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Abstract: Accurate water quality estimation is important for water environment monitoring and water
resource management and has emerged as a pivotal aspect of ecological rehabilitation and sustainable
development. However, due to the strong spatial heterogeneity of water quality parameters, it
is still challenging to obtain highly accurate spatial patterns of them. Taking chemical oxygen
demand as an example, this study proposes a novel estimation method for generating highly accurate
chemical oxygen demand fields in Poyang Lake. Specifically, based on the different water levels
and monitoring sites in Poyang Lake, an optimal virtual sensor network was first established. A
Taylor expansion-based method with integration of spatial correlation and spatial heterogeneity was
developed by considering environmental factors, the optimal virtual sensor network, and existing
monitoring stations. The proposed approach was evaluated and compared with other approaches
using a leave-one cross-validation process. Results show that the proposed method exhibits good
performance in estimating chemical oxygen demand fields in Poyang Lake, with mean absolute error
improved by 8% and 33%, respectively, on average, when compared with classical interpolators and
remote sensing methods. In addition, the applications of virtual sensors improve the performance
of the proposed method, with mean absolute error and root mean squared error values reduced by
20% to 60% over 12 months. The proposed method provides an effective tool for estimating highly
accurate spatial fields of chemical oxygen demand concentrations and could be applied to other water
quality parameters.

Keywords: water quality; estimation; accuracy; Poyang Lake

1. Introduction

Freshwater plays a critical role in humans, and the global freshwater supply available
for human utilization and consumption is severely limited, accounting for only 2% of the
Earth’s total water content, despite the fact that water covers approximately 70% of the
planet’s surface [1,2]. However, the quality of freshwater in numerous inland lakes is under
severe threat and degradation as a result of various anthropogenic factors, such as land-
use changes, discharge of untreated sewage, non-point source pollution from urban and
agricultural regions, and other human activities [3–6]. In recent decades, a predominant
trend observed in lakes worldwide is the escalation of organic matter concentrations [7].
Elevated levels of organic matter in surface water can have deleterious effects on the
structure and functioning of aquatic ecosystems, posing a significant threat to the stability
of lake ecosystems and limiting the sustainable development of urban areas adjacent
to lakes. Accurate assessment of the spatial distribution of water quality is a crucial
prerequisite for understanding and mitigating environmental risks associated with organic
matter accumulation in freshwater systems. Therefore, developing reliable and efficient

Sensors 2023, 23, 4739. https://doi.org/10.3390/s23104739 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23104739
https://doi.org/10.3390/s23104739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4434-1726
https://doi.org/10.3390/s23104739
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23104739?type=check_update&version=1


Sensors 2023, 23, 4739 2 of 16

methods for estimating and monitoring spatial patterns of water quality is a fundamental
task that requires interdisciplinary efforts by researchers, policymakers, and stakeholders.
In addition, in the context of increasingly stringent pollution control and water quality
improvement policies, the precise estimation of water quality is of paramount importance
in assessing the effectiveness of water resource management strategies, allowing decision-
makers to anticipate the response of lake ecosystems to different management scenarios [8].

