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Abstract: With the widespread development of multiple sensors for UGVs, the multi-source fusion-
navigation system, which overcomes the limitations of the use of a single sensor, is becoming in-
creasingly important in the field of autonomous navigation for UGVs. Because federated filtering is 
not independent between the filter-output quantities, owing to the use of the same state equation in 
each of the local sensors, a new kinematic and static multi-source fusion-filtering algorithm based 
on the error-state Kalman filter (ESKF) is proposed in this paper for the positioning-state estimation 
of UGVs. The algorithm is based on INS/GNSS/UWB multi-source sensors, and the ESKF replaces 
the traditional Kalman filter in kinematic and static filtering. After constructing the kinematic EKSF 
based on GNSS/INS and the static ESKF based on UWB/INS, the error-state vector solved by the 
kinematic ESKF was injected and set to zero. On this basis, the kinematic ESKF filter solution was 
used as the state vector of the static ESKF for the rest of the static filtering in a sequential form. 
Finally, the last static ESKF filtering solution was used as the integral filtering solution. Through 
mathematical simulations and comparative experiments, it is demonstrated that the proposed 
method converges quickly, and the positioning accuracy of the method was improved by 21.98% 
and 13.03% compared to the loosely coupled GNSS/INS and the loosely coupled UWB/INS naviga-
tion methods, respectively. Furthermore, as shown by the error-variation curves, the main perfor-
mance of the proposed fusion-filtering method was largely influenced by the accuracy and robust-
ness of the sensors in the kinematic ESKF. Furthermore, the algorithm proposed in this paper 
demonstrated good generalizability, plug-and-play, and robustness through comparative analysis 
experiments. 

Keywords: UGV; multi-source fusion; error-state Kalman filter (ESKF); kinematic filtering;  
static filtering 
 

1. Introduction 
Navigation and positioning are the core technologies of the Internet of Things and 

location service applications, which occupy a pivotal position in national security and 
economic construction [1]. With the increasing demand for unmanned, intelligent, and 
autonomous vehicles in various fields, unmanned ground vehicles (UGVs) with flexibil-
ity, low cost, strong adaptability, and other characteristics, are widely used in storage and 
logistics, search and rescue, detection and excavation, reconnaissance and detonation, and 
other civilian and military fields [2–4]. In outdoor environments, the global navigation 
satellite system (GNSS) can provide high-accuracy positioning for UGVs [5], but when 
unmanned vehicles are in urban canyons, or in underground or indoor scenes, the GNSS 
produces a loss of lock, rejection, and other phenomena, which means that the availability, 
continuity, and reliability of GNSS signals are not guaranteed. 
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To address problems such as the inability of single-GNSS positioning to meet pro-
duction and construction needs, Yang Yuanxi proposed the concept of integrated posi-
tioning, navigating, and timing (PNT), the core of which is not to rely excessively on the 
GNSS and to use all available PNT information sources to implement all-space target po-
sitioning, navigation, and timing services [6]. In the indoor environment of GNSS rejec-
tion, many scholars have conducted research on different positioning technologies, such 
as ultra-wide band (UWB) positioning technology [7], the inertial navigation system (INS) 
[8], wireless local area network (WLAN) positioning technology [9], radio-frequency iden-
tification (RFID) positioning technology [10], and Bluetooth positioning technology [11]. 
Existing communication means, including WLAN, RFID, and Bluetooth, are unable to 
achieve accurate indoor positioning because of easy disruption; UWB has attracted a great 
deal of interest because of its high temporal resolution, high reliability, and good obstacle-
penetration capabilities [12]. For example, in seamless indoor and outdoor positioning 
scenes, the authors of [13] conducted experiments related to multi-sensor fusion position-
ing. Based on the construction of relevant experimental scenes, experiments were con-
ducted using other sensors, such as IMU, GNSS, and UWB, for seamless positioning in-
doors and outdoors, and the experimental results showed that UWB and IMU can provide 
high-accuracy positioning for carriers in indoor scenes with GNSS rejection. The authors 
of [14] proposed a GNSS/INS/UWB tightly coupled, integrated positioning method. In an 
indoor scene, the method uses UWB-distance measurements to correct INS errors, and in 
the transition between outdoor and indoor scenes, the method uses a GNSS/INS/UWB 
tightly coupled, integrated positioning system to ensure the continuity of positioning ac-
curacy and to further improve system reliability. For UWB positioning technology, which 
offers high overall positioning accuracy, the complexity of indoor environments, building 
layouts, internal structures, materials, and human movements can cause multipath effects, 
non-line-of-sight (NLOS) effects, and interference with electronic equipment signals, caus-
ing UWB positioning systems to be less accurate or even impossible to locate. An inertial 
navigation system (INS) cannot be used for indoor positioning alone over a long time pe-
riod because of the accumulation of errors caused by gyroscope and accelerometer bias 
and drift. 

Single positioning techniques are limited by signal measurements and algorithms in 
terms of the positioning accuracy that can be achieved [15]. In environments where mul-
tiple wireless technologies coexist, fused positioning aims to utilize multiple signal-meas-
urement data or multiple positioning algorithms simultaneously to provide better posi-
tion estimations [16]. This method is currently one of the main solutions for improving 
the accuracy and robustness of the integral system. Currently, the distributed Kalman fil-
ter and federated Kalman filter (FKF) are used for fusion navigation, with several sensors 
on the same carrier. The former can incorporate navigation data from multiple sensors by 
means of parallel data-processing capabilities and strong error correction, and the latter 
builds on the former by adding the principle of information sharing to improve the accu-
racy and robustness of the integral filter. Zhang et al. proposed a multi-source infor-
mation-fusion localization algorithm based on joint Kalman filtering, which is fault-toler-
ant and reduces computational effort compared to centralized Kalman filtering [17]. The 
authors of [18] proposed an adaptive federated filtering algorithm, which can calculate 
the information-distribution coefficient by using prior information and adjust the infor-
mation-distribution coefficient in real time. 

In theory, if the output quantities of each local filter are independent of each other 
and between the local filter and the output quantity of the main filter, the FKF has integral 
optimality or near-optimality, as well as high fault tolerance, and is suitable for real-time 
navigation data. However, in practice, the same equation of state is used between the local 
filters of the federated filter, resulting in a lack of independence between the main filter 
and the local sensor outputs and between the local filter outputs, which fails to satisfy the 
prerequisites of the federated filter and ensures that the fused navigation results are not 
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theoretically rigorous or optimal. By conducting numerical simulations of the three-di-
mensional state and two-dimensional observation systems, as well as combined velocity 
and attitude-transfer-alignment-navigation simulation experiments, Yan Gongmin et al. 
[19] verified that the errors in the suboptimal estimation results of the FKF were exces-
sively large to meet the high-precision-filtering needs of the actual system. 

