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Abstract: Face alignment methods have been actively studied using coordinate and heatmap regres-
sion tasks. Although these regression tasks have the same objective for facial landmark detection,
each task requires different valid feature maps. Therefore, it is not easy to simultaneously train two
kinds of tasks with a multi-task learning network structure. Some studies have proposed multi-task
learning networks with two kinds of tasks, but they do not suggest an efficient network that can train
them simultaneously because of the shared noisy feature maps. In this paper, we propose a heatmap-
guided selective feature attention for robust cascaded face alignment based on multi-task learning,
which improves the performance of face alignment by efficiently training coordinate regression and
heatmap regression. The proposed network improves the performance of face alignment by selecting
valid feature maps for heatmap and coordinate regression and using the background propagation
connection for tasks. This study also uses a refinement strategy that detects global landmarks through
a heatmap regression task and then localizes landmarks through cascaded coordinate regression tasks.
To evaluate the proposed network, we tested it on the 300W, AFLW, COFW, and WFLW datasets and
obtained results that outperformed other state-of-the-art networks.

Keywords: face alignment; feature attention; heatmap regression; coordinate regression; multi-
task learning

1. Introduction

The human face provides crucial information for understanding user behavior in
human–computer interactions and has been studied in computer vision for a long time.
Many methods for analyzing face attributes, such as facial expression recognition [1,2] and
head pose estimation [3,4], detect facial regions during the preprocessing step. The face
region detection method is divided into the face bounding box, which defines the position
of the rectangular region of the face, and face alignment, which extracts the optimal face
region. Face alignment is a method for detecting facial landmarks, which are key points
representing facial components. It improves the performance of applications by extracting
information, such as a face component, size, rotation, and position. Although deep learning
algorithms have improved face alignment capabilities in recent years, there is still a need to
improve performance in noisy environments.

Face alignment studies using deep neural networks have focused on coordinate and
heatmap regression. Coordinate regression directly estimates facial landmark coordinates
and is designed based on common deep neural network structures, such as VGG [5] and
ResNet [6]. Heatmap regression in face alignment has been studied since Newell et al. [7]
first proposed a stacked hourglass network. Heatmap regression methods exhibit robust
performance against noise by estimating the probability that a landmark exists at a pixel
location. However, the accuracy of landmark locations largely depends on the resolution
of the heatmap because pixel units are expressed as integers. This issue is known as the
quantization error problem [8].
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Recently, hybrid methods with coordinate and heatmap regression tasks have been
proposed [9,10]. Wu et al. [9] trained on these tasks independently and sequentially.
Park et al. [10] trained coordinate and heatmap regression tasks simultaneously, but their
method did not perform better than the sequential training method.

Although these regression tasks have the same objective for facial landmark detection,
each task requires different valid feature maps. Therefore, it is not easy to simultaneously
train two kinds of tasks with a multi-task learning network structure. Some studies have
proposed multi-task learning networks with two kinds of tasks, but they still need to
propose an efficient network that can train them simultaneously due to the shared noisy
feature maps.

We propose heatmap-guided selective feature attention for robust cascaded face align-
ment based on multi-task learning, which improves the performance of face alignment
by efficiently training heatmap and coordinate regression tasks. The attention module
can select valid feature maps without losing the properties of low- and high-level feature
maps, and the cascaded coordinate regression network improves the performance of face
alignment using the backward propagation connection for tasks. This study also employs a
refinement strategy that detects global landmarks through a heatmap regression task and
then localizes landmarks through cascaded coordinate regression tasks.

Heatmap regression estimates a heatmap using stacked hourglass networks and
converts it to landmark coordinates. The estimated heatmap and converted landmark
coordinates are used as information in the cascaded coordinate regression (CCR) stage.
CCR detects local facial landmarks using region of interest (ROI) feature maps around
the landmark coordinates in the previous CCR stage. The result of each CCR stage is
propagated as input information for the next CCR stage. Figure 1 shows examples of
accurate searches using a CCR network.
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Figure 1. The first column shows the predicted landmarks, and cyan regions express landmark
heatmaps. The regions in the red and magenta boxes are expressed in the second and third columns.
The blue dot is the maximum probability location of the heatmap, and coordinate regression networks
predict the green dot. The second and third columns show a close-up of the bounding box around
the landmark in the first column image.

To verify the effectiveness of the network, we evaluated popular face alignment
benchmarks, including 300W [11], AFLW [12], COFW [13], and WFLW [9]. This study
compared the performance of the proposed network with that of previous state-of-the-art
networks. Our main contributions are summarized as follows:

1. We propose an effective attention method by selecting multi-level features through
the estimated heatmap.

2. We propose backward propagation connections between a heatmap regression net-
work and a coordinate regression network for effective multi-task learning to im-
prove performance.
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3. We designed a heatmap-cascaded coordinate regression network and verified its
performance for the proposed network through ablation studies.

