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Abstract: Dyspnea is one of the most common symptoms of many respiratory diseases, including
COVID-19. Clinical assessment of dyspnea relies mainly on self-reporting, which contains subjective
biases and is problematic for frequent inquiries. This study aims to determine if a respiratory score
in COVID-19 patients can be assessed using a wearable sensor and if this score can be deduced
from a learning model based on physiologically induced dyspnea in healthy subjects. Noninvasive
wearable respiratory sensors were employed to retrieve continuous respiratory characteristics with
user comfort and convenience. Overnight respiratory waveforms were collected on 12 COVID-19
patients, and a benchmark on 13 healthy subjects with exertion-induced dyspnea was also performed
for blind comparison. The learning model was built from the self-reported respiratory features
of 32 healthy subjects under exertion and airway blockage. A high similarity between respiratory
features in COVID-19 patients and physiologically induced dyspnea in healthy subjects was observed.
Learning from our previous dyspnea model of healthy subjects, we deduced that COVID-19 patients
have consistently highly correlated respiratory scores in comparison with normal breathing of
healthy subjects. We also performed a continuous assessment of the patient’s respiratory scores for
12–16 h. This study offers a useful system for the symptomatic evaluation of patients with active or
chronic respiratory disorders, especially the patient population that refuses to cooperate or cannot
communicate due to deterioration or loss of cognitive functions. The proposed system can help
identify dyspneic exacerbation, leading to early intervention and possible outcome improvement.
Our approach can be potentially applied to other pulmonary disorders, such as asthma, emphysema,
and other types of pneumonia.

Keywords: clinical diagnosis; COVID-19; dyspnea; noninvasive; pulmonary disorders; respiratory
monitoring

1. Introduction

Dyspnea, also known as the patient’s feeling of difficult or labored breathing, is a clini-
cal symptom nearly as important as pain, affecting a quarter of the general population and
half of seriously ill patients [1,2]. Dyspnea can be a prevalent manifestation in conditions
such as chronic obstructive pulmonary disease (COPD), bronchitis, asthma, coronavirus
disease 2019 (COVID-19), pneumonia, heart failure, and panic disorders [3]. Dyspnea
can be further divided into acute onset and chronic dyspnea. The latter, by definition, is
present for more than four weeks. COVID-19 caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) has rapidly spread across the globe since 2020. Over 30% of
patients with COVID-19 have experienced chronic dyspnea [4].

Dyspnea typically sets in between the fourth and eighth day of illness. The timing of
dyspnea may be one of the most important hallmarks of more severe COVID-19 infection,
especially for clinicians seeing patients in an ambulatory setting [5]. Studies found that
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dyspnea, rather than fever [6], was significantly associated with higher mortality in COVID-
19 patients [7,8]. The initial days after the onset of dyspnea are critical for identifying
progressively worsening conditions [1]. In addition to the dyspnea experienced during
the acute phase of COVID-19 infection, dyspnea may also be found in association with
the long-term sequelae post-COVID-19, or so-called long COVID-19, which is thought
to affect 10–50% of COVID-19 survivors [9]. Dyspnea is also a frequent symptom of
post-COVID-19 syndrome (PCS) [10,11]. Some patients with persistent dyspnea after
recovering from COVID-19 have also reported a decrease and/or dysfunction in myocardial
performance [12,13].

The dyspnea sensation for COVID-19 patients is often derived from the decreased
ventilation efficiency caused by pneumonia or related bronchitis. A distinct phenotype in
long COVID-19 is that patients have reduced exercise tolerance and experience exertional
dyspnea more easily, even though major pulmonary parenchymal and airway abnormalities
can no longer be identified with chest imaging [14,15].

In present clinical practices, dyspnea is mainly assessed by self-reports from patients.
Dyspnea scores can be assessed in person or remotely [16] using patient interviews, and
augmented by subjective measures, such as the Medical Research Council (MRC) Dyspnea
Scale [17] and Borg visual analog scale (VAS) [18]. Studies indicated that subjective dyspnea
measures have inadequate accuracy in high-risk COVID-19 patients, not only because the
sensation is gradual and varies with time but also because the patients can become nervous
after knowing positive test results [19], both of which can contribute to biases in the self-
report. The subjective dyspnea score can also vary for each person based on emotion and
tolerance and can be challenging to assess for those who refuse to cooperate or cannot
communicate due to medical issues, such as stroke, dementia, and loss of speech. Frequent
queries to patients for continuous dyspnea evaluation are tedious and stressful, especially
over the sleep period, and hence less practical for timely prognosis and diagnosis.

Dyspnea is highly correlated with pulmonary functions [20]. Surrogate measures of
respiratory function can indirectly help determine dyspnea severity, but existing techniques
have limitations. Pulmonary function tests can only capture respiratory measures at
discrete points in time [21] and require adequate patient effort and cooperation. Chest
computed tomography (CT) can provide high-resolution images of the lungs, but it is
expensive, requiring specialized equipment that is often unavailable, producing only
discrete lung snapshots in a dedicated clinical setup and providing limited utility for
continuous assessment of lung function [22]. Respiratory inductance plethysmography
(RIP) [23], strain gauge (SG) [24], and spirometer [25] measure lung function but can be
uncomfortable, requiring connection to immobile machines, operator assistance, and patient
cooperation. Thus, they are not often feasible for repetitive or continuous monitoring.