To avoid reusing the carrier equation-of-state information and to solve the problem 
of the correlation between each local filter and between the local filter and the main filter 
of the FKF, Yang Yuanxi [20] proposed a kind of sequential kinematic- and static-filtering-
fusion navigation, which divides the local filter into kinematic Kalman filtering and static 
Kalman filtering. After the kinematic Kalman filtering of the output of either observation 
ephemeris based on the dynamics model with the base sensor or the first sensor, the nav-
igation information of the remaining sensors is added in a sequential form to create a static 
Kalman filter and, finally, a fusion solution of all the navigation information is obtained. 
Shi Jianxian et al. [21] proposed a combined GPS/BDS/INS navigation algorithm based on 
kinematic and static filtering. The algorithm combines the dynamics model of a satellite-
navigation system and an inertial navigation system for a kinematic filtering solution, af-
ter which the static filter designed by the principle of sequential parity is used to further 
correct the kinematic filtering results and obtain the final state vector. Wang Yidi et al. [22] 
proposed a combined pulsar/CNS deep-space-survey navigation method based on im-
proved kinematic and static filtering, which used a UKF in the kinematic filtering to pro-
cess starlight-angular-distance measurements with a fast sampling rate, strong non-line-
arity in the measurement equation, and an EKF in the static filtering to process pulsar 
measurements with a slow sampling rate and obvious linearity in the measurement equa-
tion. This avoids the problem of the non-optimality of the fusion filter owing to the use of 
the same equation of state for each local filter. 

In current navigation systems, because of their autonomous characteristics, INSs, 
which are less susceptible to external interference, are often used to provide continuous, 
high-update-frequency navigation data. Currently, in most INSs, the error-state Kalman 
filter (ESKF) is mostly used instead of the traditional Kalman filter. Lu Keke et al. [23] 
proposed a quadratic attitude-estimation method based on the ESKF, which can avoid 
covariance matrix singularities and maintain the ability to represent random variable un-
certainties. Jun Dai et al. [24] proposed an IMU/GNSS/VO (visual odometry)-based UAV 
with a robust adaptive-positioning algorithm for use in complex environments, in which 
a combined ESKF-based navigation model of VO/INS and GNSS/INS was constructed as 
a local filter of the federated filter to improve the accuracy and robustness of the federated 
filter in complex environments. The authors of [25] proposed a rigorous attitude-and-po-
sition computation algorithm using tightly coupled sensor fusion for multi-antenna, 
multi-GNSS, and inertial sensor observations, which uses an extended Kalman filter (EKF) 
and current phase post-processed kinematic (PPK) methods to feed attitude information 
from multi-antenna GNSS measurements back into the INS, focusing on improving the 
position- and attitude-measurement accuracy of low-cost UAVs. 

In this paper, a kinematic and static filtering method is proposed based on the ESKF 
and the related properties of kinematic and static filtering, with a UGV as the vehicle. 
Navigation data from the INS, GNSS, and UWB were used in the filtering. An INS was 
used as the primary sensor in the filtering, and the GNSS and UWB were used to correct 
the INS to improve the integral performance of the filtering. In the kinematic ESKF, the 
ESKF was used instead of the traditional Kalman filter, the error-state vector solved by the 
kinematic ESKF was injected into the INS, and the velocity and position components of 
the error-state vector were subsequently zeroed. In the static ESKF, the zeroed error-state 
vector and its covariance matrix were used as the state vector. Furthermore, the corrected 
position and velocity errors of both the INS and the UWB were used as the observation 
equations, which were statically filtered in a sequential form and fed back to the INS to 
obtain the final fused navigation results. On this basis, simulation and comparison exper-
iments were carried out in this study. In the comparison experiments, the errors of the 
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proposed scheme were compared with the two schemes of the loosely coupled GNSS/INS 
and the loosely coupled UWB/INS. Through these experiments, the usability of the pro-
posed kinematic and static filtering of the ESKF based on INS/GNSS/UWB was explored. 
In addition, simulation experiments with different sensor parameters and complex envi-
ronments were conducted to analyze the generalizability, robustness, and plug-and-play 
nature of the proposed algorithm. The experimental results indicate that the kinematic 
and static filtering of the ESKF based on INS/GNSS/UWB proposed in this paper has ac-
curacy advantages over combined navigation algorithms, has good generalizability, and 
is applicable to different sensors with different accuracies. Its good robustness, the ease 
with which the filter structure can be changed, and the shielding of contaminated sensors 
can be applied to seamless indoor and outdoor positioning scenes, providing a filtering 
basis for seamless indoor- and outdoor-positioning-sensor switching. 

This paper is organized as follows. The ESKF algorithm is introduced in Section 2. In 
Section 3, the kinematic and static filtering of the ESKF based on INS/GNSS/UWB is es-
tablished. In Section 4, simulation experiments based on the proposed method are re-
ported, and a comparison experiment between the loosely coupled GNSS/INS and the 
loosely coupled UWB/INS schemes with the same parameter settings is reported, demon-
strating the usability of the method proposed in this paper. In Section 5, the generalizabil-
ity of the proposed algorithm is analyzed by reporting the use of settings with different 
sensor accuracies. Based on this analysis, the robustness of the filtering was explored by 
adding the systematic errors of the GNSS and UWB and conducting the simulation exper-
iments in a complex environment. Finally, the conclusions are drawn in Section 6. 

2. Error-State Kalman Filter 
Compared to the Kalman filter, the ESKF can constrain the error state to a position 

close to the origin, thus avoiding the singularity of the parameters used and ensuring the 
linearization of the parameters. Because the state and motion vectors of the ESKF are 
small, the second-order variables of the two vectors can be relatively negligible, thus re-
ducing the error caused by the Taylor expansion in the linearization process. The ESKF 
defines the true state vector as the sum of the nominal state vector and the error-state 
vector. The ESKF for inertial navigation systems is divided into four main processes: the 
nominal-state-prediction process, the error-state-prediction process, the error-state-injec-
tion process, and the state-error-nulling process. At moment kt , the nominal-state-predic-
tion process and the error-state-prediction process are carried out simultaneously. The 
prediction is updated for the current moment using the nominal- and error-state quanti-
ties from the previous iteration by means of a recursive equation. Next, the true-state es-
timate at that moment is obtained by injecting the error-state estimate into the nominal-
state estimate. Finally, the velocity and position components of the state error are set to 
zero, and we proceed to the next iteration. 

In this study, two ESKF models for fused navigation were designed in a loosely cou-
pled formulation; these were the GNSS/INS-based ESKF and the UWB/INS-based ESKF. 
Both fusion models were constructed as ESKF models based on the INS equation of state. 
The difference in these new models is that after the nominal-state prediction and error-
state prediction, the error-state estimates were injected into the calibration-fusion data for 
the GNSS and UWB. The calibrated-fusion data were then injected into the nominal state 
estimator, as shown in the structure in Figure 1. Similar to the Kalman filter, the ESKF 
includes state prediction and measurement prediction, in which the state is updated based 
on the kinematic model of the INS. Unlike the Kalman filter, the measurement predictions 
are updated based on the errors in the velocity and position of the GNSS compared to the 
INS and the errors in the velocity and position of the UWB compared to the INS. 
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Figure 1. Architecture diagram for the GNSS/INS-based ESKF and UWB/INS-based ESKF. 