Chemical oxygen demand (COD) is a crucial parameter that provides valuable infor-
mation on the condition of discharged pollutants and the level of organic pollution present
in aquatic environments [9]. Acquiring the spatial distribution of COD is essential for
gaining a more profound comprehension of the biogeochemical mechanisms underlying
organic pollutant matter in aquatic ecosystems [10]. However, the intricate composition
of organic matter and the complexity of its transformation mechanisms result in a highly
heterogeneous spatiotemporal pattern of COD dynamics in water bodies. This variability
poses significant challenges in accurately estimating COD levels [11]. Traditionally, the pri-
mary approach to monitoring COD in aquatic ecosystems has been through in situ sample
collection and laboratory measurements. However, this method is time-consuming, and the
resulting data have low temporal and spatial resolutions, thus providing only discrete data
points [12]. More importantly, conventional ground monitoring methods are inadequate
in capturing water quality parameters with high spatial–temporal resolution across lakes.
Furthermore, monitoring water quality is becoming increasingly challenging due to the
resource-intensive nature of sampling tasks and the sheer number of chemicals that are
discharged into inland waters from various industrial and domestic sources. Presently, the
estimation of COD primarily relies on chemical methods [12,13], which can yield accurate
results, but result in secondary pollution. The interpolation method is a widely adopted
technique for generating spatial COD fields from limited sample sites. However, the ac-
curacy of COD estimates based on interpolation is heavily reliant on the station network
density and the degree of spatial heterogeneity of COD. In cases where the station network
is sparse and the spatial heterogeneity of COD is high, it can be challenging to obtain
accurate spatial information of COD using interpolation-based methods. Another basic
approach required to solve the water pollution problem is the modeling of water quality
changes by developing some mathematical models [14,15]. These process-based models
have the ability of simulating and predicting complex processes in water ecosystems, iden-
tifying the behavior of pollutants, and recognizing the spatial distribution of water quality
parameters [16,17]. However, due to the different theories and algorithms used in the
models, the modeling outputs of different models have big differences. In addition, water
quality modeling is challenging due to insufficient representative site selection and sample
gaps, lack of calibration, errors in data reporting, and parameterization [17–19].

In recent decades, remote sensing technology has provided a promising way for lake
water quality continuous monitoring at local scales, which is an ideal method for monitor-
ing aquatic environments because it allows interpretation of received radiance at multiple
wavelengths, thereby enabling long-term monitoring of water quality parameters [11,20,21].
Numerous studies have focused on applying remote sensing techniques to obtain water
quality parameters. However, most of these studies have primarily concentrated on op-
tically active parameters, such as Chlorophyll-a, dissolved colored organic matter, and
turbidity. In contrast, less attention has been paid to non-optically active parameters, which
are less likely to influence the optical properties measured using remote sensing [22–24].
As non-optical water quality parameters, the estimation of COD through remote sensing is
challenging due to the fact that changes in COD levels may not result in observable changes
in water color, making it difficult to capture directly from satellite observations. As a
result, retrieving accurate and reliable COD data using remote sensing remains a significant
challenge. Considerable researches have been concentrated on the estimation of COD using
remote sensing methods, of which the indirect method is the most accepted and applied
one, which is established based on the observation of a strong correlation between optically
and non-optically active parameters [20,24,25]. At present, the use of machine learning
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regression methods for remote sensing retrieval of COD has been increasingly adopted due
to their ability to address complex nonlinear problems in estimating non-optically active
water quality parameters [12,23,26,27]. However, the performance of machine learning
methods greatly depended on the training data and the robustness of them varies largely
among different regions and datasets [28]. In addition, the application of satellite remote
sensing in local water environments is limited by several factors, such as coarse spatial
resolution, weather conditions, and low signal-to-noise ratios [29–32].

Poyang Lake (PL) is the largest freshwater lake in China, and wetlands in PL basin are
one of the typical global river-lake silted freshwater wetlands, playing an important role in
preserving ecological function. It has been reported that the self-purification capacity of
PL has been weakened in recent years and water quality is deteriorating due to extensive
human activities [33]. However, the literature on estimating water quality parameters in PL
is still limited, and no studies have attempted to focus on the simulation of COD in PL. This
paper aims to propose a new estimation method for generating spatial distribution of COD
in PL. First, considering the sparse site observations, some virtual sensors are established by
combining Shannon’s entropy and semi-variogram using the available monitoring stations
and local topographical characteristics. The values of the virtual sensors are retrieved
using RF method combined with the recently launched Sentinel-2 imagery. Second, taking
into account the spatial correlation and spatial heterogeneity, the estimation of COD was
obtained by proposing a novel kernel regression method based on Taylor expansion, using
explanatory variables, the values from virtual sensors and monitoring stations. This study
provides a more efficient water quality spatial estimation approach, which will facilitate
water resource management and policy making. The subsequent sections of this research
paper are structured as follows. Section 2 gives a comprehensive account of the materials
employed in the study, including information on the study area, datasets used for the
analysis, and the proposed method. The results are shown in Section 3. Discussions and
conclusions are given in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Study Area and Data

