure 11. The transmitted image
data were captured with a 960 MHz clock, and the attack signal was superimposed with a
500 MHz clock. If the attack signal is greater than the image signal value (0.2 V) when the
image signal is captured, the image data are overwritten with 1. If it is −0.2 V or less, the
image data are overwritten with 0.

0

− 0.2V

0.2V

Attack signal amplitude

Image capturing timing
(960 MHz)

〇

〇
〇

Overwrite image data to 1

Overwrite image data to 0

Attack signal

…Tampered
…Not tampered 

〇
〇

Transferred signal amplitude

Figure 11. Image data tampering model.

Figure 12a shows when the amplitude of the attack signal decreases. We found that
the number of image data, which were not tampered with, increased. Figure 12b shows
when the phase difference of the attack signal changes. In this case, we found that the
number of image data, which were not tampered with, decreased.
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0

− 0.2 V

0.2 V

Attack signal amplitude = 0.3 V

Image capturing timing
(960 MHz)

〇
〇

Overwrite image data to 0

〇

This image data is not 
overwritten

…Tampered
…Not tampered 

〇
〇

Transferred signal 
amplitude

0
− 0.2 V

0.2 V

Attack signal amplitude

Timing to receive image data
(960 MHz)

〇

〇

Overwrite image data to 0

This image data is overwritten

〇

…Tampered
…Not tampered 

〇
〇

Transferred signal 
amplitude

(a) Smaller attack signal amplitude (b) Phase difference

Figure 12. Amplitude and phase differences affect on tampering model.

The number of tampered image data changes depending on the received timing of the
attack signal. The image data were transmitted line-by-line, and the image signal was not
transmitted during a specific time between the line signals (LP mode). A phase difference
was assumed to occur in every row in this model. Therefore, it was necessary to set a
parameter (phase difference for each row signal) with respect to how much the phase
difference of the attack signal changes when the row signal changes by one row for the
image data tampering model. The same phase difference was set for every line spacing in
this experiment. The attack signal’s phase difference occurred in the first line of the image;
however, the effect of the phase difference for each row signal in the generated pattern
was greater than that in the first line. Therefore, in this section, the phase difference of the
attack signal for the first line was fixed at 0 degrees, and only the phase difference for each
line signal was used as the parameter. (This parameter was randomly set for each image in
Section 5.)

4.2. Simulation of Tampering Pattern

Figure 13 shows the sequence of image data processing. The image sensor transmits
the image data through the image sensor interface as RAW data. Our fault injection
attack on the MIPI tampers with the RAW data. These RAW data are arranged in a Bayer
array. In the Bayer array, the 2 × 2 pixels have pixels representing red, green, and blue,
and the two green pixels are arranged diagonally. The RAW data were converted to an
RGB image by using RAW processing (black level correction, demosaic processing, white
balance correction, color matrix correction, gamma correction, etc.) and then input into
the DNN. RAW processing was applied to the RAW data obtained from Raspberry Pi
using an algorithm [23]; the same processing was also performed in the simulation of the
tampering pattern.

Image sensor

RAW development

MCU
MIPI

RAW data Color image 
(RGB format )RAW data

RAW data

DNN

Figure 13. The sequence of image data processing.

In the analysis of the tampering pattern, the image data acquired from images taken
in the dark were tampered with in the simulation. Figure 14 shows the tampering pattern
when the phase difference for each row signal and the amplitude of the attack signal
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are changed. Figure 14a shows that the simulated tampering pattern changed with the
amplitude value. In other words, when the amplitude of the attack signal decreased due to
a blunting signal, the probability that the pixel signals in the target area were tampered
with decreased. Therefore, if the amplitude of the attack signal can be increased, many pixel
signals are overwritten, and a more apparent adversarial mark can be added. The apparent
adversarial mark may increase the attack success rate of backdoor attacks. However, if
the amplitude of the attack signal is too large and exceeds the current tolerance on the
receiving side, the system itself will fail.

In addition, Figure 14b shows that the tampering pattern changes due to the phase
difference of each row signal, and the phase difference can be considered a parameter
involved in generating the tampering pattern. Figure 15 shows the tampering pattern of
the RAW data processed in the simulation and fault injection attacks using the same RAW
processing method. Here, the parameters were adjusted so that the tampering pattern
was similar to that of the fault injection attack. In the simulation shown in Figure 15, the
amplitude is 0.38 V, and the phase is 52 degrees. The tampering patterns generated by this
simulation and the fault injection attack were similar. Therefore, this model reflects the
situation caused by an actual fault injection attack to some extent.

(b) Effect of phase difference 
for each row signal
(amplitude: 0.38 V)

(a)Effect of attack signal amplitude
(phase: 52 degree)

amplitude: 2 V amplitude: 0.5 V amplitude: 0.38 V amplitude: 0.2 V

phase: 0 degree phase: 40 degreephase: 1 degree phase: 52 degree

Figure 14. Simulated tampering pattern when the parameters of tampering model are changed.