2. Related Work

Traditional face alignment methods include the active appearance model [14] and the
constrained local model [15], based on a dimension-reduction technique using principal
component analysis. These methods can express facial features in low dimensions and
work well indoors. A method using shape-indexed features [16,17] has demonstrated
the possibility of face alignment in the wild. In recent years, deep-learning-based coordi-
nate and heatmap regression have been proposed and have shown good performance in
noisy environments.

2.1. Coordinate Regression Methods

Coordinate regression directly estimates the position of facial landmarks. These
methods have improved performance with the development of backbone networks, such
as VGG [5] and ResNet [6], and additional methods for face alignment. Feng et al. [18]
proposed a Wing loss to increase the training contribution of samples with small loss values.
Su et al. [19] initialized facial landmarks using a ResNet-based network and searched for
regions around the location found in a previous network. Li et al. [20] and Lin et al. [21]
demonstrated robust performance in the presence of occlusions using a graph convolutional
layer. Xu et al. [22] addressed large poses using multiple predefined landmark templates.
Zheng et al. [23] proposed a pre-training method based on contrastive learning using
extra datasets. Li et al. [24] and Xia et al. [25] proposed a transformer structure, but
the transformer module estimated displacements of facial landmarks using local patches.
These coordinate regression methods have been studied for their fast processing and
accurate performance.

2.2. Heatmap Regression Methods

Heatmap regression indirectly estimates the positions of facial landmarks using a
heatmap. A heatmap expresses the probabilities of landmark existence, and high proba-
bilities can be regarded as candidates for facial landmarks. Since the stacked hourglass
network [7] was proposed for human pose estimation, heatmap regression for face align-
ment has also employed an encoder–decoder structure. Bulat et al. [26] and Yang et al. [27]
initially proposed the same network as the stacked hourglass network [7]. Wang et al. [28]
proposed an AWing loss to reduce the problem caused by many background pixels in
a heatmap. Zhang et al. [29] designed an hourglass network using an Inception-Resnet
module [30] and refined the landmark coordinates estimated by the heatmaps. Huang
et al. [31] proposed an attention module that converts a landmark heatmap into a boundary
heatmap. Lan et al. [8] expressed an offset from a previously estimated landmark position
to the ground truth as a local high-resolution heatmap to solve the quantization error
caused by a lower-resolution heatmap. Jin et al. [32] estimated not only the landmark
heatmap but also an offset heatmap and a neighbor heatmap, which indicate the distance
to a neighboring landmark. Bulat et al. [33] proposed a Siamese-based training method.
Heatmap regression methods have shown good results on various benchmarks, and many
methods have recently been proposed for solving quantization errors.

2.3. Hybrid Methods

The hybrid model consists of a heatmap and a coordinate regression task. Valle et al. [34,35]
initialized landmarks using a heatmap regression and refined the initialized landmarks
using ensemble regression trees [17], which is a traditional method of shape-indexed
features. Wu et al. [9] estimated a boundary heatmap and applied it to a ResNet-based
coordinate regression task. Park et al. [10] improved the performance by converting the
results of the coordinate regression task into a heatmap and combining them with the
results of the heatmap regression task. In these methods, the heatmap and coordinate
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regression tasks were not trained simultaneously but were trained separately. It has a
limited effect on multi-task learning [36] because the information needs to be propagated
interactively during the training of each task.

2.4. Multi-Task Learning

Multi-task learning in the face alignment field has mainly been studied to estimate
other facial attributes along with landmark detection. Ranjan et al. [37] proposed a network
that estimates gender and pose, together with facial landmark detection. Kumar et al. [38] es-
timated the location, probability distribution, and visibility of landmarks. Prados et al. [39]
initialized landmarks using a head pose and estimated landmark displacements. Although
multi-task learning in the face alignment field efficiently estimates various facial attributes,
it does not describe how facial attribute estimations improve face alignment performance
except through landmark initialization methods.

3. Proposed Network

The structure of the proposed face alignment framework is illustrated in Figure 2.
The proposed network consists of a feature extractor, selective feature modules for each
task, a heatmap regression network for global landmark detection, and a CCR network
for local landmark detection. The proposed network has a refinement structure based
on multi-task learning, in which the heatmap regression and CCR tasks can be trained
simultaneously, and the information from each task is transferred to other tasks. We added
attention modules for selecting valid feature maps and designed backward propagation for
effective multi-task learning.
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Figure 2. Overview of the proposed network structure. Each task shares layer weights in the feature
extraction. In the first stage, heatmaps are regressed by stacked hourglass networks. The predicted
result is then propagated to the next stage and used to regress the offset coordinates.

3.1. Heatmap-Guided Selective Feature Attention

Low-level feature maps in deep neural networks have a lot of noise and unrefined
information and are mainly composed of spatially filtered information, such as edges [19].
By contrast, high-level feature maps have less noise as the layer deepens and contain
important semantic information for the output. As the feature maps of each level are
sequentially filtered toward the target, the rich information in low-level feature maps is
gradually reduced. The effectiveness of low-level feature maps has been demonstrated
using fully convolutional networks [40] and feature pyramid networks [41]. In the face
alignment field, Lin et al. [21] also demonstrated the effectiveness of multi-level features
using convolutional block attention modules (CBAM) [42] for removing noisy information
from low-level feature maps.