Considering the limitations of the current methods to monitor respiratory function and
assess dyspnea, we propose using a noninvasive and wearable radio-frequency (RF) respi-
ratory sensor and a machine-learning (ML) model to provide correlated respiratory scores
for COVID-19 patients, augmented by our previous study on the objective dyspnea scoring
system [26], which was based on the correlation between continuous respiratory features
and self-reported dyspnea scores during physiologically induced dyspnea episodes.

We collected overnight clinical respiratory data of patients admitted to the hospital due
to acute COVID-19 (N = 12) from the Weill Cornell Center for Sleep Medicine. Self-reported
dyspnea scores were only collected at admission as frequent inquires afterward can be
tiresome with aggravated biases. These patients also confirmed pulmonary involvement
based on radiological imaging. To benchmark the results, we also performed a separate
human study (N = 13) on healthy participants using exactly the same experimental setup.
We analyzed the statistical distribution of respiratory metrics from COVID-19 patients
and healthy controls and demonstrated a high similarity between respiratory features in
COVID-19 patients and physiologically induced dyspnea in healthy subjects. By training
on our previous objective dyspnea scoring model (N = 32) on healthy subjects with induced
dyspnea from exertion and airway blockage [26], we can further produce continuous
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“deduced respiratory scores” of COVID-19 patients using wearable sensors to supplement
self-reported dyspneic episodes. In the future, our respiratory sensors and the deduced
respiratory scoring system can be potentially expanded to surrogate dyspnea evaluation in
patients with asthma, COPD, and other types of pneumonia.

2. Materials and Methods
2.1. Experimental Design and Data Processing
2.1.1. Experimental Setup

To monitor the respiration in hospitalized COVID-19 patients with confirmed lung
infection by chest imaging, we built an all-in-one wearable RF near-field coherent sensing
(NCS) unit [27,28] on a 4-layer printed circuit board (PCB), as shown in Figure 1a. The
block diagram of the entire sensing unit is shown in Figure 1b. Two SimpleLink modules
(Texas Instrument CC1310) with sub-1 GHz ultra-low-power microcontrollers were used
as the sensing transmitter (Tx) and receiver (Rx). The transceivers employed quadrature
I/Q modulation, where two channels of 12-bit, I and Q samples, were sampled at 2 kHz
and accumulated into one 400-byte cyclic buffer at the sensor Rx. Once the I/Q buffer
was filled, the Rx radio core would bundle the I and Q samples with the readings of
temperature, accelerometer, and gyroscope to a micro secure digital (SD) card through the
serial peripheral bus (SPI). The temperature sensor (Texas Instrument TMP112, Austin, TX,
USA) and inertial measurement unit (Bosch Sensortec BMI160, Reutlingen, Germany) were
connected by the inter-integrated circuits (I2C) serial protocol. The battery provided the
system power through a low-dropout (LDO) module.
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Figure 1. (a,b) The all-in-one wireless wearable respiratory sensor on PCB: (a) the front and back
photos; (b) the block diagram for the sensor unit. (c) Body deployment of two wireless units by a
chest belt; (d) SDR transceivers used for the RF sensors. (e) Wired RF sensors that were connected
by cables to the sensing antennas on the chest and abdomen of a participant. (f) Description of the
self-reported Borg scale for dyspnea.

2.1.2. Data Collection from COVID-19 Patients

Respiratory data acquisition from COVID-19 patients took place at Weill Cornell
Medicine between July 2021 and March 2022. Patients admitted to New York Presbyterian
Hospital with COVID-19 symptoms and lung imaging confirmation were offered participa-
tion in the study. All participants signed an informed consent form. The study protocol
was reviewed and approved by the Weill Medical Center Institutional Review Board (IRB
Protocol #: 20-06022181).
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Upon enrollment, patient demographic, health status, and baseline vital-sign data
were gathered, as shown in Table 1a. Age information was not gathered for the COVID-19
dataset. Health status information included hypertension, obstructive sleep apnea, cancer
history, asthma, COPD, and other chronic lung diseases. Baseline vital-sign data included
heart rate (HR), breath rate (BR), temperature, and oximetry oxygen saturation (SpO2).
Other information included medications administered or the presence of ventilation or
supplemental oxygen during recording. After the admission information was gathered,
the medical staff applied the ApneaLink device (Resmed®, San Diego, CA, USA) with two
NCS sensing units on the patient’s chest for overnight monitoring. The two sensors were
synchronously powered on to begin recording. Patients wore the sensor for an average of
14.3 h overnight. The demographic distribution of COVID-19 patients is shown in Table S1.

Table 1. (a) Demographics in human study. (b) Acquisition of different datasets.