2.1. Kinematic Models 

In this paper, [ ]T, , , ,b bX q v p a ω=  is used as the state vector of the overall system, 
where v  is the attitude of the UGV, q is the velocity of the UGV, p is the position of 
the UGV, ba  is the accelerometer bias, and bω  is the gyroscope bias. In the ESKF, the 
real-state vector truthX  is formed by the nominal-state vector X  and the error-state vec-
tor Xδ , and the equation is as follows: 

truthX X Xδ= +  (1)

where 
T

, , , ,
truth truthtruth truth truth truth b bX q v p a ω =    , [ ]T, , , ,b bX q v p aδ δ δ δ δ δω=

 , [ ]T, , , ,X q v p a ω=

. 
In the ESKF process, the real-state-dynamics model for the IMU (inertial measure-

ment unit) is modeled in Equation (2): 

 

1 ( )
2

( )
truth

truth

truth

truth

truth truth m b n

n
truth b truth m b n

truth truth

b

b

q q

v C a a a

p v
a aω

ω

ω ω ω

ω ω

 = ⊗ − −


= − −
 =

=


=







  

(2)

where na  and nω  represent acceleration and angular velocity measurements and white 
noise, respectively. The aω   and ωω   represent acceleration bias and angular velocity 
bias, respectively.  

n
b truthC represents the rotation matrix of the real state, which in the INS 

system is the coordinate-transformation matrix from the carrier coordinate system b to 
the navigation coordinate system n . ⊗ represents the quaternion multiplication opera-
tion and the extraction of the vector part of the result. The nominal-state IMU-dynamics 
model is presented as Equation (3): 
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(3)

where n
bC  represents the rotation matrix of the nominal state. The error-state dynamics 

model of the IMU is obtained from the above equation, as shown in Equation (4): 

[ ]
[ ]
m b b n

n n
b m b b b n

b

b

v C a a C a Ra
p v
a aω

ω

δθ ω ω δθ δω ω
δ δθ δ

δ δ
δ
δω ω

×

×

 = − − −
 = − − − −

=
 =
 =






  

(4)

where [ ]a ×  represents the antisymmetric matrix of vector a . 
Since Equations (2)–(4) are all continuous-form equations, they need to be discre-

tized. After discretization, the recursive equation for the nominal-state dynamics model 
of the IMU at moment kt  is obtained, as shown in Equation (5): 

1

1

2
1

( 1)

( 1)

[( ) ]
[ ]

1 [ ( )]
2

k k k mk bk
n

k k bk mk bk

n
k k k bk mk bk

b k bk

b k bk

q q q t
v v C a a t

p p v t C a a t

a a

ω ω

ω ω

+

+

+

+

+

= ⊗ − Δ
 = + − Δ


= + Δ + − Δ


=
 =  

(5)

where tΔ  represents the sampling interval of the IMU. The error-state dynamics model 
of the IMU at moment kt  is derived as shown in Equation (6): 

1

1

1

( 1)

( 1)

[( ) ]
[ ]

nT
k bk mk bk k bk k

n
k k bk mk bk k bk vk

k k k

b k bk ak

b k bk k

C t t w
v v C a a t R a t w

p p v t
a a w

w

θ

ω

δθ ω ω δθ δω
δ δ δθ δ

δ δ δ
δ δ
δω δω

+

+ ×

+

+

+

 = − Δ − Δ −
 = − − Δ − Δ − = + Δ
 = +

= +  

(6)

where kwθ  represents the Gaussian random pulse noise at attitude. The vkw  represents 
the Gaussian random pulse noise at velocity. The akw  represents the Gaussian random 
pulse noise at acceleration bias. The kwω  represents the Gaussian random pulse noise at 
angular velocity bias. Their covariance is defined by Equation (7): 

2 2

2 2

2 2

2 2

n

n

a

v

a a

w t I

w t I

w t I

w t I
ω

ω

θ

ω

ω ω

σ
σ
σ
σ

 = Δ


= Δ


= Δ
 = Δ

 (7)

where 2
na

σ  and 2
nωσ  represent the standard deviation of Gaussian white noise for acceler-

ation and angular velocity, respectively. The 2
aω

σ  and 2
ωωσ  represent the standard devia-

tion of Gaussian white noise for acceleration bias and angular velocity bias. The I  repre-
sents the unit matrix of 3 × 3. 
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2.2. ESKF State-Prediction Model 
Under discrete conditions, the nominal-state vector can be defined as

[ ]T, , , ,k k k k k kx q v p a ω= , the error-state vector as [ ]T, , , ,k k k k bk bkx q v p aδ δ δ δ δ δω= , the IMU 
acceleration and angular velocity noise-measurement vector as [ , ]Tmk mk mku a ω= , and the 
IMU attitude, velocity, and acceleration zero-bias and angular velocity zero-bias noise vec-
tors as [ , , , ]Tk k vk ak kw w w w wθ ω= . Bringing the vectors defined above into Equation (5), the 
recursive formula for the nominal-state vector at moment a is denoted by Equation (8): 

1 ( , )k k mkx f x u+ =  (8)

where ( )f ⋅   represents the recursive function of the nominal-state vector. Combining 
Equation (6) and linearizing it according to Taylor’s formula, the recursive formula for the 
error-state vector at moment 1kt +  is derived as follows: 

1

1, 1,

( , , , )
( )

k k

k k k mk k

x k w k

k k k k k k

x f x x u w
I F t x G tw

x w

δδ δ
δ

δ

+

+ +

=
= + Δ + Δ

= Φ + Γ
 (9)

where ( )fδ ⋅  represents the recursive function of the error-state vector. The 
kx

F  and 
kw

G  
represent the Jacobi matrices corresponding to the error-state vector and the noise-state 
vector, respectively. The 1,k k+Φ   is the state-transfer matrix from moment kt   to moment 

1kt + . 
The 1,k k+Γ  is the noise-transfer matrix from moment kt  to moment 1kt + . The specific 

expressions of 
kx

F  and 
kw

G  are as shown in Equation (10). 

[ ]
[ ]
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 
 
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 
 
 
  

 (10)

According to Equation (9), the covariance matrix 
1kx +

Σ  of error-state vector 1kxδ +  at 
moment 1kt +  is derived as shown in Equation (11): 

1

T T
1, 1, 1, 1,k kx k k x k k k k w k kQ

+ + + + +Σ = Φ Σ Φ + Γ Γ  (11)

where 
kx

Σ  represents the covariance matrix of error-state vector kxδ  at moment kt . The 

wQ  represents the state-noise matrix, which is represented as follows: 

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

k
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w

ak

k

w
w

Q
w

w

θ

ω

× × × ×

× × × ×

× × × × ×

× × × ×

× × × ×

 
 
 
 =
 
 
  

 (12)
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2.3. ESKF Measurement-Prediction Model 
The accelerometer and gyroscope possess bias errors, causing the IMU to drift during 

the integration of attitude estimation, which gradually increases over time. In this paper, 
the velocity and position information obtained by the GNSS and UWB are used to correct 
the IMU observations, thus correcting the error-state estimates of the ESKF to reduce the 
errors due to accelerometer and gyroscope bias during the fusion of the overall filter pro-
cess. The GNSS/INS-based ESKF observation model is defined as shown in Equation (13): 

INS GNSSGNSS GNSS GNSS
k k k k

INS GNSS

v v
L H x v

p p
− 

= = + − 
 (13)

where GNSS
kL   represents the observation vector of the GNSS/INS-based ESKF. The INSv  

and GNSSv   represent velocity measurements obtained from the INS and GNSS, respec-
tively. The INSp  and GNSSp  represent position measurements obtained from the INS and 

GNSS, respectively. The 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

0 0 0 0
0 0 0 0

GNSS
k

I
H

I
× × × × ×

× × × × ×

 
=  
 

 represents the observation-

design matrix of the GNSS/INS-based ESKF. The 
TGNSS GNSS GNSS

k v pv n n =    represents the 
random-measurement-noise matrix of the GNSS/INS-based ESKF. The GNSS

vn   and GNSS
pn  

are velocity-observation noise and position-observation noise, respectively, both of which 
are Gaussian white noise. 