We propose selective feature attention (Figure 3) that selects multi-level feature maps.
The attention module can select valid feature maps without losing the properties of multi-
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level feature maps. We used the estimated heatmap to improve the CCR performance
before attention. They are filtered using convolution layers as

Ui,t =

 F3×3,i,t

(
F 0

1×1,i,t(Fi)
)

, if t = 0

F3×3,i,t

(
F 0

1×1,i,t(Fi)⊗Fres,i,t(Fi ⊕ H)
)

, otherwise
(1)

where i is an index of the branch, t is an index of the task stage, ⊕ is the concatenation, F is
the feature map, H is the heatmap, Fres is the residual block, and F1×1 and F3×3 are the
convolution operations. The superscript on F1×1 is the order of the network layers. The
filtered feature maps of each branch are combined using

zt = (F 1
1×1,t ◦ Fgap)

(
B−1

∑
i=0

Ui,t

)
(2)
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In Equation (2), the feature maps U are integrated through an element-wise summation
and calculated using the global average pooling Fgap and convolution layer F 1

1×1,t. The
value of z is then calculated using F 2

1×1,i,t for each branch excitation, and the final scale si,t
is calculated using the softmax function as

si,t =
eF

2
1×1,i,t(zt)

∑B
j=1 eF

2
1×1,j,t(zt)

(3)

The final feature map Fatt
t is calculated through multiplication of si,t and Ui,t.

Fatt
t = F 3

1×1,i,t

(
B

∑
i=1

si,tUi,t

)
(4)

The dimensions of the feature maps were adjusted using the output of a 1 × 1 convo-
lution layer. The effectiveness of the selective feature module is shown in Figure 4. The
feature maps were brightly expressed on the face. In addition, we also verified that the
heatmap causes the feature map to focus on the facial components and reduce noise.
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3.2. Designing Backward Propagation Connections

In the proposed network, as shown in Figure 2, the selective feature module and
summation component are essential for exchanging information between stage tasks. The
selective feature module connects the feature extractor to the network layer of all stage
tasks, and the summation component connects the network layer of the previous stage
task to the network layer of the current stage task. Therefore, the learning result for each
stage task in the proposed network is significantly affected by the backward propagation
connection structure of the summation component.

We designed backward propagation connections for the summation component to
control the learning influence between the network layers of each stage task. Figure 5 shows
the three backward propagation connections between the network layers of the tasks.

• Task-wise connection: No backward propagation connection for the summation com-
ponent in all stage tasks (Figure 5a). It is a common structure for multi-task learning,
and all tasks share the feature extractor module in the early network layer. The
shared feature extractor prevents overfitting for a single task type. Because the feature
extractor module is a front-end network module, it slightly impacts performance.

• Fully connection: A backward propagation connection for the summation component
in all stage tasks (Figure 5b). The backward information of tasks affects not only
the feature extractor shared by all tasks but also task-specific layers. Because the
information from the neighbor stage is backward-propagated to the specific task
layers, an improvement or deterioration of performance is clearly observed for the
backward propagation of the neighbor stage.

• CCR connection: Having a backward propagation connection for the summation
component only in the CCR tasks, except in the heatmap regression task (Figure 5c).
Compared with the full connection, it removes the backward propagation connection
between the heatmap regression task and the first CCR task. By not propagating
the bad backward information of the first CCR task to the heatmap regression net-
work, it improves the performance of CCR tasks and makes the training for each
task manageable.

We used the CCR connection in the proposed network and evaluated the performance
of the types in the ablation study described in Section 5.3.
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3.3. Cascaded Face Alignment Network with Heatmap-Guided Selective Feature

The cascaded face alignment network with heatmap-guided selective features (CHS)
is the proposed network structure in this study. The heatmap regression task estimates the
probability that a landmark exists in each pixel, and the coordinate regression task predicts
the position of the landmark in the image. Although they have the same objective for facial
landmark detection, each task has parameters with different units and scales. Therefore, it
is not easy to simultaneously train two kinds of tasks with a multi-task learning network
structure. For effective multi-task learning, the proposed network is composed of four
types of modules, as shown in Figure 2.

• Feature extractor: The feature extractor extracts feature maps from an input image,
and they are shared by all tasks. It consists of a convolution layer and B + 1 residual
blocks for B input branches of the selective feature module.

• Selective feature module: The selective feature module in this paper selects valid
feature maps from several branches extracted from the feature extractor.
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• Heatmap regression network: The heatmap regression network estimates landmark
heatmaps and a boundary heatmap, such as the stacked hourglass network in AW-
ing [28].