(a)

Datasets Gender Number BMI
(µ ± σ)

Age
(µ ± σ)

COVID-19
Male 8 30 ± 7.3 -

Female 4 28 ± 6.3 -

Exp 1
Male 7 23 ± 2.5 29 ± 12

Female 6 21 ± 3.7 21 ± 2

Exp 2
Male 14 23 ± 2.5 28 ± 9

Female 18 20 ± 1.3 24 ± 2

(b)

Participants Recording Time Sensors

COVID-19 12 COVID-19
patients Continuous 14 h NCS with

accelerometers

Exp. 1 13 healthy
subjects

1. Normal (30 min)
2. Post-exercise (5 min)

NCS with
accelerometers

Exp. 2 [26] 32 healthy
subjects

1. Normal (5 min)
2. Post-exercise (5 min) Wearable NCS by SDR

2.1.3. Healthy Participant Study Protocol

To further investigate the correlation between the respiratory score of COVID-19
patients and physiologically induced dyspnea in healthy subjects, we conducted another
human study (the results are shown in in Table 1a (Exp 1)) on 13 healthy participants with
self-reported dyspnea scores and respiratory waveform measurements when dyspnea was
induced by exercise. For fair comparison without concerns about hardware difference, we
used the same wearable respiratory sensors as in the COVID-19 data collection. Figure 1c
shows the experimental setup with the participant wearing two sensors on the left and on
the right. The vertical position of the two sensors is at the level of the sternum, roughly
between the 3rd and 7th ribs. The demographic distribution of 13 healthy participants
is shown in Table S2. The human study was approved by Cornell Institutional Review
Board (IRB) Protocol ID #1812008488. Written informed consent was obtained from all
participants. The participant was first asked to sit in a chair in a relaxed position for
normal breathing for 30 min. To induce dyspnea, the participant would follow a 5 min
cardio exercise video [29] and then sit back in the chair, and the participant’s post-exercise
breathing would be recorded for 5 min. The participants were asked to report subjective
dyspnea scores Dself several times on the Borg scale, as shown in Figure 1f [18], during
the transition points of the study. The Borg scale is widely used in clinical assessment of
dyspnea: 0 represents no dyspnea sensation at all, while 10 indicates the maximum level
of dyspnea.
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As shown in Table 1a, we also adopted our previous dyspnea study for model training
and comparison [26], denoted as data from Exp 2, where we utilized the software-defined
radio (SDR, Ettus B210) for the RF sensor, as shown in Figure 1d,e. Two wired NCS
sensors were placed on the chest and the abdomen in the front torso. In this human
study, participants first recorded 5 min normal breathing sitting in a chair, then used
aerobic exercise to introduce dyspnea, and then recorded another 5 min of post-exercise
breathing. The dyspnea was also induced through a face mask to change the respiratory
resistance. The Borg dyspnea score was reported several times throughout the routine.
Figure 2 presents examples of respiratory waveforms we acquired from different datasets.
Y-axes are individually normalized in different channels. When multiple datasets are
available, we would choose the waveforms with the most consistent features, as the
comparison and learning models are all based on extracted respiratory features, and
unstable waveform details are less important. For the COVID-19 dataset, we most often
utilized the accelerometer channel for respiration monitoring. For Exp 1, we demonstrated
NCS and accelerometer channels with consistent features for both normal and exertion
modes. For Exp 2, we demonstrated NCS recording for the same routines. Comparing
normal breathing in Figure 2b,d with exertion in Figure 2c,e for both Exp 1 and Exp 2, we
can observe a distinct change in breath rates (BR), with an increase in rate and a decrease
in breath-to-breath variation after exertion. We can also observe that COVID-19 patients
had higher BR than healthy participants during normal breathing, and the COVID-19
waveforms were similar in frequency and amplitude to those acquired after exertion in
healthy participants. Respiratory parameters were extracted from the waveforms after
min-max peak detection [26] as shown in Figure 2f, including inter-breathing intervals (IBI),
inspiration intervals (IN), expiration intervals (EX), and peak-to-peak magnitude (PP).

Sensors 2023, 23, x FOR PEER REVIEW  6  of  16 
 

 

 

Figure 2. Waveform examples: (a) COVID-19 patients; (b) healthy normal breathing  in Exp 1; (c) 

healthy post-exertion breathing in Exp 1; (d) healthy normal breathing in Exp 2; (e) healthy post-

exertion breathing in Exp 2; (f) min-max peak detection for respiratory parameter extraction. 

2.2. Statistical Analysis 

2.2.1. Data Preprocessing 

After  gathering  data  from  healthy  participants  and  COVID-19  patients,  we 

preprocessed our datasets and then extracted the respiratory features to be used in the ML 

algorithms for dyspnea evaluation and deduced respiratory scoring. We used MATLAB 

for signal processing and feature extraction and Python for ML algorithms. 

For datasets in COVID-19 and Exp 1 described in Table 1(a), we retrieved respiratory 

waveforms  from 1 NCS  (amplitude) and 6 accelerometer  (translational and  rotational) 

channels. For Exp 2, we utilized multiple NCS channels from the thorax and abdomen. 