Furthermore, the observation model for the UWB/INS-based ESKF is defined as 
shown in Equation (14): 

INS UWBUWB UWB UWB
k k k k

INS UWB

v v
L H x v

p p
− 

= = + − 
 (14)

where UWB
kL  represents the observation vector of the UWB/INS-based ESKF. The UWBv  

represents velocity measurements obtained from the UWB. The UWBp  represents position 

measurements obtained from the UWB. The 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

0 0 0 0
0 0 0 0

UWB
k

I
H

I
× × × × ×

× × × × ×

 
=  
 

 repre-

sents the observation-design matrix of the UWB/INS-based ESKF. The 
TUWB UWB UWB

k v pv n n =     represents the random-measurement-noise matrix of the 
UWB/INS-based ESKF. The UWB

vn  and UWB
pn  are velocity-observation noise and position-

observation noise, respectively, both of which are Gaussian white noise. 
According to the basic principle of the Kalman filter, taking the ESKF based on the 

GNSS/INS as an example, the updated equation of the observation model at moment 1kt +  
is obtained as shown in Equation (15): 

11

1

1 1

1 1 1
T

1

1
1 1,

1 1 1 1
T T T

ˆ 1 1 1 1 1

ˆ

( ) ( )

GNSS kk

GNSS
k

k k

GNSS GNSS GNSS
k k k k

GNSS GNSS
k x k kV

GNSS GNSS
k k k k V

GNSS GNSS
k k k k

GNSS GNSS GNSS GNSS GNSS GNSS
x k k k k k k kX

V H x L
H H

K H

x x K V
I K H I H K K Kδ

δ

δ δ

++

+

+ −

+ + +

+

−
+ +

+ + + +

+ + + + +

 = −


Σ = Σ + Σ

= Φ Σ

= −

Σ = − Σ − + Σ








 (15)

where 1
GNSS
kV +   represents the innovation vector of the GNSS/INS-based ESFK. The 

1
GNSS
kV +

Σ  

represents the covariance matrix of the innovation vector. The 1
GNSS
kK +  represents the Kal-

man Gain. The 1ˆkxδ +   represents the estimated error-state vector at moment 1kt +  . The 

1ˆkxδ +
Σ  represents the covariance matrix of 1ˆkxδ + . Similarly, the updated equation of the ob-
servation model of UWB/INS-based ESKF at moment 1kt +  is obtained. 
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2.4. ESKF Error-State-Vector Injection and Zeroing 
According to Equations (1), (9), and (15), the formula for injecting the error-state vec-

tor into the nominal-state vector at moment a to obtain the true-state vector is derived as 
shown in Equation (16): 

1 1 1ˆ ˆk k kx x xδ+ + += +  (16)

where 1k̂x +  represents the estimated truth-state vector at moment 1kt + . The 1kx +  represents 
the estimated nominal-state vector at moment 1kt + . Based on Equation (16), the compo-
nents are represented in Equation (17). 

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

ˆˆ
ˆ ˆ
ˆ ˆ
ˆ ˆ
ˆ ˆ
k k k

k k k

k k k

k k k

k k k

b b b

b b b

q q q
v v v
p v p
a a a

δθ
δ
δ
δ

ω ω δω
+ + +

+ + +

+ + +

+ + +

+ + +

 = ⊗


= +
 = +
 = +

 = +  

(17)

To reduce error accumulation, the velocity and position components of the error-state 
vector are zeroed, as shown in Equation (18): 

0
1 1 1ˆ ˆ ˆk k kx x G xδ δ δ+ + += +  (18)

where [ ]3 3 6 6 6 60 0G I× × ×= −  represents the zeroing matrix. 

3. Kinematic and Static Filtering of the ESKF Based on INS/GNSS/UWB 
The entire structure of the ESKF-based kinematic and static filter is shown in Figure 

2. The integral filter is mainly divided into the kinematic ESKF and static ESKF. First, the 
IMU navigation data in the INS are used as the model of the kinematic ESKF. The position 
and velocity errors of the INS and GNSS were used as the observation equations of the 
kinematic ESKF. Subsequently, the kinematic ESKF solution is calculated to obtain the 
filtered solution of the kinematic ESKF with its covariance. Since the kinematic ESKF filter 
results in an error-state vector, the kinematic ESKF filter solution needs to be injected into 
the nominal-state vector. In addition, the velocity and position components of the error-
state vector of the kinematic ESKF need to be set to zero. On this basis, the zeroed error-
state vector and the covariance of the kinematic ESKF’s estimated state quantity are 
passed to the static ESKF in a sequential form as the initial value of the static ESKF. The 
position and velocity errors of the INS and GNSS are used as the observation equations of 
the static ESKF, and the static ESKF is solved. The error-state vector of the filtered solution 
of the static ESKF is then injected into the nominal-state vector of the INS to obtain the 
true-state vector of the INS after the static ESKF after zeroing the velocity and position 
components of the error-state vector. Finally, the truth-state quantities obtained from the 
last static ESKF are output as a result of the navigation of the entire system. 
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Figure 2. Kinematic and static filtering of the ESKF based on INS/GNSS/UWB structure diagram. 

3.1. Kinematic ESKF Process 
Since different sensors on the same carrier theoretically have the same state vector, 

the state equations among the different subsystems all coincide with the main system’s 
state equations. According to Equations (9) and (15), the GNSS/INS-based kinematic ESKF 
filter solution at moment 1kt +  can be obtained as shown in Equation (19): 

1 1 1 1ˆ GNSS GNSS
k k k kx x K Vδ δ+ + + += −  (19)

where 1
GNSS
kK +  represents the Kalman gain of the kinematic ESKF, as represented by Equa-

tion (20). 

1

T 1
1 1, 1( )

k

G N SS GN SS GN SS GN SS
k k k k k x k kK H H H

+

−
+ + += Φ Σ + Σ

 
(20)

where 
1ˆkxδ +

Σ  represents the covariance matrix of 1ˆkxδ + , as shown in Equation (21): 

1 1

T T T
ˆ 1 1 1 1 1( ) ( )
k k

G N SS GN SS GN SS GNSS GNSS GN SS
x k k k k k k kXI K H I H K K Kδ + −+ + + + +Σ = − Σ − + Σ  (21)

According to Equations (16) and (18), when the error-state vector 1ˆkxδ +  is injected 
into the nominal state vector 1kx +  of the INS, the INS truth-state vector 1k̂x +  and the error-
state vector 0

1ˆkxδ +  after setting to zero are obtained. 
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3.2. Static ESKF Process 
In the static ESKF, to avoid reusing the kinetic model forecasts of the state vector and 

its covariance matrix at moment kt , the kinematic ESKF filter solution is used to obtain 
the error-state vector 0

1ˆkxδ +  and the covariance matrix 
1

ˆ
kXΣ  of the error-state vector after 

zeroing as the static ESKF state vector 1kx +  and its covariance matrix 
1kx +

Σ . At this point, 
the state equation of the static ESKF is shown in Equation (22). 

1 1( 1)

0
1 1( 1)

ˆ

ˆ

k k

k k

x x

x xδ δ

+ +

+ +=

Σ = Σ
 (22)

The error between the truth-state vector 1( 1)ˆ kx +  from the kinematic ESKF filter solu-
tion and the position and velocity data from the UWB observation is used as the observa-
tion equation. Equations (9), (14), and (15) are used to obtain the static ESKF filter solution 
based on the UWB/INS, as shown in Equation (23): 

2 ( 1) 2 ( 1) 2 ( 1) 2 ( 1)ˆ UWB UWB
k k k kx x K Vδ δ+ + + += −

 
(23)

where 2 ( 1)
UWB
kK +  represents the Kalman gain of the static ESKF, as shown in Equation (24). 