Additionally, the patterns of the two were slightly different. As a pre-processing step
in DNNs, the RAW data of 1200 × 1200 pixels were resized to 120 × 120 pixels in this
experiment. These resized tampering patterns are also shown in Figure 15. Since both
patterns were similar, it was assumed that this slight difference in the pattern had little
effect on the backdoor attack.

The next section describes a backdoor attack experiment that was conducted by
generating poison data using this image data tampering model.

(a) Tampering pattern generated 
on simulation

(b) Tampering pattern generated 
by fault injection attack

Resize to 120×120 pixels 
and trimming 

Trimming from 
1200×1200 pixels

Figure 15. Tampering pattern generated by simulation and fault injection attack.
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5. Backdoor Attack Experiments
5.1. Poison Dataset Creation and Attack Simulation

Images with adversarial marks (poison data) need to be generated to prepare the
training datasets for the backdoor model. Figure 16 shows the flow of creating poison data
in the simulation. The simulation model explained in the previous section was used for
image generation. The RAW data were generated from color GTSRB images to simulate
image tampering. Color images were converted to RAW data by applying the inverse
function of RAW processing (black level correction, demosaic processing, white balance
correction, color matrix correction, gamma correction). More specifically, the pixel value of
the color of the RAW data was extracted from the color pixels as the inverse function of
the demosaic process in this experiment. Then, the RAW data were tampered with on the
basis of the image data tampering model, and RAW processing was performed to generate
a color image.

An image of training dataset

RAW data

Apply Inverse function of 
RAW processing

Apply RAW processing

An image 
with adversarial mark

Tampering data according to 
image data tampering model

Figure 16. Flow of creating poison data on simulation.

In this experiment, 1200 × 1200-pixel GTSRB images were captured by the camera
module and transferred to the Raspberry pi by the MIPI. The received images were resized
to 120 × 120 pixels and input to the DNN. After resizing the dataset images to 1200 × 1200,
they were converted to RAW data and tampered with. Color images with the adversarial
mark were generated by the simulation. The RAW data corresponding to the 80 × 80-pixel
square area in the upper-left of the image were tampered with, and the adversarial mark
on a 80 × 80-pixel square area was resized to 8 × 8 pixels.

The target class in the GTSRB dataset was set to Class 8 (speed limit of 120 km/h).
Two thousand training images belonging to classes other than Class 8 were selected as
poison data from the training dataset. The phase difference of the attack signal for the first
line was randomly set for each of the poison data as shown in Figure 17.
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Expanded image
Created poison data on simulation

Expanded image
Created poison data on simulation

Figure 17. Created poison data on simulation.

The structure of the DNN model was vgg11 [24], and the model was trained on the
poison training dataset. The performance of the model was evaluated by performing a
computer simulation without an image sensor for 12,630 test data considered as clean test
data. In addition, for 12,180 data with a correct label other than 8, an adversarial mark was
generated on the basis of the image tampering model. This dataset was evaluated as the
poison test data. The dataset is summaraized in Table 2.

Table 2. Dataset for the experiments.

Training data 39,209
Clean training data 37,209
Poison training data 2000

Clean test data 12,630
Poison test data on the simulation 12,180

Clean test data using backdoor experiments 430 (43 class × 10)
Poison test data using backdoor experiments 420 (42 class × 10)

The clean model trained with clean training data was evaluated. Figure 18a shows the
evaluation results of the clean model in the simulations with clean test data and poison test
data. The accuracy on the clean test data was 96%, and the accuracy on the poison test data
was 87%. The clean model achieved high accuracy with both test data. The model classified
clean images into the correct class and can also classify poison images into the correct class.
The accuracy of the poison test data (87%) was lower than that of the clean data (96%). As
described in Section 5.1, the reverse processing of advanced demosaic processing cannot be
calculated accurately in this experiment. As a result, the color tone of the poison image
was slightly different from the test image, as shown in the input image and the generated
image in Figure 16. It was assumed that the accuracy of the poison data decreased because
the image and the color tone of the image slightly changed. Furthermore, it was assumed
that the generated adversarial mark overlapped with the signboard in some images.

The backdoor model was evaluated to determine whether or not it could successfully
classify clean input images into the clean label and input images with an adversarial mark
into the adversarial label. The attack success rate was evaluated by using the following
formula. Attack success rate = Number o f images classi f ied as target class

Number o f poison test data The clean data accuracy
(CDA) was 94%, and the attack success rate for the poison test data was 94%. Thus, we
concluded that the backdoor model is triggered by an adversarial mark generated from the
image tampering model.
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Figure 18. Evaluation results with clean test data and poison test data: (a) clean model;
(b) backdoor model.

5.2. Backdoor Attack Triggered by Fault Injection

We compared the classification results with and without the fault injection attack. As
shown in Figure 19, the experiments were conducted in two cases: one conducted normally
and the other carried out with a fault injection attack on the MIPI. In total, 10 test images
were used for each of the 43 classes of traffic signs. Figure 20 shows an example of the
captured images with and without a fault injection attack on the GTSRB images. Under
normal operation, the captured images were classified into the correct labels, namely Class
14 (stop) and Class 2 (speed limit 50 km/h). Meanwhile, under a fault injection attack,
the captured images were classified into Class 8 (speed limit 120 km/h), which was the
target class.