Located at 28◦22′ N~29◦25′ N and 115◦47′ E~116◦45′ E, PL holds the distinction of
being the most significant freshwater lake in China. It features a long and slender river in
the northern region that connects it to the Yangtze River, with the southern region being
the primary zone. The elevation of the PL exhibits a gradual increase pattern from the
north to south and west to east, as shown in Figure 1. Since the lake is a tributary of the
Yangtze River, there is a direct exchange and interaction between the two water bodies [34].
The primary factors governing the water level of PL are the Yangtze River and the “five
rivers”, namely Gan River, Fu River, Xin River, Rao River, and Xiu River. The water levels
of these rivers have a considerable impact, with fluctuations of over 10 m observed in
some cases [35]. As a seasonal lake, the water level displays a distinct pattern wherein it
rises primarily during the months of April to June, owing to the influx of water from the
five rivers. Subsequently, from July to October, the backflow from the Yangtze River also
contributes to a rise in water levels. Following this, the water levels gradually receded,
starting in October and continuing for approximately six months [36]. The topographical
features of PL and changes in the flow of the five rivers significantly affect the lake’s
surface area and water level, leading to substantial variations across seasons. The lake
experiences seasonal fluctuations in its water volume, with levels varying between the
winter and summer periods. Notably, the water depth increased to 19.4 m in August but
declined to 7.9 m in January. PL is a crucial source of drinking water, irrigation water,
aquaculture water, and industrial water. Additionally, it plays a pivotal role in regulating
river water levels, preserving water resources and maintaining the ecological equilibrium of
the neighboring regions. The lake’s water quality is of the utmost significance, particularly
as a source of drinking water for human consumption. However, the water quality of
PL is affected by human activities such as dredging, transportation, and agriculture. In
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recent decades, the lake’s self-purification capacity has weakened, leading to a decline in
water quality [37].
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Figure 1. Locations of COD measurements and the Poyang Lake boundary.

A total of 14 water samples were collected from PL in the year 2021 (Figure 1). The data
collected from these samples were incorporated into the analysis process to enhance the
accuracy of the estimations. The water quality parameters were measured by monitoring
centers and subjected to quality control before being promptly transmitted to the server
via GPRS. The COD values of all samples were determined using conventional chemical
methods in the laboratory and were considered the actual values for analysis.

The European Space Agency (ESA) offers real-time updated Sentinel-2 MultiSpec-
tral Instrument (MSI) imagery, which can be freely downloaded from https://scihub.
copernicus.eu (accessed on 18 January 2023). This imagery is composed of thirteen spectral
bands, spanning from the visible (VNIR) and near-infrared (NIR) to short-wave infrared
(SWIR). The spatial resolution of these bands varies from 10 m to 60 m. For this research,
atmospheric apparent reflectance products were used after ortho-rectification and sub-pixel
geometric correction. The water area over different months (as shown in Figure 2) was
determined by extracting the normalized difference water index (NDWI, [38]):

NDWI =
XGreen − XNIR
XGreen + XNIR

(1)

where XNIR and XGreen are the grid values of the NIR band and the green band, respectively.
For Sentinel-2 imagery, the NIR band and green band are B8 and B3, respectively.

https://scihub.copernicus.eu
https://scihub.copernicus.eu
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2.2. Meteorology

In this research, we first use the Shannon’s entropy and semi-variogram function to
establish an optimal virtual sensor network, and use random forest (RF) method, combing
with the Sentinel-2 MSI imagery and existing monitoring station observations, to retrieve
the COD concentration for each virtual sensor. Secondly, based on the virtual sensor
network and monitoring stations, and Taylor expansion, we obtain a spatial estimation
of COD in PL by solving a weighted least squares problem with the integration of the
explanatory variables of COD. The framework of this method is presented in Figure 3.
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2.2.1. Designing a Virtual Sensor Network

A much denser sampling site is necessary to obtain reliable COD estimates. In this
study, we first design an optimal virtual sensor network in each month. The aim of the
network is to provide the number of sensors and the locations to obtain detailed COD
concentration information and their variations. Optimization of a COD sampling network
varies over time, including both the disposition of the sites and the number of them.