• Cascaded coordinate regression network: The CCR network extracts the ROI feature
map for each landmark through the ROI pooling layer and concatenates the coordinate
channels [43]. The coordinate channels that represent the coordinates in the feature
map can improve coordinate regression performance by concatenating the original
feature channels [28,43]. In this paper, the coordinate channels are concatenated to the
feature map for each landmark to improve CCR performance. Here, the ROI feature
map was independently created through a residual block and a convolution layer for
each landmark. The feature maps were concatenated in the last layer and used to
estimate the offset coordinates using the fully connected layer. The global landmark
coordinates of the current stage were obtained by adding the estimated offset to the
global landmark coordinates of the previous stage.

We experimentally found that the CHS with the 4-CCRs has the best performance
(Section 5.1), but there is only a slight difference in performance at each stage of the CCR
network. The network parameters can be reduced by pruning the stage CCR network
after training. Figure 6 shows the loss value and NME measured at each CCR stage of
the last epoch of the trained heatmap-4CCRs model for the 300W dataset. This study
experimentally confirmed an effective performance improvement for the second CCR of
four CCRs. Finally, we pruned the third and fourth CCR networks from the entire model
after the training.
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Down arrow in the figure means a propagation of an estimated heatmap. We obtained an experimental
result of the efficient CCR for the performance. The red box is the efficient network set, and the blue
box is the inefficient set.

The final loss function in multi-task learning is a combination of task losses. To
overcome training problems caused by different units and scales of task losses, it was used
as a weighted sum of task losses using fixed weights in previous studies [37,38], which dealt
with face alignment and other facial attribute classifications. However, the performance of
this approach largely depends on predefined weights. Kendall et al. [44] proposed adaptive
weights through maximum likelihood inference, as shown in Equation (5), assuming that
each task follows a Gaussian distribution to determine the optimal weights for image
segmentation and depth regression loss.

LadaptiveWeight =
T−1

∑
t=0

(
1

eln σt
Lt + ln σt

)
(5)
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where L is the loss, T is the number of tasks, and σ is a trainable parameter adjusted to
suit the training state. Figure 7 shows the change in the adaptive weight proposed in this
paper. The weight of the heatmap regression task loss is significantly larger than that of
the coordinate regression task loss, and the difference between them increases as training
progresses. The significant difference makes it difficult to determine the optimal weights.
To reduce the difference, we first used the fixed loss weights and then alleviated them using
the adaptive loss weights.

LscaledAdaWeight =
T−1

∑
t=0

αt

(
1

eln σt
Lt + ln σt

)
(6)
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In Equation (6), α is a fixed weight. The proposed method uses the AWing loss [28]
for heatmap regression, and the log function in the Wing loss [18] was used for coordinate
regression (Equation (7)).

Wingsmall(∆y, ∆ŷ) = wwingln
(
1 + |∆y− ∆ŷ|/εWing

)
, ∆ŷ = y− ŷ (7)

∆y is the estimated offset, and ∆ŷ is the ground-truth offset. We did not use a linear
function of the Wing loss because the ROI constrains coordinate regression. The large
error caused by the offset estimated outside the ROI makes it difficult to reach the global
minimum of the loss function during the training. In this study, because a large error is
calculated as a small error using the log function, it has little effect on the shared layer. The
hyperparameters of the heatmap loss function and the CCR loss function are the same as
those in the AWing [28], and the Wing loss was set to wwing = 8.0 and εWing = 10.0. The
final loss function is shown in Equation (8):

Ltotal = α0

(
1

eln σ0
AWing(H, Ĥ) + ln σ0

)
+

T−1

∑
t=1

αi

(
1

eln σt
Wingsmall(∆y, ∆ŷ) + ln σt

)
(8)

H is the estimated heatmap and Ĥ is the ground truth heatmap.

4. Experiments

To demonstrate the effectiveness of the proposed method, we conducted experiments
on four popular benchmark datasets: 300W [11], AFLW [12], COFW [13], and WFLW [9].
The 300W dataset is the most widely used, and the 300W private test dataset is used



Sensors 2023, 23, 4731 10 of 22

for the competition of models trained on the 300W public dataset. AFLW focuses on
large poses, whereas COFW focuses on large occlusions. WFLW is currently the most
challenging dataset and can be used to evaluate the performance of each noise by providing
attributes. Since the proposed method does not address a training method using extra data,
we compared the proposed method to state-of-the-art training from scratch. Results of
state-of-the-art studies [9,23,24,33] known to have used extra data were excluded for a fair
comparison.

4.1. Evaluation Metrics
4.1.1. Normalized Mean Error

The normalized mean error (NME) was used to evaluate the distance between the
facial landmark detection result and ground truth as

NME =
1
N

N−1

∑
i=0

‖x− x̂‖2
2

d
(9)

where x̂ is the predicted landmark, x is the ground truth, N is the number of landmarks, and
d is the normalization factor. We employed the inter-pupil distance (IPD) and inter-ocular
distance (IOD) as normalization factors on the 300W and COFW datasets. The IPD is the
distance between the centers of the two eyes, and the IOD is the distance between the outer
endpoints of the two eyes. AFLW uses the face size and 300W private test dataset, and
WFLW uses the IOD.