Different channels and datasets went through the same signal-processing procedure for a 

fair comparison. As shown in Figure 3, we first down-sampled all datasets to 20 Hz, and 

then bandpass-filtered waveforms from 0.05 Hz to 2 Hz to remove the DC drift and high-

frequency noises. Savitzky–Golay 4th-order finite impulse response (FIR) smoothing filter 

[30] was  further  employed  to  perform  a  local  polynomial  regression  to  smooth  the 

waveform. For the long recording in each dataset, we opted to segment waveforms into 

short epochs of Tepoch = 60 s with a sliding window of Tslide = 30 s for feature extraction. 

Figure 2. Waveform examples: (a) COVID-19 patients; (b) healthy normal breathing in Exp 1;
(c) healthy post-exertion breathing in Exp 1; (d) healthy normal breathing in Exp 2; (e) healthy
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2.2. Statistical Analysis
2.2.1. Data Preprocessing

After gathering data from healthy participants and COVID-19 patients, we prepro-
cessed our datasets and then extracted the respiratory features to be used in the ML
algorithms for dyspnea evaluation and deduced respiratory scoring. We used MATLAB for
signal processing and feature extraction and Python for ML algorithms.

For datasets in COVID-19 and Exp 1 described in Table 1a, we retrieved respiratory
waveforms from 1 NCS (amplitude) and 6 accelerometer (translational and rotational)
channels. For Exp 2, we utilized multiple NCS channels from the thorax and abdomen.
Different channels and datasets went through the same signal-processing procedure for
a fair comparison. As shown in Figure 3, we first down-sampled all datasets to 20 Hz,
and then bandpass-filtered waveforms from 0.05 Hz to 2 Hz to remove the DC drift and
high-frequency noises. Savitzky–Golay 4th-order finite impulse response (FIR) smoothing
filter [30] was further employed to perform a local polynomial regression to smooth the
waveform. For the long recording in each dataset, we opted to segment waveforms into
short epochs of Tepoch = 60 s with a sliding window of Tslide = 30 s for feature extraction.
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After epoch segmentation, waveforms were normalized to center at 0 with a standard
deviation of 1.0 in each epoch for every channel. Then we extracted features in each epoch
for data analysis and constructed the ML model in the next section. We implemented the
peak detection algorithm [31] by tracing a constantly updated moving-average curve in a
given window. Then local maxima and minima were accordingly labeled for parameter
extraction. An example is shown in Figure 2f, where the green line is the filtered respiratory
waveform from a COVID-19 patient, and the red and yellow triangles mark the maximum
and minimum peaks detected by the moving-average algorithm. The false peaks caused by
the noise were mostly avoided. Respiratory parameters in each breath cycle were extracted
to represent the instantaneous respiratory characteristics, as shown in Table 2a.
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Table 2. (a) Instantaneous respiratory parameters (7). (b) Respiratory features (37). (c) Frequency
features (10). (d) Statistical comparison of COVID-19 and different datasets.

(a)

Extracted Parameters Description

Breath Rate (BR) Inverse of the interval between two neighboring minima

Peak-to-Peak (PP) Lung volume estimated by difference in successive peaks

Inhalation Interval (IN) Time difference between a minimum and the next maximum

Exhalation Interval (EX) Time difference between a maximum and the next minimum

Inter-Breath Interval (IBI) Interval between two neighboring maxima

In- Ex Ratio (IER) Inhalation/exhalation interval ratio

In- Ex Volume Ratio (IEPP) Inhalation/exhalation volume ratio

(b)

µBR µPP µIN µEX µIBI µIER µIEPP

σBR σPP σIN σEX σIBI σIER σIEPP

CoVBR CoVPP CoVIN CoVEX CoVIBI

<BR <PP <IN <EX <IBI <IER <IEPP

ςBR ςPP ςIN ςEX ςIBI ςIER ςIEPP

µskew µkurt entropy cycle

(c)

ηf1 ηf2 ηf3 ηf4

P f1 P f2 P f3 P f4

fBR SNRBR

(d)

COVID-19
Acc.

Norm.
NCS Exp 1

Exer.
NCS Exp 1

Norm.
Acc.

Exp 1

Exer.
Acc.

Exp 1

Norm.
NCS
Exp 2

Exer.
NCS
Exp 2

Cases 10,131 1049 188 918 231 256 240

Ratio (%) 30.2 74.0 77.7 64.7 95.5 100 100

After gathering respiratory cycles and parameters, we extracted 37 respiratory features
as shown in Table 2b. The first three features were: (1) mean (µ); (2) standard deviation (σ);
(3) coefficient of variation (CoV) of the respiratory parameters in Table 2b, where CoV was
defined as

CoV = (
σ

µ
)

2
(1)

showing the extent of variability in relation to the mean.
To further capture variability between adjacent breaths, < was the autocorrelation

in a time lag of one respiratory cycle to measure the successive similarity of the given
respiratory parameter. Representing the successive difference, ς was defined as the mean
absolute difference between adjacent cycles. Additionally, Skew and kurt measured the
tailedness and asymmetry of each respiratory cycle and were averaged over all cycles
within the epoch. Cycle denoted the total number of detected respiratory cycles in the
epoch, and entropy denoted the total randomness or entropy of the waveform.