First, several candidate locations {S1, S2, · · · , Sn} in areas without COD monitoring
sensors are given, especially in the intersection of the rivers, complex terrain areas, and
areas that are poorly monitored, using Creat Features Tools in ArcGIS 10.6. These candidate
locations were evenly distributed over the water surface with a sample interval of 10 m,
using the grid method in Sampling Tools in ArcGIS 10.6. We then applied Shannon’s
entropy to design the optimal virtual sensor network, and the number of the sensors was
determined by using semi-variogram function.

Entropy is used to measure the information of an event [39], and can be calculated as,

E(S) = −∑
i

pi ln pi, (2)

where pi is the probability of the event ki. For the COD concentration, E(S) represents
the average amount of COD. The overlapping information could be found in two COD
sampling sites. The joint entropy of COD from two sensors S1 and S2 is,

E(S1, S2) = −∑
i

∑
j

pij lnpij (3)

To find the sensor with the smallest reduction in uncertainty, conditional entropy is
used and is expressed as follows:

E(S2|S1) = E(S1|S2)− E(S1) (4)
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According to the above equations, we then calculate the entropy of each candidate
virtual sensor in PL and, first, find the site S1 with the highest uncertainty,

maxE(Si), i = 1, 2, · · · , n (5)

Determine the second important site, S2, which has the largest difference from the first
site S1, from the remaining candidate sensors by using the following equation,

min{E(S1)− E(S1|S2)} (6)

Similarly, find the third most important virtual sensor such that,

min{E(S1, S2)−E((S1, S2)|S3)} (7)

Repeat the process, the jth important sensor satisfies,

min
{

E
(
S1, · · · , Sj−1

)
−E((S1, · · · , Sj−1)|Sj

)}
(8)

The monthly average COD concentration of the sites {S1, S2, · · · , Sn} can be calculated
using the random forest (RF) method by combing different bands of Sentinel-2 imagery.
Finally, by comparing the semi-variogram function of the existing monitoring stations with
that of the virtual sensors, the number of virtual sensors was determined.

2.2.2. Proposing a New Estimation Method for Generating Spatial Fields for COD

Let gi denote the i-th observation of COD concentration from the optimal COD net-
work, u denote the final estimation of COD in PL. The following equation can be established,

gi = u(pi) + εi, i = 1, 2, · · · , M (9)

where, εi is the error, M denotes the neighborhood sampling number. pi = (xi, yi)
T is the

COD value from the near sampling point.
Suppose that p = (x, y)T is the surrounding site of pi = (xi, yi)

T , we can obtain the
following equation based on Taylor expansion:

u(pi) ≈ u(p) + {∇u(p)}T(pi − p) + 1
2 (pi − p)T{Hu(p)}(pi − p) + · · ·

= u(p) + {∇u(p)}T(pi − p) + 1
2 vechT{Hu(p)}vech{(pi − p)(pi − p)T}+ · · ·

(10)

where,∇ and H represent the gradient operator and Hession operator [40], with dimension
of 2× 1, 2× 2, respectively. vech denotes a matrix hemivectorization operator, converting a
matrix to a vector in lexicographical order:

vech
([

a b
b d

])
=
[
a b d

]T , vech

a b c
b e f
c f i

 =
[
a b c e f i

]T (11)

Let,

β0 = u(p), β1 = ∇u(p) =
[

∂u(p)
∂x

∂u(p)
∂y

]T
, β2 =

1
2

[
∂2u(p)

∂x2 2 ∂2u(p)
∂x∂y

∂2u(p)
∂y2

]T
, (12)

Equation (10) can be rewritten as:

u(pi) ≈ β0 + {β1}T(pi − p) +
1
2
{β2}Tvech

{
(pi − p)(pi − p)T

}
+ · · · (13)

where, β0 is the COD estimate at the point p = (x, y)T .
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Taking into account the spatial heterogeneity of COD, the above approach can be
expressed as a weighted least squared problem by introducing a weighted matrix generated
from the sampling points:

min
u

P

∑
i=1

(gi − u(pi))
2 · KW(pi − p) (14)

where, KW(pi − p) = 1
det(W)

K(W−1(pi − p)), K is a two-dimensional local windowing
kernel function and is mainly used to consider the weight between the points in the
local window and the current sampling points. If the distance is far, the weight is small,
otherwise, the weight is large. W determines the kernel’s support set, with the simplest
case of W = σI, σ is a global smoothing parameter.