4.1.2. Failure Rate

The failure rate (FR) is another metric for evaluating the quality of the detection
performance and indicates the ratio of samples for which the NME exceeds the threshold
in all samples. It can be interpreted that the larger the FR value, the more failed samples
there are. In this study, to evaluate the COFW and WFLW datasets, the threshold of the
NME was defined as 10%

4.1.3. Area under the Curve

The area under the curve (AUC) is calculated by integrating the cumulative error
distribution (CED) curve. The CED can be expressed as a curve by connecting the ratio of
the samples to the corresponding NME. In general, the curves are expressed with an NME
below a certain threshold, which we define as 7% for the AFLW dataset and 10% for the
COFW and WFLW datasets.

4.2. Implementation Details

We cropped only face images for all the training and test sets using the bounding box
provided by the dataset. Because no bounding box was provided for the 300W private test
dataset, we used a ground truth bounding box created by the outermost landmarks of the
ground-truth landmark. The cropped facial images were resized and used as inputs to
the network.

In the heatmap regression network, the heatmap size was 64 × 64 pixels. We used
a 4-stacked hourglass network. The heatmap regression network estimates landmark
heatmaps and boundary heatmaps [28]. The input feature maps of the selective feature had
dimensions of 64 × 64 × 128 pixels and used three branches. ROI pooling in the coordinate
regression network applied a fixed ROI with a pixel resolution of 5 × 5 pixels. The residual
block in the heatmap regression network used a hierarchical, parallel, and MS block [45],
whereas the residual block in the coordinate regression network used a basic block [6]. We
set the fixed loss weights to 1.0, except for the last CCR loss weight of 3.0.

Data augmentation was initially applied with ±15% random scaling, random rotation
of ±50◦, random translation of ±25 pixels, 50% flipping, and 0–50% occlusion [10]. A
transform, such as random Gaussian noise, grayscale, contrast, color, power-law transform,



Sensors 2023, 23, 4731 11 of 22

histogram equalization, JPEG compression artifacts, lighting, or identity, was then randomly
selected and applied.

The coordinate transformation in the heatmap was conducted in the same manner as
that used by Newell et al. [7]. We trained the network model using the SGD optimizer and
set the momentum to 0.9 and the weight decay to 5 × 10−4. The batch size was 10, and the
learning rate schedule was as follows:

lrk =

{
0.75× lrk−1 , if k in a
lrk−1 , otherwise

a = {120, 200, 240, 245, 250, 255, . . . , 330}
(10)

where k is the epoch, and the initial learning rate lr0 is 1× 10−2. This learning rate schedule
was experimentally determined, and networks are trained from scratch using only the
training set provided by datasets. We applied the same data augmentation, learning
schedule, and network structure to all datasets. The only difference in the implementation
is the fully connected layer at the final output of the network due to the different number
of landmarks in each dataset.

4.3. Evaluation
4.3.1. Evaluation of 300W

The 300W dataset consists of 3148 images as a training set and 689 as a test set with
68 landmarks. The test set was divided into a common subset with less noise and a
challenging subset with large poses and occlusions. The 300W private test dataset consists
of 300 images as an indoor subset and 300 as an outdoor subset. COFW-68 [46] provides
68 landmarks for the test set of COFW. The CHS trained on the 300W dataset is also
evaluated on the 300W private test and the COFW-68 dataset. Figure 8 shows the results
of the CHS for large occlusions. As shown in Table 1, the CHS showed performance
improvements of 0.3%, 2.2%, and 0.7% in the common subset, challenging subset, and
fullset, respectively, compared to ADNet [47] in the IOD evaluation. The CHS also showed
performance improvements of more than 2.3% compared to SPIGA [39] on the 300W private
test set and 1.3% compared to ACN [10] on the COFW-68 dataset, as shown in Table 2.
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Table 1. Evaluation of the 300W public test set. The best scores are denoted in bold.

Normalization Method Common
Subset

Challenging
Subset Fullset

Inter-Pupil
Distance

Normalization

3DDE [35] 3.73 7.10 4.39
Wing [18] 3.27 7.18 4.04
LAB [9] 3.42 6.98 4.12

AWing [28] 3.77 6.52 4.31
LRefNet [19] 3.76 6.89 4.37

SHN-GCN [29] 3.78 6.69 4.35
SLD [20] 3.64 6.88 4.27

ADNet [47] 3.51 6.47 4.08
SPIGA [39] 3.59 6.73 4.20

CHS (Ours) 3.49 6.47 4.07

Inter-Ocular
Distance

Normalization

3DDE [35] 2.69 4.92 3.13
LAB [9] 2.98 5.19 3.49

LRefNet [19] 2.71 4.78 3.12
AWing [28] 2.72 4.52 3.07
LUVLi [38] 2.76 5.16 3.23

SHN-GCN [29] 2.73 4.64 3.10
GEAN [48] 2.68 4.71 3.05
ACN [10] 2.56 4.81 3.00
HIH [8] 2.93 5.00 3.33

SDFL [21] 2.88 4.93 3.28
SLD [20] 2.62 4.77 3.04

ADNet [47] 2.53 4.58 2.93
FaRL (Scratch) [23] 2.90 5.19 3.35

SLPT [25] 2.75 4.90 3.17
DTLD-s [24] 2.67 4.56 3.04
SPIGA [39] 2.59 4.66 2.99

CHS (Ours) 2.52 4.48 2.91

Table 2. Evaluation of the 300W private test set and the COFW-68 dataset. The best scores are denoted
in bold.