1 ( 1 )

T 1
ˆ2 ( 1) 1, 2 2 2 ( 1)( )

k

UW B UW B UWB UWB
k k k k k x k kK H H H

+

−
+ + += Φ Σ + Σ

 
(24)

where 
2 ( 1)ˆ kxδ +

Σ  represents the covariance matrix of 2( 1)ˆ kxδ + , as shown in Equation (25). 

2 ( 1 ) 1 ( 1 )

T T T
ˆ ˆ2 ( 1) 2 ( 1) 2 ( 1) 2 ( 1) 2 ( 1)( ) ( )

k k

UW B UW B UW B UWB UW B UWB
x k k x k k k k kI K H I H K K Kδ + ++ + + + +Σ = − Σ − + Σ

 
(25)

Finally, by injecting the error-state vector 2( 1)ˆ kxδ +  into the nominal-state vector 2( 1)kx +

, the actual state vector 2( 1)ˆ kx +  is obtained. The 2( 1)ˆ kx +  is output as a navigation solution for 
the integral system. In addition, the error-state vector 2( 1)ˆ kxδ +  of the static ESKF needs to 
be zeroed, according to Equation (18). 

4. Simulation-Experiment Verification 
The following simulation experiments were developed and implemented based on 

the PSINS toolbox by Prof. Yan Gongmin of the Northwestern Polytechnic University. 

4.1. Coordinate- and Trajectory-Simulation Settings 
As the coordinate systems used by the INS, GNSS, and UWB are distinct, we con-

verted the angular velocity and acceleration data measured by the IMU with respect to 
the geocentric inertial coordinate system and the xyz coordinate data measured by the 
UWB with respect to the local coordinate system into the coordinate data of the naviga-
tion-coordinate system ( n  system), which is denoted by n n n no x y z . As the navigation -co-
ordinate system was the reference coordinate system, the “East–North–Sky” geographic 
coordinate system (g system) was selected as the navigation reference coordinate system, 
represented by g g g go x y z , where the origin was defined as the center of gravity of the 
UGV, the g go x  axis denoted the geographic east, the g go y  axis denoted the geographic 
north, and the g go z  axis denoted the sky perpendicular to the local rotating ellipsoid, 
and the three axes formed a right-handed coordinate system. In addition, the coordinates 
of the UGV under the g system were expressed in terms of longitude λ, latitude L, and 
ellipsoidal altitude h. The DW3000 was used as the base station for the UWB simulation 
and received the signals from the tags mounted on the carrier. The tag information re-
ceived by the base station was used to locate the tag using the TDOA (time difference of 
arrival) algorithm. The specific location of the base station is shown in Figure 3, with the 
red circle representing the UWB base station. 
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Figure 3. True-trajectory simulation. 

To verify the performance of the proposed INS/GNSS/UWB-based ESKF kinematic 
and static filter algorithm, relevant simulation experiments were carried out. The initial 
position of the UGV (represented as a star point on the diagram) was 113 58  E′ , 34 81  N′

, the initial attitude (yaw, roll and pitch) was 0 ;0 ;0  
    , and the initial speed was 

[ ]0  m /s; 0  m /s; 0  m /s . The UGV ran for a total of 108 s. It first accelerated for 5 s at 21 m/s  
and then moved north for 10 s at a constant speed of 5 m/s . Next, it turned 90° to the east 
and continued to run at a constant speed for 20 s. After turning 90° to the south and run-
ning at a constant speed for 10 s, it continued to turn 90° to the east and ran at a constant 
speed for 20 s. Finally, after turning 90° to the north and decelerating at 21 m/s−  for 5 s, 
the UGV stopped. The true simulation trajectory is shown in Figure 3. 

4.2. Sensor-Simulation-Parameter Setting 
In this study, the gyroscope bias of the IMU in the INS mounted on the UGV was set 

to 0.01 /h;0.015 /h;0.02 /h  
   , the accelerometer bias was [ ]80  μg; 90  μg; 90  μg , the angu-

lar random-wander error was o0.001 / h  , the velocity random-wander error was 
1 μg/ H z  , and the sampling frequency was 100 Hz . The velocity-system error of the 
GNSS was 0.5m/s  , the position-system error was [ ]1 m;1 m;1 m  , and the sampling fre-

quency was 1 Hz . The velocity-system error of the UWB was 0.5 m/s , the position-sys-
tem error was [ ]0.8m ; 0.8m ; 0.8m , and the sampling frequency was 1Hz . The sensor pa-
rameters of the UGV were set as shown in Table 1. 

  

East / m

:113°58′E L:34°81′N
UWB base station
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Table 1. Sensor parameter settings. 

Sensor Type Parameter Value 

IMU 

Gyro error 
bias 0.01 /h;0.015 /h;0.02 /h  

    

random walk o0.001 / h  

Accelerometer error 
bias [ ]80 μg; 90 μg; 90 μg  

random walk 1 μg/ H z  
Frequency 100 Hz 

GNSS 
Location [ ]1 m;1 m;1 m  

Speed 0.5 m/s  
Frequency 1 Hz  

UWB 
Location [ ]0.8 m ; 0.8 m ; 0.8 m  

Speed 0.4 m/s  
Frequency 1 Hz  

4.3. Simulation Results and Analysis 
After designing the simulation trajectory related to the UGV, the measurement noise 

GNSS
kv  of the kinematic filter was set to [ ]T0.5 m/s;0.5 m/s;0.5 m/s;1 m;1 m;1 m  and the meas-

urement noise UWB
kv   of the static filter was set to 

[ ]T0.4 m/s;0.4 m/s;0.4 m/s;0.8 m;0.8 m;0.8 m . The simulation experiments related to the kin-
ematic and static filtering of the ESKF based on INS/GNSS/UWB were carried out, and the 
simulation results of the specific filtered velocity error and position error are shown in 
Figures 4 and 5. 

 
Figure 4. Diagram of the kinematic and static filtering velocity error of the ESKF based on 
INS/GNSS/UWB. 

 V
 / 

( m
/s

 )
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Figure 5. Diagram of the kinematic and static filtering position error of the ESKF based on 
INS/GNSS/UWB. 

In Figure 4, the blue line represents the curve of the velocity error with time in the 
east direction during the filter process, the red line represents the curve of the velocity 
error with time in the north direction during the filter process, and the yellow line repre-
sents the curve of the velocity error with time in the sky direction during the filter process. 
All the units are in m/s. 

In Figure 5, the blue line represents the curve of the eastward position error with time 
during the filter process, the red line represents the curve of the northward position error 
with time during the filter process, and the yellow line represents the curve of the skyward 
position error with time during the filter process. All of these measurements are in m. 

The velocity error of the kinematic and static filtering of the ESKF based on the 
INS/GNSS/UWB converged around 20 s to 0.012 m/s. The position error converged around 
40 s to 0.26 m. There was jitter in the position error at 50 s and 90 s; the reason for the jitter 
was the change in the position coordinates due to the turning maneuver of the carrier. The 
analysis above demonstrated that the kinematic and static filtering of the 
INS/GNSS/UWB-based ESKF can converge quickly. 

On this basis, this paper sets up two schemes for comparison between the loosely 
coupled GNSS/INS and the loosely coupled UWB/INS . The sensor parameters of the two 
schemes were consistent with Table 1; the observation error of the loosely coupled 

GNSS/INS was [ ]T0.5 m/s;0.5 m/s;0.5 m/s;1 m;1 m;1 m , and the observation error of loosely 

coupled was UWB/INS [ ]T0.4 m/s;0.4 m/s;0.4 m/s;0.8 m;0.8 m;0.8 m  . The simulation-tra-
jectory-comparison results obtained following the simulation-comparison experiments 
are shown in Figure 6. 