In this study, for each sampling point pi = (xi, yi)
T , we design W as a symmetric

positive definite matrix with controllable direction by combining the explanatory variables
of COD, as follows:

Wi = σC−1/2
i (15)

where, Ci = (XT(Fi(xi, yi))X)
−1XT Fi(xi, yi) is given by the dominant covariates of COD

selected from turbidity, PH, water temperature, dissolved oxygen, precipitation, and wind
in surrounding area of gi. X is composed of the covariates identified using RF method.
Suppose the local neighborhood of pi = (xi, yi)

T is N(pi), M is the sampling point number
in N(pi), a derivative matrix with dimension of M× 2 can be calculated as:

Ji =


· ·
· ·

∂u(pi)/∂x ∂u(pi)/∂y

· ·
· ·

, pj ∈ N(pi), j = 1, 2, · · · , M (16)

Then, let Fi be the covariance matrix of the gradients in the local neighborhood:

Fi = JT
i Ji =


M
∑

j=1

(
∂u(Pj)

∂x

)2 M
∑

j=1

∂u(Pj)

∂x
∂u(Pj)

∂y

M
∑

j=1

∂u(Pj)

∂x
∂u(Pj)

∂y

M
∑

j=1

(
∂u(Pj)

∂y

)2

. (17)

Combining Equations (13) and (14), we can get:

min
{βn}N

n=0

M

∑
i=1

(gi − β0−{β1}T(pi − p)− 1
2
{β2}Tvech{(pi − p)(pi − p)T}− · · · )2 ·KW(p− pi)

(18)
Let,

g =
[

g1 g2 · · · gM
]T

b =
[

β0 βT
1 · · · βT

N
]T

K = diag
[
KW(p1 − p) KW(p2 − p) · · · KW(pM − p)

]

X =


1 (p1 − p)T vechT{(p1 − p)(p1 − p)T} · · ·
1 (p2 − p)T vechT{(p2 − p)(p2 − p)T} · · ·
...

...
...

...
1 (pM − p)T vechT{(pM − p)(pM − p)T} · · ·


(19)

where, N is the dimension, diag denotes a diagonal matrix.
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Equation (18) can be finally transformed into:

b = argmin
b
{‖g− Xb‖2

K = (g− Xb)TK(g− Xb)} (20)

The solution of Equation (20) can be written as:

b = (XTKX)
−1

XTKg (21)

Therefore, the COD value can be obtained from the weighted combination of adjacent
sampling points:

β0 = eT
1 b =

M

∑
i=1

wi(KW , N, pi − p)gi (22)

where,
M
∑

i=1
wi(KW , N, pi − p) = 1, eT

1 =
[
1 0 · · · 0

]
, wi(KW , N, pi − p) is the equivalent

kernel of gi and can be calculated from the elements of XTKX.
The proposed method using the Taylor expansion above was based on spatial cor-

relation and spatial heterogeneity of the variables by considering the points and their
surrounding observations together with the environmental influence factors, and was
named TSCH.

2.3. Model Performance Assessment

We use the leave-one cross validation method to evaluate the performance of TSCH
approach. By using this method, only one sample point is used to validate the method
and the remaining samples are used to train the method. This process repeats until
each sample from the dataset is used as a validation set. The performance of TSCH is
quantified by averaging the commonly used error measurements calculated from the cross-
validation procedures, including the coefficient of determination (R2), mean absolute error
(MAE), and root mean square error (RMSE). These metrics are defined by the following
Equations (23)–(25), respectively.

R2 = 1−

m
∑

i=1
(y∗

i
− yi)

2

m
∑

i=1
(y∗

i
− y∗)2

(23)

MAE =

m
∑

i=1

∣∣yi − y∗i
∣∣

m
(24)

RMSE =

√√√√√ m
∑

i=1
(yi − y∗i )

2

m
(25)

where, m is the data number. yi and yi
∗ are the estimate and observation at the ith point,

respectively. y and y∗ are the average of yi and y∗i , and σy and σy∗ are the standard deviation
of yi and y∗i , respectively.