Method 300W Private COFW-68

SHN [27] 4.05 -
LAB [9] - 4.62

3DDE [35] 3.74 -
LRefNet [19] - 4.40
AWing [28] 3.56 -
GEAN [48] - 4.24
ACN [10] 3.55 3.83
SLD [20] - 4.22

SDFL [21] - 4.18
SLPT [25] - 4.10

SPIGA [39] 3.43 3.93

CHS (Ours) 3.35 3.78

4.3.2. Evaluation of AFLW

AFLW consists of 24,386 face images, including 21 landmarks and large poses. Of
the 21 landmarks, we used only 19 points, excluding the points on the left and right sides
of the face. Zhu et al. [49] divided the AFLW dataset into 20,000 images as the training
set and 4386 images as the test set, and separately evaluated 1314 images in the test set
for a performance evaluation of the frontal face. Figure 9 shows the good results of the
CHS for various poses. As shown in Table 3, we applied an evaluation according to each
criterion. The CHS showed performance improvements of 8.6% and 2.3% for full and frontal
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NMEdiag in comparison to FaRL [23] and 2.2% for full NMEbox in comparison to DTLD [24],
respectively. Figure 10 shows the CED curves of the test samples for the CHS, LUVLi, and
KDN results. As the figure indicates, the CHS (blue curve) has a higher proportion of
samples with fewer errors than LUVLi (orange curve) and KDN (green curve).
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Table 3. Evaluation of the AFLW dataset. The best scores are denoted in bold.

Bounding
Box Method

NMEdiag NMEbox AUC7,box

Full Frontal Full Frontal Full

Dataset
Bounding

Box

CCL [49] - - 2.27 2.17 -
LAB [9] - - 1.84 1.62 -

Wing [18] - - 1.65 - -
SAN [50] - - 1.91 1.85 -

3DDE [35] - - 2.01 -
SHN-GCN [29] 2.15 - -

LRefNet [19] - - 1.63 1.46 -
AWing [28] - - 1.53 1.38 -
GEAN [48] - - 1.59 1.34 -
LUVLi [38] 1.39 1.19 - - -

FaRL (Scratch) [23] 1.05 0.88 1.48 79.3
DTLD-s [24] - - 1.39 - -

CHS(Ours) 0.96 0.86 1.36 1.23 81.1

GT
Bounding

Box

SAN [50] - - 4.04 - 54.0
Wing [18] - - 3.56 - 53.5
KDN [51] - - 2.80 - 60.3

LUVLi [38] - - 2.28 - 68.0

CHS(Ours) 1.26 1.08 1.91 1.55 73.5
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4.3.3. Evaluation of COFW

The COFW consists of 1315 training sets and 507 test sets, including large occlusions,
and provides 29 landmarks. Since the size of the COFW training set is smaller than other
datasets, the generalization of the network is important for the evaluation. Figure 11 shows
the good performance of the CHS on largely occluded samples of the COFW datasets.
As shown in Table 4, the CHS obtained NMEs of 4.56 and 3.16 in IPD and IOD metrics,
respectively. This result showed improved performance of 2.6% and 0.6% compared to
the state-of-the-art IPD and IOD metrics, and a reduced failure rate of 33.9% compared to
ADNet [47] in the IPD metric. The low failure rate of the CHS showed the generalization
performance and robustness for large occlusions on the COFW.
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Table 4. Evaluation of the COFW dataset. The best scores are denoted in bold.

Normalization Method NME (↓) FR (↓) AUC10 (↑)

Inter-Pupil
Distance

Normalization

SHN [27] 5.60 - -
Wing [18] 5.44 3.75 -
3DDE [35] 5.11
AWing [28] 4.94 0.99 0.6440

SHN-GCN [29] 5.67 - -
ADNet [47] 4.68 0.59 0.5317
SLPT [25] 4.79 1.18 -

CHS (Ours) 4.56 0.39 0.5441

Inter-Ocular
Distance

Normalization

SHN [27] 4.00 - -
LAB (wo/B) [9] 5.58 2.76

SDFL [21] 3.63 0.00 -
HIH [8] 3.28 0.00 0.6720

DTLD-s [24] 3.18 - -
SLPT [25] 3.32 0.00 -

CHS (Ours) 3.16 0.00 0.6833

4.3.4. Evaluation of WFLW

As shown in Table 5, the CHS obtained NMEs of 4.04, 6.76, 4.33, 3.98, 3.87, 4.71, and
4.64 for the entire test set, pose, expression, illumination, make-up, occlusion, and blur
subsets, respectively. We improved the performance by 0.5%, 5.3%, 2.9%, 0.5%,−1.6%, 4.8%,
and 0.2%, respectively, compared to SPIGA [39]. This result shows a higher performance
for the pose and occlusion subsets than other subsets. From the experimental results of the
WFLW test set, Figure 12 shows the landmark detection results of CHS for various noises.
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Table 5. Evaluation of the WFLW dataset. The best scores are denoted in bold.