 P
 / 

m
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Figure 6. Comparison of the trajectories of the three schemes. 

The starting point in Figure 6 is the starting point of the UGV trajectory. In the figure, 
the black trajectory represents the real simulation trajectory, the blue dotted line repre-
sents the loosely coupled GNSS/INS simulation trajectory, the green dotted line represents 
the GNSS simulation trajectory, the purple dotted line represents the loosely coupled 
UWB/INS simulation trajectory, the blue dashed line represents the UWB simulation tra-
jectory, and the red dashed line represents the trajectory of the kinematic and static filter 
simulation proposed in this paper. 

According to Figure 6, in the straight-line operation phase, the simulation trajectory 
of the filter proposed in this paper was closer to the real trajectory than the simulation 
trajectory of the loosely coupled GNSS/INS scheme and the simulation trajectory of the 
loosely coupled UWB/INS scheme, as shown in the enlarged area on the left in the exam-
ple diagram. The simulated trajectory of the method proposed in this paper also had a 
constraining effect on the error in the simulated trajectory of the two compared solutions 
during the turning-maneuver phase of the carrier. An example is given in the enlarged 
area on the right in the figure. 

A comparison of the errors in the attitude, velocity, and position in the three simula-
tion scenes i shown in Figures 7–9. In the figures, the green line represents the errors in 
the attitude, velocity, and position versus time in the loosely coupled scheme GNSS/INS; 
the blue line represents the errors in the attitude, velocity, and position versus time in the 
loosely coupled UWB/INS scheme. The red line represents the errors in the attitude, ve-
locity, and position versus time in the kinematic and static filtering of the ESKF based on 
the INS/GNSS/UWB proposed in this paper. 
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Figure 7. Comparison of attitude errors between the three schemes. 

 
Figure 8. Comparison of velocity errors between the three schemes. 
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Figure 9. Comparison of position errors between the three schemes. 

According to Figure 7, there were no significant differences between the errors in the 
yaw, roll, and pitch between the three schemes; the errors in the yaw and pitch angle both 
decreased with time, while the errors in the roll angle gradually increased with time, 
mainly because of the lack of feedback correction in the INS attitude data from both the 
kinematic ESKF and the static ESKF. Furthermore, the error curves for the yaw and roll 
angle both jittered around 20, 45, 60, and 90 s, which was mainly due to the carriers per-
forming turning maneuvers at these times. 

According to Figure 8, compared with the other two schemes, the absolute values of 
the velocity errors in the east–east, north, and sky directions of the schemes proposed in 
this paper were significantly reduced during the acceleration and steady phases from 0 to 
20 s. After 20 s, the absolute values of the velocity errors all decreased slightly. The main 
reason for this was that all three schemes converged at around 20 s in the filter. Before this 
convergence, the difference between the three velocity errors was large because of the un-
stable filter. After the convergence, as the filter gradually stabilized and there was no 
coarse difference interference, the difference in velocity error between the three schemes 
was smaller. 

According to Figure 9, the absolute values of the position errors in the longitude 
(east), latitude (north), and ellipsoidal altitude (down) of the proposed scheme in this pa-
per were smaller than those in the other two schemes. However, since the fusion filter 
proposed in this paper fused the two ESKFs in a sequential form, the trend of its position-
error-variation curve with time was similar to that of the kinematic ESKF (the ESKF based 
on the GNSS/INS). Therefore, in the construction of the overall kinematic and static filters 
based on the ESKF, the selection of the sensors in the kinematic ESKF largely affected the 
navigation accuracy of the overall filter. Therefore, the sensors in the kinematic ESKF 
should be selected to be more accurate and robust to correct the INS measurement data, 
thus improving the accuracy and robustness of the overall filter. Comparisons of the root 
mean square error (RMSE) and mean absolute error (MAE) of the attitude, position, and 
velocity of the three scenes are shown in Tables 2 and 3. 

Table 2. Comparison of the root mean square error (RMSE) of the three schemes. 

RMSE Pitch 
(″) 

Yaw 
(″) Roll (′) VX 

(m/s) 
VY 

(m/s) 
VZ 

(m/s) 
X 

(m) 
Y 

(m) 
Z 

(m) 
Loosely coupled GNSS/INS 5.72 6.63 0.19 0.08 0.07 0.06 0.71 0.54 0.45 
Loosely coupled UWB/INS 5.70 6.56 0.19 0.05 0.05 0.07 0.41 0.56 0.70 
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Kinematic and static filtering 
of ESKF based on 
INS/GNSS/UWB 

5.73 6.62 0.19 0.05 0.04 0.07 0.40 0.46 0.51 

Table 3. Comparison of the mean absolute error (MAE) of the three schemes. 

MAE Pitch 
(″) 

Yaw 
(″) Roll (′) VX 

(m/s) 
VY 

(m/s) 
VZ 

(m/s) 
X 

(m) 
Y 

(m) 
Z 

(m) 
Loosely coupled GNSS/INS 5.70  6.62  0.19  0.04  0.05  0.04  0.59  0.42  0.38  
Loosely coupled UWB/INS 5.68  6.55  0.19  0.04  0.03  0.05  0.34  0.47  0.63  

Kinematic and static filtering 
of ESKF based on 
INS/GNSS/UWB 

5.71  6.60  0.19  0.03  0.03  0.05  0.32  0.36  0.38  

According to Table 3, the overall RMSE of the attitude in the proposed kinematic and 
static filter of the ESKF based on the INS/GNSS/UWB was closer to that of the loosely 
coupled GNSS/INS and the loosely coupled UWB/INS; the overall RMSE of the velocity 
was reduced by 24.12% compared to the loosely coupled GNSS/INS and by 8.62% com-
pared to the loosely coupled UWB/INS; the overall RMSE of the position was reduced by 
19.84% compared to the loosely coupled GNSS/INS and by 17.44% compared to the 
loosely coupled UWB/INS. The overall RMSE of the position was reduced by 19.84% com-
pared to the loosely coupled GNSS/INS and by 17.44% compared to the loosely coupled 
UWB/INS. 

According to Table 4, compared to the loosely coupled GNSS/INS, the overall MAE 
of the velocity was reduced by 15.99%, and the overall MAE of the position was reduced 
by 23.70% in the kinematic and static filtering of the ESKF based on the INS/GNSS/UWB 
proposed in this paper. Compared with the loosely coupled UWB/INS, the overall MAE 
of the velocity was reduced by 12.46%, and the overall MAE of the position was reduced 
by 27.33%. The simulation results demonstrated that the method proposed in this paper 
can reduce the accumulation of errors caused by the integration of the INS and effectively 
improve the accuracy of the multi-source fusion navigation system based on kinematic 
and static filtering. 

Table 4. Sensor-parameter settings for four different scenes. 