Apart from 37 respiratory features extracted from the time domain, we added 10 features
extracted from the frequency domain as shown in Table 2c. The parameters ηfi and P f1
(i = 1~4) represented the power in specific bandwidth divided by the total power in all
frequencies and time-averaged power density (dB/Hz), respectively. The five chosen
bandwidths were f1 = (0, 0.4) Hz (the main breathing frequency range); f2 = (0.4, 1) Hz;
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f3 = (1, 2) Hz; f4 = (fBR − 0.15, fBR + 0.15) Hz. The bandwidth fBR was first estimated from
the average BR provided by hospital reports for every patient, and then further refined to
be the local BR in every epoch by finding the maximal energy in the possible frequency
band. Signal-to-noise ratios (SNR) in BR were denoted by SNRBR which were calculated by
the maximal energy on the fBR divided by the estimated noise power.

2.2.2. Channel and Epoch Selection

After segmentation and feature extraction, we selected the optimal channel and epoch
from the datasets according to the estimated signal quality. For the accelerometer, we
had 6 channels consisting of X, Y, and Z translational and rotational motions, as shown
in Figure 4 for an example. Feature extraction was performed on every channel, and the
optimal channel was decided by the least variation of respiration parameters within the
epoch. We can observe from the waveforms that most channels can get similar BR = 35,
but the channels with smaller σBR and σPP, such as ‘gyro X’ and ‘gyro Y’, have more stable
respiratory waveforms. Therefore, we opted to use the optimal channel by the minimum
mean of all covariation features in BR, PP, IN, EX, and IBI. In Figure 4, the optimal channel
is ‘gyro Y’.
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Signal quality cannot be guaranteed during the entire course of overnight recording
because patients may have random motions lying on the bed or leave the bed for restroom
visits. Various factors, such as ambient movement, might bring about noises to cause SNR
degradation. The position of the wearable sensor on the patient clothing might sometimes
move during long or deep breathing and brought further noise to the signal. Therefore,
we opted to remove the epochs with low SNR by predetermined thresholds. We selected



Sensors 2023, 23, 4733 9 of 16

the threshold to be the mean of all covariation features, which should be smaller than 0.4.
Table 2d provides the selection ratio for every dataset and the final cases we have collected
after all the signal processing procedures. The datasets from Exp 1 and Exp 2 have higher
quality because of the better-controlled lab environment during data collection.

3. Results
3.1. Feature Analysis and Comparison

This study involved three distinct datasets: COVID-19 patients and two dyspnea
human studies on healthy subjects, as summarized in Table 1. After acquiring all datasets,
we first evaluated the similarity of respiratory features between COVID-19 patients and
healthy subjects (Exp 1) where dyspnea was physiologically induced by exercise. The
changes in respiratory features can have correlation with important implications.

We first examined a few representative respiratory features and presented the scatter
plots in Figure 5a,b from 3 datasets: (1) COVID-19 patients by accelerometers; (2) healthy
subjects during normal breathing in Exp 1 by NCS; and (3) healthy subjects breathing after
exertion in Exp 1 by NCS. Respiratory features collected from NCS and accelerometers
in our human study have a high similarity, so the differences using two different sources
were mainly determined by SNR considerations. We also presented similar scatter plots
using the accelerometer in Exp1 and NCS in Exp 2 in Figures S1 and S2, which gave
comparable observations. In Figure 5a, the X and Y axes represented respiratory features of
autocorrelation of BR and PP between successive breaths <BR and <PP, while in Figure 5b,
the X and Y axes represented the absolute difference and autocorrelation of adjacent IBI
ςIBI and <IBI. To better compare the feature distribution for different datasets, we used
the Gaussian kernel smoothing function to estimate the returned probability density in
the top and right lines. The dataset from Healthy Normal in Exp 1 had a much broader
range of distribution compared with the other two datasets of COVID-19 and Healthy
Exertion. For a better visual demonstration, we set the X-Y limits to only show all points
from COVID-19 and Healthy Exertion; some points from Healthy Normal were out of
range. We can observe that COVID-19 data had a much higher similarity of respiratory
features to Healthy Exertion. In Figure 5a for <BR and <PP, and in Figure 5b for <IBI, both
COVID-19 and Healthy Exertion participants had higher values closer to one, indicating
higher autocorrelation of neighboring breathing cycles. In Figure 5b, for ςIBI,, COVID-19
and Healthy Exertion groups were concentrated on smaller successive differences, while
Healthy Normal had a broader spread and higher variation.
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For a more comprehensive comparison of similarities in different datasets, we calcu-
lated the Kullback–Leibler (KL) divergence, which is also called relative entropy, as a type
of statistical distance between two probability distributions [32]. KL divergence provides
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a measure of the similarity between two known discrete probability distributions, P and
Q, where P often represents the true data distribution and Q represents the predicted data
distribution. KL divergence can be calculated by:

K(PQ) = ∑i Pilog(
Pi
Qi

) (2)

To overcome the biases from the different sample sizes and reduce the random noises
in the two distributions, we first transformed our discrete datasets to smoothed continuous
distributions using Gaussian kernels as the top and right lines in Figure 5a. After retrieving
the probability density function, we resampled the distribution to 200 data points for each
dataset. In Table 3a, we presented eight representative respiratory feature statistics. The
range of values for the KL divergence outputs is [0, +∞). KL distances close to zero imply the
two distributions are very similar regarding the feature tested. The larger the KL distance,
the larger the dissimilarity, or divergence. In both Exp 1 and Exp 2 with healthy subjects,
Healthy Normal had larger KL divergence compared with those of COVID-19 than Healthy
Exertion. In Table 3b, we also examined the dissimilarity between NCS and accelerometer
in the same experiment of Exp 1. The small KL divergence close to zero between the
two sensors showed the similarity and interchangeability for waveform measurements.

Before employing the ML model for analysis, we first compared respiratory features of
COVID-19 to other datasets by KL divergence to help evaluate their similarity. For most of
the features of importance, the COVID-19 dataset had a smaller KL divergence compared
with Healthy Exertion than that of Healthy Normal. Results in the next section from the
ML model also match the KL analysis here.

3.2. Dyspnea Classification Model

We found a high similarity of respiratory features between COVID-19 patients and
healthy subjects with exertional dyspnea. We adopted our previous dyspnea model derived
from Exp 2 [26] on 32 healthy subjects as the training model to blind-test the COVID-19
patients and the healthy subjects with the same sensor setup in Exp 1.

By utilizing the ML model in [26], we can evaluate the dyspnea score from all respira-
tory features as a whole and extrapolate the applicability of our objective dyspnea reporting
system to the present study. As it is impractical to ask patients frequently to self-report
their dyspnea scores, our alternative respiratory score can be of high value to provide a
symptomatic gauge for COVID-19 patients continuously, especially during inconvenient
periods, such as during sleep or under treatment.

In our previous dyspnea study on healthy subjects, we obtained self-reported dyspnea
scores from all subjects as the ground truth for reference and supervised training. However,
in the clinical study on COVID-19 patients confirmed by chest imaging, we reported the
respiratory scoring results through inference only. Since the COVID-19 dataset had no
explicit ground truth from self-reported dyspnea except at the very beginning, we did
not employ the k-fold cross-validation process on all datasets. Instead, we adopted our
previous dyspnea study on healthy subjects (Exp 2) as the training set and then fixed
the learning model. Within this previous study of Exp 2, we performed the processes of
k-fold cross-validation (accuracy = 87.1%) as well as leave-one-subject-out cross-validation
(accuracy = 86.6%) to justify our objective dyspnea scoring model.

The first model we built was the binary classification model, namely, normal = 0 and
dyspnea = 1. We built and trained the model based on our previous dyspnea study (Exp 2)
and then made direct deductions on COVID-19 patients by testing on all COVID-19 cases
and the control datasets on healthy subjects (Exp 1). Table 3c presents detailed information
on training and testing sets, including the datasets we used from different studies, the
input cases to the model, and the subject and routine composition of all cases. Even though
the training set of Exp 2 has more subjects, the case number was relatively smaller due to
the short duration (5 min) of the routines. In the COVID-19 dataset (duration averaged
about 14 h) and its blind control of Exp 1 (duration of 30 min), we were able to accumulate
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more usable epochs after signal processing. In the fixed training set, all normal breathing
epochs were labeled as normal = 0, while all exertional breathing epochs were labeled as
dyspnea = 1. By training on the dataset to build a dyspnea classifier, we can output the
dyspnea classification results for all COVID-19 datasets and the control cases from Exp 1.
We utilized the k-nearest neighbor (kNN) classifier as the model here with k = 40. Before
feeding the dataset into the model, all features were preprocessed with a standard scaler
for regularization by removing the mean and scaling to unit variance.

Table 3. (a) KL-Divergence of COVID-19 to other datasets. (b) KL-Divergence of NCS and accelerome-
ters in Exp1. (c) Training/testing sets in the model. (d) Classification results of dyspnea for COVID-19
patients and healthy subjects in Exp 1. (e) T tests for correlated respiratory scoring.