3. Results

Based on the Shannon’s entropy and semi-variogram function, the optimal virtual
sensor networks were established. Since the water areas fluctuated largely over the months,
the network with the largest number of sensors was first established on July. The sensor
network was then individually established and adjusted according to the water area in
other months based on the sensor network in July and the corresponding monitoring
station values in the month. We take four months from four seasons in 2021 as examples
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in this study. The distribution of the optimal sensor network is shown in Figure 4. To
find the optimal Sentinel-2 image band compositions for COD retrieval, we compared 255
possible band combinations using RF method based on R2. The optimal band combinations
for COD retrieval in January, April, July, and October (R2 > 0.75) were ‘Green + nir + red
+ red1’, ‘blue + green + red1 + red2’, ‘blue + green + nir + red2’, and ‘nir + red + red2 +
swir1’, respectively. The COD concentration values for the established virtual sensors were
obtained using these band compositions from Sentinel-2 imagery (Figure 4).
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The spatial distributions of COD concentrations in January and July were shown
in Figure 5. Comparisons were made between estimates using only monitoring stations
(Figure 5a,c) and using both monitoring sites and virtual sensors (Figure 5b,d). The re-
sults show that the additional virtual sensors generated similar spatial patterns of COD
concentrations to the estimations using only monitoring sites. However, large local dif-
ferences were observed in both two example months. In January, the mid-east, mid-west,
and middle areas exhibited different spatial patterns before and after the use of virtual
sensors (Figure 5a,b). The COD values were higher in mid-eastern and mid-western parts,
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while COD values were smaller in the middle PL after using virtual sensors. It should
be noted that in the dry season, low precipitation and slow water flow in PL lead to rel-
atively heterogeneous COD values, which were better reflected by using virtual sensors
together with monitoring sites (Figure 5b). In July, local differences in COD values were
observed in the north and south-central PL. Larger areas with larger values were observed
in the south-central part and smaller values were observed in the northern part after con-
sidering the virtual sensors (Figure 5d). Overall, COD concentrations ranged from 5 to
13 mg/L, decreasing from south to north in July, with the highest values occurring in the
south-central part.
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The model performance was quantified using R2, MAE and RMSE. Figure 6 presents
the scatterplot of estimations and observations over the four example months. The results
showed that TSCH had good COD estimation performance. COD estimates from both
virtual and monitoring sensors agree well with observations based on R2, MAE, and RMSE
(Figure 6). In January, the proposed method integrated with the virtual sensors generated
better COD estimates with R2 of 0.90, MAE of 0.82, and RMSE of 0.88, improved by 24%
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in terms of MAE by comparing with the case of monitoring sites. The proposed method
tended to underestimate high COD values and overestimate low COD values in the dry
season (Figure 6a,b). In July and October, the method showed better performance than
in January and April. In addition, by integrating virtual sensors, the estimations of COD
exhibited high accuracy with R2 of 0.91, MAE of 0.44 mg/L, and RMSE of 0.52 mg/L,
improved by 20%, 54%, and 50%, respectively in July. It was noted that the proposed
method exhibited relatively better performance in wet months compared to dry months,
which may be due to relatively heterogeneous spatial distributions of COD and high COD
concentrations in the dry season.
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The proposed method was compared with Kriging and inverse distance weighted
(IDW) method and Sentinel-2 products over 12 months (Figure 7). Methods tended to
produce better results in wet months than dry months. Based on MAEs, Sentinel-2 products
exhibited the worst performance, while the proposed approach showed the best perfor-
mance over the months. The poor performance of Sentinel-2 products may be due to
weather conditions in different months and also the retrieval algorithms. Kriging per-
formed better in some months than IDW, while IDW performed better in other months,
and both performed worse than the proposed method. By considering the virtual sensors
and environmental variables, the proposed method ensured the accuracy of the final COD
concentration fields.
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4. Discussion

Accurate estimating the spatial patterns of water quality parameters is critically impor-
tant for water resource management and policy making. Although several remote sensors
are available for generating water quality parameters at a large scale, estimating spatial
patterns of these parameters is still a great challenge due to retrieval algorithms, sensors,
and weather conditions. Numerical models can provide continuous spatial fields of water
quality parameters, but have some uncertainties arising from the expression of the complex
process and the parameterization. Traditional water quality monitoring provides relatively
high accurate values of water quality parameters, but they just offer limited point values.
Interpolators were the most common method of obtaining spatial distribution of water
quality parameters. However, the accuracy of interpolation fields depends largely on the
observation network.