Image sensor

Image data

Printed paper 

MCU

Backdoor model

Fault injection attack

Figure 19. Proposed backdoor attack experiment.

Figure 21 shows the confusion matrix of normal operation and the fault injection
attack. Under normal operation, the captured images were classified into the correct classes
with a CDA of 83%, which was lower than that of the simulation (95%). This was likely due
to the change of the position and the brightness of the image captured in the experiment.
On the other hand, the attack success rate during the fault injection attack was 91%, which
is comparable to the 96% success rate in the simulation.

In the proposed fault injection attack, the position of the adversarial mark did not
change even if the captured image’s position changed. Thus, the attack success rate of
the proposed attack can be considered stable. As can be seen from the above results, we
verified that the backdoor attack was triggered by the fault injection attack on the MIPI.
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With fault injection attackNormal operation

Predicted label: 14
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Predicted label: 2
(Speed limit 50 km/h)
Correct label
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(Speed limit 120 km/h)
Successful attack

Figure 20. Examples of experimental captured image on the proposed backdoor attacks.
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Figure 21. Evaluation of proposed backdoor attacks (number of samples: 430 and 420).

5.3. Conventional Backdoor Attacks Triggered by Taking a Picture with an Adversarial Mark

The attack success rate of the proposal backdoor attack was compared with that of the
conventional backdoor attack method, in which images with an adversarial mark were used.
As shown in Figure 22, the GTSRB test images were tampered with using an adversarial
mark in the digital world, and images were printed and captured with the image sensor.

Image sensor

Image data

Printed paper 

Tampered with adversarial mark

MCU

Backdoor model

Figure 22. Conventional backdoor attack experiment.

The adversarial mark was generated on the image in the same way as explained in
Section 5.1, and the image was printed. Then, pictures were taken using an image sensor to
evaluate the attack performance of the backdoor attack. The backdoor model was the same
as the one used in Section 5.1.
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Examples of successful and unsuccessful attacks, their predicted labels, and expanded
images of the tampered locations are shown in Figure 23. The position of the adversarial
mark may not have been stable in the method of inputting the mark by taking pictures,
and the success rate of the attack may have changed due to the shift in the position of the
adversarial mark.

The evaluation results in Figure 24 show that the attack success rate was 11%, which
indicated that it was lower than that of the fault injection method. We found that the attack
success rate of the conventional backdoor attack was affected by the shift in the adversarial
mark due to the change in the shooting environment in this experimental environment.
Hence, we found that the method of tampering with the MIPI data could be used to perform
a stable backdoor attack by adding an adversarial mark at a stable position.

(a) Successful attack (b) Unsuccessful attack

Predicted label: 8
Speed limit 120 km/h
Successful attack

Predicted label: 8
STOP
Successful attack

Predicted label: 14
STOP
Correct label

Predicted label: 1
Speed limit 
120 km/h
Correct label

Figure 23. Image taken in a conventional backdoor attack experiment.
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Figure 24. Evaluation of conventional backdoor attacks (number of samples: 420).

6. Summary and Conclusions

We proposed a new backdoor attack triggered by injecting a fault signal into the MIPI
of an image sensor interface. The adversarial mark for triggering backdoor attacks was
successfully created by superimposing the attack signal transmitted by two pairs of HS
drivers on the MIPI. Almost all of the image signals were transmitted from the sensor to the
processor without tampering by canceling the attack signal between the two drivers. Then,
the adversarial mark was added into a target area of the image by activating the attack
signal generated by the two attack drivers. Backdoor attack experiments were conducted
on the GTSRB datasets using this tampering method.

We utilized the image tampering model to create the poison data. We set a model with
the attack signal amplitude and the phase difference of the attack signal as parameters. By
changing the amplitude of the attack signal and the phase difference between the RAW
lines of the attack signal, we analyzed the kind of pattern that was generated. We compared



Sensors 2023, 23, 4742 17 of 18

the tampering pattern generated by the actual fault injection attack and that generated by
the model in the simulation. Then, we were able to generate a pattern close to the actual
pattern in the simulation by fitting these parameters.

After generating poison data using the tampering model, we conducted backdoor
attack experiments. The success rate of the backdoor attack triggered by the fault injec-
tion attack was 92%. A conventional backdoor attack was also conducted as part of a
comparative experiment in which the picture with the adversarial mark was used. The
success rate of the conventional attack was only 11% because the position and size of the
adversarial mark varied depending on the image-capturing environment. These results
demonstrate that our attack on the MIPI represents a more stable backdoor attack than the
conventional method.

As mentioned previously, a DNN model can be misclassified when security measures
against data tampering are not implemented on the image sensor interface. As a coun-
termeasure against this kind of attack, a message authentication code (MAC) needs to be
generated for the images on the image sensor. Then, the integrity of the image data must
be evaluated before using the DNN classification system.
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