Sensor 
Type Parameter 

Value 
Scene 1 Scene 2 Scene 3 Scene 4 

IMU 

Gyro error 
bias 0.02 /h  0.02 /h  0.2 /h  0.2 /h  

random walk o0.001 / h  o0.001 / h  o0.08 / h  o0.08 / h  

Accelerometer error 
bias 90 μg  90 μg  100 μg  100 μg  

random walk 1 μg/ H z  1 μg/ H z  20  μg/ H z  20  μg/ H z  

Frequency 100 Hz 100 Hz 100 Hz 100 Hz 

GNSS 
Location 0.2 m  1 m  0.2 m  1 m  

Speed 0.1 m/s  0.5 m/s  0.1 m/s  0.5 m/s  
Frequency 1 Hz  1 Hz  1 Hz  1 Hz  

UWB 
Location 0.8 m  0.2 m  0.2 m  0.8 m  

Speed 0.4 m/s  0.1 m/s  0.1 m/s  0.4 m/s  
Frequency 1 Hz  1 Hz  1 Hz  1 Hz  

5. Comparative Experiments and Analysis 
To verify the generalizability and robustness of the kinematic and static filtering of 

the ESKF based on the INS/GNSS/UWB algorithms proposed in this paper, two compar-
ative experiments were set up. Experiment 1 analyzed the impact of the different sensors’ 
accuracies on the algorithms by setting the relevant parameters of the GNSS, UWB, and 
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IMU. Experiment 2 compared the traditional ESKF-based federated filtering, ESKF-based 
dynamic and static filtering, and ESKF-based dynamic and static filtering with the switch-
ing strategy by setting up a simulation scene with reduced positioning accuracy under 
conditions of GNSS rejection and UWB non-sight-range conditions and by increasing the 
positioning errors of the GNSS and UWB in this environment. 

5.1. Experimental Analysis of Sensor-Accuracy Comparisons 
To analyze the impact of different sensor accuracies on the performance of the pro-

posed algorithm, four different simulation scenes were set up, and the sensor parameters 
were set as shown in Table 4. In Scene 1, the UGV was equipped with a high-accuracy 
IMU, a high-accuracy GNSS (RTK-corrected GNSS), and a low-accuracy UWB. The meas-
urement noise of the kinematic filter was set to 

[ ]T0.1 m/s;0.1 m/s;0.1 m/s;0.2 m;0.2 m;0.2 m  and the measurement noise of the static filter 

was set to [ ]T0.4 m/s;0.4 m/s;0.4 m/s;0.8 m;0.8 m;0.8 m . In Scene 2, the UGV was equipped 
with a high-accuracy IMU, a low-accuracy GNSS, and a high-accuracy UWB. The meas-

urement noise of the kinematic filter was set to [ ]T0.5 m/s;0.5 m/s;0.5 m/s;1 m;1 m;1 m  and 
the measurement noise of the static filter was set to

[ ]T0.1 m/s;0.1 m/s;0.1 m/s;0.2 m;0.2 m;0.2 m  . In Scene 3, the UGV was equipped with a 
high-accuracy IMU, a low-accuracy GNSS, and a high-accuracy UWB. The measurement 

noise of the kinematic filter was set to [ ]T0.1 m/s;0.1 m/s;0.1 m/s;0.2 m;0.2 m;0.2 m  and the 
measurement noise of the static filter was set to 

[ ]T0.1 m/s;0.1 m/s;0.1 m/s;0.2 m;0.2 m;0.2 m . In Scene 4, the UGV was equipped with a low-
accuracy IMU, a low-accuracy GNSS, and a low-accuracy UWB. The measurement noise 

of the kinematic filter was set to [ ]T0.5 m/s;0.5 m/s;0.5 m/s;1 m;1 m;1 m  and the measure-

ment noise of the static filter was set to [ ]T0.4 m/s;0.4 m/s;0.4 m/s;0.8 m;0.8 m;0.8 m
. 

According to Figure 10, the kinematic and static filtering of the ESKF based on 
INS/GNSS/UWB proposed in this paper had good localization results in all four scenes, 
with different sensor accuracies. Because of the IMU, GNSS, and UWB on board the UGV 
in Scene 4 had the lowest accuracy, the UGV had a poorer localization effect in this scene 
than in the other three scenes. In the zoomed-in area of the straight-line running, the sim-
ulated trajectory of Scene 2 was closer to the real trajectory than those of Scene 1 and Scene 
3, but the trajectory was not as smooth as the trajectory of the other two scenes. In the 
zoomed-in area for the turn run, the trajectory of Scene 3 was closer to the real value than 
the other three scenes, and the trajectories of Scene 1 and Scene 3 were relatively smooth 
compared to the other two scenes. The RMSE and MAE values for the four scenes are 
shown in Tables 5 and 6. 
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Figure 10. Comparison of the trajectories of the four scenes. 

Table 5. Comparison of the root mean square error (RMSE) of the four scenes. 

RMSE Pitch 
(″) 

Yaw 
(″) Roll (′) VX 

(m/s) 
VY 

(m/s) 
VZ 

(m/s) 
X 

(m) 
Y 

(m) 
Z 

(m) 
Scene 1 4.62  7.60  0.18  0.03  0.03  0.03  0.12  0.16  0.19  
Scene 2 4.71  6.37  0.18  0.04  0.05  0.06  0.26  0.23  0.23  
Scene 3 13.25  36.12  0.36  0.04  0.04  0.02  0.17  0.15  0.11  
Scene 4 12.35  30.93  0.50  0.11  0.14  0.10  1.09  0.83  0.73  

Table 6. Comparison of the mean absolute error (MAE) of the four scenes. 

MAE Pitch 
(″) 

Yaw 
(″) Roll (′) VX 

(m/s) 
VY 

(m/s) 
VZ 

(m/s) 
X 

(m) 
Y 

(m) 
Z 

(m) 
Scene 1 4.59  7.53  0.18  0.02  0.02  0.02  0.10  0.13  0.16  
Scene 2 4.69  6.33  0.18  0.02  0.03  0.03  0.21  0.19  0.18  
Scene 3 10.29  34.86  0.27  0.02  0.02  0.01  0.13  0.12  0.09  
Scene 4 9.89  24.18  0.42  0.09  0.10  0.07  0.95  0.66  0.54  

According to Tables 5 and 6, a comparison of the RMSE and MAE for Scene 1 and 
Scene 2 shows that the overall reduction in the attitude error for Scene 2 compared to 
Scene 1 was 9.19%, the overall reduction in the velocity RMSE for Scene 1 compared to 
Scene 2 was 40%, and the overall reduction in the position RMSE was 34.72%. The overall 
reduction in the pose error for Scene 2 was 8.94% compared to the overall reduction in the 
pose RMS error for Scene 1, the overall reduction in the velocity RMS error for Scene 1 
compared to Scene 2 was 25%, and the overall reduction in the position RMS error was 
32.76%. It can be deduced that compared to static filtering, the sensor accuracy of the dy-
namic filtering had a greater impact on the overall filtering accuracy. Because the algo-
rithm proposed in this paper was used for sequential filtering, in the filtering design, the 
sensor with higher accuracy should enter into the overall filtering process first, as dynamic 
filtering. 

Based on the analysis of the errors in Scene 3 in Tables 5 and 6, we learned that in the 
dynamic and static filtering based on the ESKF, the higher-accuracy GNSS (RKT corrected 
GNSS) and UWB had a better effect on the correction of the velocity and position of the 
low-accuracy IMU, and the overall positioning accuracy of the filter was higher than the 
positioning accuracy of the GNSS and UWB alone. However, as only the velocity and po-

N
or

th
 / 

m
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sition information of the GNSS and UWB were used to correct the IMU during the obser-
vation of the dynamic and static filtering, which made its attitude errors accumulate grad-
ually, the next step in the process was to equip the UGV with a dual-antenna GNSS, so 
that the GNSS could measure the heading (yaw) and course angle of the UGV, and then 
correct the attitude information of the IMU through the attitude angle obtained from the 
GNSS measurement. According to the analysis of the errors in Scene 4, we learned that 
the UGV can still show a relatively good positioning effect when equipped with a low-
precision IMU, GNSS, and UWB. Based on this observation, 10 Monte Carlo experiments 
were conducted in the four scenarios, and the experimental results are shown in Figure 
11. 