(a)

Norm
NCS Exp 1

Exer
NCS Exp 1

Norm
ACC
Exp 1

Exer
ACC
Exp 1

Norm
NCS
Exp 2

Exer
NCS
Exp 2

µBR 2.14 0.17 2.62 0.16 1.44 0.30
σBR 1.71 0.69 0.68 0.72 0.49 0.91

CoVBR 3.91 0.76 2.75 0.65 1.17 1.03
CoVIBI 4.79 0.99 3.37 1.08 1.66 1.33
<BR 3.42 0.16 2.97 0.16 1.52 0.50
<PP 2.96 0.21 2.34 0.08 0.98 0.21
ςIBI 3.87 0.44 2.61 0.68 1.32 0.73
ςIER 1.82 0.26 1.34 0.16 0.43 0.17

Avg 3.08 0.46 2.34 0.46 1.13 0.65

(b)

µBR σBR CoVBR CoVIBI

Norm 0.05 0.09 0.12 0.13
Exer 0.01 0.13 0.11 0.06

<BR <PP ςIBI ςIER Avg.
Norm 0.04 0.05 0.12 0.21 0.10
Exer 0.08 0.04 0.22 0.08 0.09

(c)

Training Set: Testing Set:

Healthy
Normal

Exp 2

Healthy
Exertion

Exp 2
COVID-19

Healthy
Normal

Exp 1

Healthy
Exertion

Exp 1

Cases 256 240 10,131 1049 188

Subjects 32 32 12 13 13

Routine
/subject 5 min 5 min ~14 h 30 min 5 min

(d)

COVID-19 Healthy
Normal

Healthy
Exertion

Percentage of Dyspnea 98.05% 4.24% 73.63%

(e)

COVID-19 vs.
Healthy Normal

COVID-19 vs.
Healthy Exertion

Healthy Normal vs.
Healthy Exertion

T-statistic 14.60 5.47 −4.82

p-value 4.61 × 10−13 2.75 × 10−5 1.1 × 10−4
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As Table 3d shows, almost all COVID-19 patients’ cases were classified as dyspnea,
while 73.6% of exertional breathing cases of healthy subjects were classified as dyspnea. In
comparison, only 4.24% of the normal breathing cases in healthy subjects were classified as
dyspnea. The dyspnea classification results for COVID-19 patients further corroborated our
hypothesis that COVID-19 respiratory features had a high similarity to exertional dyspnea
features in healthy subjects. We also observed similar results using accelerometers in Exp 1
in Figure S3.

Apart from the epoch-wise binary classification on the COVID-19 dataset, we also pre-
sented subject-wise results, as each subject had a self-reported dyspnea interview at the hos-
pital admission, which is presented in Table S4 with detailed information. We first calculated
the epoch-wise classification results of dyspnea or normal from all epochs and then averaged
for a final result for every patient. The class labels were the rounded values of the average.
In Figure 6, we present the subject-wise confusion matrix of deduced dyspnea vs. self-
reported dyspnea. Control cases in Exp 1 are included in Figure 6a, while only COVID-19
cases are included in Figure 6b. Notice that Case 5 of COVID-19 patients reported no
dyspnea at the beginning but later reported that he/she became more dyspneic after cough-
ing precipitated by speaking. The uncertainty and subjective nature of self-reporting can
contribute to lower accuracy in our respiratory analysis.
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3.3. Correlated Respiratory Scores

In this section, we employed a regressor model for “correlated respiratory scores” in
the Borg scale (0–10) Dcorr for COVID-19 patients and the control group. In our previous
work, we built a similar objective dyspnea score Dobj [24], which was reasonably accurate
for exertional dyspnea on healthy subjects in comparison with self-reported Dself. In this
study, we used our previous dyspnea study as the training model to build the correlated
respiratory score Dcorr and treated the data from COVID-19 patients and Exp 1 as blind
testing cases. We implemented the kNN regressor as the main model here. Since we had
overnight recording for COVID-19 patients, we first calculated the epoch-wise Dcorr from
all datasets and then averaged all Dcorr as the final score for every patient.

Figure 7a presents the results for Dcorr of COVID-19 patients and healthy subjects
in Exp 1. For average Dcorr extracted from different datasets, COVID-19 = 4.39; Healthy
Normal = 1.26; Healthy Exertion = 2.72. As observed from Figure 7a, Dcorr for COVID-19
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was more concentrated between 4 and 5, while Dcorr for Healthy Normal was mostly below
2. Healthy Exertion had more participants with higher Dcorr, but subject variation was also
evident, possibly because different participants had variations in physical conditioning
after the same cardio exercise. Dcorr for COVID-19 data was less dispersed probably due
to the more uniform manifestations of the underlying pulmonary involvement. We also
presented similar results using the accelerometer in Exp 1, as shown in Figure S4.
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Figure 7. (a) Respiratory scoring results for COVID-19 patients and healthy subjects in Exp 1. The
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monitoring of correlated respiratory scores for COVID-19 patients for every hour.

We further performed T-tests for Dcorr results on different datasets as shown in Table 3e.
The calculated T-statistic is positive when the sample mean of the first dataset is greater
than that of the second dataset, and negative otherwise. As the T-statistic showed, Dcorr
for COVID-19 was distinctively higher than for Healthy Normal, while the difference with
Healthy Exertion was smaller. The very small p-value between COVID-19 patients and
Healthy Normal indicated that they had distinctively different Dcorr distributions. For the
Healthy Exertion data, the sufficiently small p-values for COVID-19 and Healthy Normal
suggested high distinguishability between the datasets.