The purpose of this study is to develop a novel approach for obtaining high accuracy
spatial patterns of water quality parameters. Given the limited related work in PL, the
developed approach was applied to generate COD fields in this area, and the results were
critically important for monitoring the status of organic pollutant discharge in PL, and,
thus, important for Poyang Lake wetland ecosystem and water resource management. We
first established an optimal sensor network using entropy and semi-variogram function
and employed and identified the optimal Sentinel-2 imagery band combinations to obtain
COD values for each virtual sensor over different months. Considering Tobler’s first law
of geography [41], a spatial estimation method was developed by using Taylor expansion
among the optimal station network in each month. The method was thus transformed into
a weighted least squares problem by considering the law of spatial heterogeneity with the
integration of the explanatory variables of COD [42], selected from turbidity, PH, water
temperature, dissolved oxygen, precipitation, and wind.

We evaluate the performance of the TSCH method by using leave-one cross-validation
method. Results in Figures 6 and 7 showed that TSCH can generate good COD concentra-
tion fields in PL in different months, and the method performed better in wet months when
compared to dry months. The good performance of TSCH was mainly due to sufficient site
values and integration with the explanatory variables of COD. Results in Figure 6 show that
the additional virtual sensors provide better COD estimations, with MAE improved by 20%
to 60% when compared to the method with monitoring sites alone. In addition, as shown in
Figure 7, TSCH yields a significant improvement over satellite-based products, which may
be due to the combination of monitoring values and the covariates of COD. The Sentinel-2
products exhibited high uncertainty and varied performance over the months, probably
due to different weather conditions in PL. Results also show that the TSCH method per-
formed better than other classical interpolators, with an average MAE improvement of 8%
over the twelve months. These results also indicated that, although the satellite products
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were not satisfactory, the virtual sensor values, together with observations and explanatory
variables, could together produce good results by using the proposed approach.

The proposed approach can be performed for other estimates of water quality pa-
rameters and can be applied to other domains, particularly to poorly monitored areas.
In addition, the method of establishing the virtual sensor network can be used to design
sampling point networks in other related studies. Despite the improved estimates, there are
still some uncertainties in the final results. The accuracy calculated based on the leave-one
cross-validation method varies with the location and the number of stations. TSCH can be
found to be more suitable for COD estimation in a high-density station network. Although
interpolation methods, such as Kriging and IDW, may also have good performance in
data-intensive regions [43], the integration of explanatory variables in TSCH makes it better
in estimating COD fields. The performance of TSCH was affected not only by the virtual
sensor network, including virtual sensor locations, satellite image quality, and the number
of monitoring stations used to train the RF method, but also by explanatory variables. The
virtual sensor network should vary with spatial and time scales in applications. Given
the higher heterogenous distributions of COD in the dry season, TSCH can be further
improved by considering more explanatory variables.

5. Conclusions

In this study, a novel spatial estimation method, TSCH, was proposed for obtaining
highly accurate water quality parameters. Entropy and semi-variogram were first employed
to design an optimal virtual sensor network, and values of the virtual sensors were obtained
using Sentinel-2 products. A Taylor expansion-based method was then developed using the
optimal station network, with the integrating of spatial correlation and spatial heterogeneity
of the variables. The TSCH method was used to obtain the COD fields in PL and the
strict cross-validation results show that the COD estimates derived from the proposed
approach agree well with the observations based on R2, MAE, and RMSE. TSCH performed
better than other classic interpolators, with MAE improved by 8%, and virtual sensors
played an important role in COD estimation, with MAE improved by 20% to 60% when
compared to the method with monitoring sites alone. The proposed method provides a
promising way to obtain high-quality water quality parameters and can be applied to other
environmental variables.
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