 
Figure 11. Experimental diagrams of Monte Carlo simulation of four scenes. 

5.2. Analysis of Complex-Environment-Simulation Experiments 
To verify the robustness of the algorithm proposed in this paper in complex environ-

ments, we selected the relevant parameters and measurement noise of the sensors in Scene 
3 in Section 5.1 as the experimental conditions and set up two environments with errors 
and three filtering-solution schemes. In Environment 1, from 10 s to 40 s, there was a non-
line-of-sight situation for the UWB and occlusion between the tag and the base station, 
leading to a reduction in its positioning accuracy, which developed as follows. In the sim-
ulation scenario, the systematic error of the UWB was 20 times the initial error (taking 20 
times as an example), the velocity’s systematic error was 

V V20 2m/s
UWB UWB

R R′ = = , and the 

position’s systematic error was 
P P20 4m
UWB UWB

R R′ = = . In Environment 2, from 66 s to 108 s, 
the GNSS was rejected and the receiver was located in the indoor scenario, resulting in a 
systematic error of the GNSS that was 20 times the initial error; the velocity’s systematic 
error was 

V V20 2m /s
GNSS GNSS

R R′ = =   and the position’s systematic error was 

P P20 4 m
GNSS GNSS

R R′ = = . The GNSS and UWB positioning systems were normal at all the 
other times. 

In the setup of the filtering solution, ESKF-based federated filtering was used in 
Scheme 1. In the federated filtering, the two local filters were composed of INS/GNSS and 
INS/UWB, and the ESKF was used for the local filtering. To avoid matrix singularities in 
the inversion process due to the small values of the state vector and its covariance matrix 
in the ESKF, the local sensors were fused in the main filter in a feedback-free form, and 

the assignment factors of each local filter were 
1 ( 1,2)
2i iβ = = . The kinematic and static 

filtering of the ESKF based on the INS/GNSS/UWB proposed in this paper was used in 
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Scheme 2. Scheme 3, based on Scheme 2, introduced an evaluation system and switching 
strategy to block a particular sensor during the overall filtering in case its accuracy de-
graded. Taking this experimental scheme as an example, in the period of 10~40 s, because 
of the presence of large errors in the UWB data, the UWB data were shielded; only kine-
matic filtering was performed, and the kinematic filtering solution was output as the nav-
igation solution for the overall filtering. In the period of 66~108 s, because of the large 
errors in the GNSS data, the GNSS data were shielded, and the overall filtering was only 
updated in time in the kinematic filtering. The UWB data were used to measure and up-
date in the static filtering, the error-state vector was fed back to the INS, and the feedback 
INS data were obtained, which were then output as the navigation solution of the overall 
filtering. A comparison of the solved trajectories for the three schemes is shown in Figure 
12, and the velocity-error and position-error comparisons are shown in Figure 13 and Fig-
ure 14, respectively. 

. 

Figure 12. Comparison of the trajectories of the four schemes. 
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Figure 13. Comparison of the velocity errors between the three schemes. 

 
Figure 14. Comparison of the position errors between the three schemes. 

According to Figures 13 and 14, the kinematic and static filtering of the ESKF based 
on INS/GNSS/UWB with the evaluation system and switching strategy had smaller local-
ization errors for velocity and position than Scheme 1 and Scheme 2. The error variation 
was smoother, mainly because of the shielding of the contaminated GNSS and UWB, 
which in turn improved the overall localization accuracy of the filtering. Compared to the 
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federated filtering using the ESKF, the proposed algorithm had a higher overall position-
ing accuracy and a smoother error-variation curve. The RMSE and MAE of the three 
schemes are shown in Table 7 and Table 8, respectively. 

Table 7. Comparison of the root mean square error (RMSE) of the three schemes in complex-envi-
ronment-simulation experiments. 

RMSE 
Pitch 

(″) 
Yaw 
(″) 

Roll 
(′) 

VX 
(m/s) 

VY 
(m/s) 

VZ 
(m/s) 

X 
(m) 

Y 
(m) 

Z 
(m) 

Scheme 1 833.72  740.69  221.99  11.46  3.91  1.23  5.49  11.86  1.72  
Scheme 2 16.31  34.98  0.65  0.62  0.76  0.48  3.73  3.46  2.66  
Scheme 3 30.36  38.64  0.86  0.04  0.04  0.02  0.18  0.25  0.13  

Table 8. Comparison of the mean absolute error (MAE) of the three schemes in complex-environ-
ment-simulation experiments. 

MAE Pitch 
(″) 

Yaw 
(″) 

Roll 
(′) 

VX 
(m/s) 

VY 
(m/s) 

VZ 
(m/s) 

X 
(m) 

Y 
(m) 

Z 
(m) 

Scheme 1 516.93  449.10  180.65  8.88  3.39  1.03  4.34  9.89  1.14  
Scheme 2 13.54  33.02  0.56  0.46  0.56  0.27  2.44  2.37  1.56  
Scheme 3 25.29  30.57  0.71  0.02  0.02  0.01  0.14  0.18  0.07  

According to Tables 7 and 8, Scheme 3 had the highest accuracy, as the dynamic and 
static filtering had good plug-and-play capability, which shielded the contaminated sen-
sors more quickly and conveniently, thus improving the overall system accuracy. Com-
paring Scheme 1 with Scheme 2, the RMSE and the MAE of the kinematic and static filter-
ing of the ESKF based on the INS/GNSS/UWB in terms of attitude, velocity, and position 
were smaller than those of the ESKF-based federated filtering. Therefore, the proposed 
method had good robustness. 

6. Conclusions 
In this paper, we proposed a fusion-navigation algorithm with ESKF kinematic and 

static filtering of based on INS/GNSS/UWB. The algorithm not only corrected the velocity 
and position errors of the INS in turn by using the GNSS and UWB, but also ensured that 
the state and kinematic vectors of the overall system were small, which improved the con-
vergence speed of the filter and reduced the errors in the linearization process. The simu-
lation and control experiments demonstrated that the method proposed in this paper 
demonstrated faster filter convergence and improved the positioning accuracy by 21.98% 
and 13.03% compared to the loosely coupled GNSS/INS and UWB/INS methods, respec-
tively. According to the comparison of the error-accumulation curves over time for the 
three navigation methods, the main performance of the overall system was largely influ-
enced by the accuracy and robustness of the sensors in the kinematic ESKF because the 
kinematic and static filtering based on the ESKF was a sequential form of fusion filter. 
Therefore, in the construction of the integral kinematic and static filtering process based 
on the ESKF, the INS should be corrected first with a more accurate and robust sensor in 
the kinematic ESKF, in order to improve the performance of the overall filter system. In 
addition, through the simulation of the sensor parameters and complex-environment-sim-
ulation experiments, the proposed method was found to be applicable to sensors with 
different accuracies, with good generalization, plug-and-play, and robustness. In the next 
study, we will focus on improving the overall filtering-observation equation by equipping 
the UGV with multiple GNSS receivers so that the INS can be corrected using the GNSS 
heading (yaw) and course-angle information. We will also utilize additional sensors, such 
as visual odometers, binocular cameras, Bluetooth, etc., to optimize the data collected by 
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the sensors through deep-learning algorithms, to improve the accuracy and robustness of 
the overall filtering. 
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