Method Test Set PoseSubset Expression
Subset

Illumination
Subset

Make-Up
Subset

Occlusion
Subset BlurSubset

NME (↓)
LAB [9] 5.27 10.24 5.51 5.23 5.15 6.79 6.32

3DDE [35] 4.68 8.62 5.21 4.65 4.60 5.77 5.41
AWing [28] 4.36 7.38 4.58 4.32 4.27 5.19 5.32
LUVLi [38] 4.37 7.56 4.77 4.30 4.33 5.29 4.94

AnchorFace [22] 4.32 7.51 4.69 4.20 4.11 4.98 4.82
HIH [8] 4.18 7.20 4.19 4.45 3.97 5.00 4.81

SDFL [21] 4.35 7.42 4.63 4.29 4.22 5.19 5.08
SLD [20] 4.21 7.36 4.49 4.12 4.05 4.98 4.82

ADNet [47] 4.14 6.96 4.38 4.09 4.05 5.06 4.79
FaRL (Scratch) [23] 4.80 8.78 5.09 4.74 4.99 6.01 5.35

DTLD-s [24] 4.14 - - - - - -
SLPT [25] 4.14 6.96 4.45 4.05 4.00 5.06 4.79

SPIGA [39] 4.06 7.14 4.46 4.00 3.81 4.95 4.65

CHS (Ours) 4.04 6.76 4.33 3.98 3.87 4.71 4.64

FR10 (↓)
LAB [9] 7.56 28.83 6.37 6.73 7.77 13.72 10.74

3DDE [35] 5.04 22.39 5.41 3.86 6.79 9.37 6.72
AWing [28] 2.84 13.50 2.23 2.58 2.91 5.98 3.75
LUVLi [38] 3.12 15.95 3.18 2.15 3.40 6.39 3.23

AnchorFace [22] 2.96 16.56 2.55 2.15 2.43 5.30 3.23
HIH [8] 2.96 15.03 1.59 2.58 1.46 6.11 3.49

SDFL [21] 2.72 12.88 1.59 2.58 2.43 5.71 3.62
SLD [20] 3.04 15.95 2.86 2.72 1.45 5.29 4.01

ADNet [47] 2.72 12.72 2.15 2.44 1.94 5.79 3.54
FaRL (Scratch) [23] 5.72 - - - - - -

DTLD-s [24] 3.44 - - - - - -
SLPT [25] 2.76 12.27 2.23 1.86 3.40 5.98 3.88

SPIGA [39] 2.08 11.66 2.23 1.58 1.46 4.48 2.20

CHS (Ours) 1.80 9.51 1.59 1.72 1.46 3.13 2.46

AUC10 (↑)
LAB [9] 0.5323 0.2345 0.4951 0.5433 0.5394 0.4490 0.4630

3DDE [35] 0.5544 0.2640 0.5175 0.5602 0.5536 0.4692 0.4957
AWing [28] 0.5719 0.3120 0.5149 0.5777 0.5715 0.5022 0.5120
LUVLi [38] 0.5770 0.3100 0.5490 0.5840 0.5880 0.5050 0.5250

AnchorFace [22] 0.5769 0.2923 0.5440 0.5865 0.5914 0.5193 0.5286
HIH [8] 0.5970 0.3420 0.5900 0.6060 0.6040 0.5270 0.5490

SDFL [21] 0.5759 0.3152 0.5501 0.5847 0.5831 0.5035 0.5147
SLD [20] 0.5893 0.3150 0.5663 0.5953 0.6038 0.5235 0.5329

ADNet [47] 0.6022 0.3441 0.5234 0.5805 0.6007 0.5295 0.5480
FaRL (Scratch) [23] 0.5454 - - - - - -

SLPT [25] 0.5950 0.3480 0.5740 0.6010 0.6050 0.5150 0.5350
SPIGA [39] 0.6056 0.3531 0.5797 0.6131 0.6224 0.5331 0.5531

CHS (Ours) 0.6015 0.3552 0.5792 0.6080 0.6155 0.5403 0.5462
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Figure 12. Visualized examples on the WFLW test dataset. Green dots denote predictions by the CHS,
and red dots denote the ground truth.