Apart from reporting average Dcorr to give a subject-wise evaluation, our system
can also output continuous real-time Dcorr to indicate the progression of lung functions.
COVID-19 and other pulmonary diseases, such as COPD, are frequently accompanied by
dyspnea sensations from reduced lung function. It is thus critical to continuously monitor
patients because the infection often develops insidiously over a period of time. The frequent
self-reporting is inconvenient and less accurate for long-term tracing of the symptoms.
Figure 7b shows an example of continuous monitoring of Dcorr for six COVID-19 patients.
In the whole recording of 12–16 h, Dcorr was reported every hour, to align with the clinical
data recorded every hour.

4. Discussion

In this paper, we have tried to construct a “correlated respiratory score” based on
measured respiratory features, as a surrogate analog to the self-reported dyspnea score.
As dyspnea is presently defined as the subjective experience of breathing discomfort, the
correlated respiratory score can at best represent the physiological origin of the dyspnea
sensation, but its continuous, objective, and autonomous evaluation should be a useful
supplement to the self-reporting.

Challenges to constructing a clinically acceptable respiratory evaluation platform still
remain and will need to be addressed in future studies:

1. Presently we only deduced respiratory scores of COVID-19 patients using our previ-
ous ML model built on physiologically induced dyspnea on healthy subjects. We had
limited ground truth about the dyspnea experienced by COVID-19 patients during
the long-term continuous monitoring. In the future, we should gather more clinical in-
formation that can help evaluate lung involvement, even if not collected repetitiously.
For example, continuous measurements of oxygen saturation (SpO2) and heart rates
can be used as indirect references to respiratory conditions.
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2. SNR of the present wearable sensors in clinical settings needed further improvement.
We relied on epoch selection to eliminate noisy periods. Sensor improvement for
higher SNR and higher tolerance to subject motion interference should be investigated.

3. The population size for this study was relatively small (n = 12). In the future, we
should broaden the demographic diversity of the clinical studies to be more statistically
significant, with probable inclusion of pneumonia patients from different disorders.

4. We can extend the study to patients with various cardiopulmonary disorders of lung
involvement to establish the true effectiveness of the proposed respiratory score, for
example, COPD, asthma, and other types of pneumonia.

5. Feature selection and reduction is still desirable in future studies. To avoid the
“curse of dimensionality” and to find the most correlated respiratory features, we can
implement feature reduction algorithms before inputting data into the ML model.

5. Conclusions

Dyspnea is a key symptom for patients with COVID-19 and many other respiratory
disorders. Existing clinical evaluation of dyspnea currently depends on self-reporting,
which is subjective and inconvenient for continuous monitoring and for patients with
compromised communication abilities. In this paper, we propose an innovative approach to
continuously monitor respiratory features using wireless and wearable sensors to develop
a correlated respiratory scoring system deduced from exertion routines on healthy subjects.
COVID-19 patients could hardly provide a self-report of dyspnea in a continuous and long-
term manner, especially over the rest period during the night time. Hence, we provided
the deduced respiratory scores on COVID-19 patients and control subjects under the same
sensor setup by learning from our previously validated dyspnea model. We found a high
similarity between COVID-19 patients and healthy subjects after exertion, suggesting that
changes in respiratory features from physical exertions could be analogous to those from
pulmonary disorders. We also demonstrated the unique capability to continuously report
correlated respiratory scores Dcorr during 12–16 h for COVID-19 patients. Our system can
be a viable tool to help with diagnosis and prognosis of COVID-19, offering a warning of
possible worsening respiratory function, as well as evaluation of the degree of recovery.
This work can be potentially applied to symptomatic evaluation of patients with similar
respiratory conditions including asthma, pneumonia [33], and COPD [34].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23104733/s1, Figure S1: Scatter plots of sample respiratory features
from COVID-19 patients (sensor: accelerometer) and healthy subjects in Exp 1 (sensor: accelerometer).
Top and right lines are smoothed continuous distribution by Gaussian kernels. (a) Autocorrelation
of breath rates vs. lung volume (RBR vs. RPP); (b) Successive difference vs. autocorrelation of
inter-breath intervals (GIBI vs. RIBI); Figure S2: Scatter plots of sample respiratory features from
COVID-19 patients (sensor: accelerometer) and healthy subjects in Exp 2 (sensor: NCS). Top and
right lines are smoothed continuous distribution by Gaussian kernels. (a) Autocorrelation of breath
rates vs. lung volume (RBR vs. RPP); (b) Successive difference vs. autocorrelation of inter-breath
intervals (GIBI vs. RIBI); Figure S3: Classification results of dyspnea for COVID-19 patients (sensor:
accelerometer) and healthy subjects in Exp 1 (sensor: accelerometer); Figure S4: Dyspnea scoring
results for COVID-19 patients and healthy subjects in Exp 1 by accelerometer sensing. Average Dobj:
COVID = 4.39; Healthy Normal = 1.28; Healthy Exertion = 2.35.; Table S1: Demographic distribution
of COVID-19 patients; Table S2: Demographic distribution of healthy subjects in EXP1; Table S3:
Demographic distribution of healthy subjects in EXP2; Table S4: reported dyspnea at rest of COVID-19
patients at study admission.
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