5. Ablation Study

In this section, we present four ablation studies. The proposed CHS network performs
multi-task learning, which trains a heatmap regression task and CCR tasks. We evalu-
ated the contribution of the components to network models that deal with heatmap-CCR
networks, loss weights, and selective feature modules. In addition, we compared the
performance of the proposed selective feature attention to other attention methods. For
effective multi-task learning, we evaluated the performance of the proposed network for
backward propagation connections between tasks. Finally, we compared the cost with the
networks of other studies through an experiment.

5.1. Evaluation of Different Components

To evaluate the effectiveness of the CHS, we trained the network models with different
components on the 300W dataset. Table 6 lists the performance of the network models.
When fixed loss weights and adaptive loss weights for multi-task learning were not applied,
the fixed loss weights were set to 1.0 for training. The performance of four stacked hourglass
networks (four HGs) using only the AWing [28] loss did not achieve state-of-the-art NME.
However, the models of all the proposed configurations showed good performance, and
the effects of each element were experimentally proven. When all the components were
applied, the performance was improved by 8.33% for the four HGs.

Table 6. Evaluation of different components. The best scores are denoted in bold.

Component Choice

4-HGs X X X X X X X X X X X
Selective Feature - X - - - - X X X X X

2-CCRs X -
4-CCRs - - X X X X X X - X -
6-CCRs - X

Adaptive Weight - - - X - X X - X X X
Fixed Loss Weight - - - - X X - X X X X

NME (↓) 4.44 4.24 4.20 4.18 4.15 4.14 4.12 4.11 4.12 4.07 4.10

5.2. Comparison of Feature Map Attention Methods

We compared the proposed selective feature module with conventional attention
modules to evaluate them. Figure 13a shows the attention structure with single-level
feature maps, which was proposed by CBAM [42] and a selective kernel [52]. Figure 13b
shows the attention structure with multi-level feature maps using the CBAM proposed
by SDFL [21]. Figure 13c shows the selective feature module proposed in this study,
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and Figure 13d shows the structure of heatmap-guided attention with multi-level feature
maps. Table 7 shows the evaluation results of the trained model for the 300W dataset by
applying different attention modules to the network layer of the four CCRs. Owing to the
structural features of the ROI feature maps in the CCR network layer, the performance of
the attention modules without the heatmap deteriorated because they used features outside
the ROI of the landmark. Meanwhile, heatmap-guided attention improves performance by
focusing on features around landmarks. The selective feature module in this study showed
1.45% better performance than the attention of SDFL using multi-level feature maps and
heatmaps together.
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These use only the feature maps in the last residual block of the feature extractor. (b) The attention 
module in SDFL [21] is designed using the CBAM for the multi-level feature maps. The last 1 × 1 
convolution layer after the SDFL attention is for adjusting the feature map dimension. (c) The selec-
tive feature is proposed by us. (d) The heatmap-guided attention is applied to the SDFL and the 
selective feature. The estimated heatmap concatenates with the feature maps. These are operated 
before the multi-level feature attention module, such as SDFL attention and selective feature. 

Table 7. Evaluation of different attention modules. The best scores are denoted in bold. 
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tion 
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without Heatmap 

Multi-Level 
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5.3. Evaluation of Different Backward Propagation Settings in the CCR Stage 

Figure 13. Structures of the feature attention module. We applied these attention modules to our
network. (a) The single-level feature map attention includes CBAM [42] and Selective Kernel [52].
These use only the feature maps in the last residual block of the feature extractor. (b) The attention
module in SDFL [21] is designed using the CBAM for the multi-level feature maps. The last 1 × 1
convolution layer after the SDFL attention is for adjusting the feature map dimension. (c) The selective
feature is proposed by us. (d) The heatmap-guided attention is applied to the SDFL and the selective
feature. The estimated heatmap concatenates with the feature maps. These are operated before the
multi-level feature attention module, such as SDFL attention and selective feature.

Table 7. Evaluation of different attention modules. The best scores are denoted in bold.

Evaluation
Without

Attention

Single-Level,
without Heatmap

Multi-Level

without Heatmap Heatmap-Guided

CBAM [42] SK [52] SDFL [21] SF (Ours) SDFL [21] SF (Ours)

NME (%) 4.14 4.17 4.17 4.17 4.15 4.13 4.07

5.3. Evaluation of Different Backward Propagation Settings in the CCR Stage

The CHS is a multi-task learning-based network model consisting of a heatmap regres-
sion task and CCR tasks. Each stage of the CCR task generates information propagation
between each other because it adds the landmark coordinate in the previous stage task to
the coordinate offset in the current stage. In multi-task learning, the connected relationship
between each stage of the task significantly affects the learning performance owing to
forward or backward propagation. Table 8 shows the results of the trained model for the
300W dataset for the three types of backward propagation connections to the previous
stage, as shown in Section 3.2. The CHS proposed in this study showed good performance
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in the connected CCRs. It shows that backward propagation in the CCR network layer
degrades the performance at the end of the heatmap regression network, but the feature
extractor shared by the heatmap regression network and CCR network improves not only
the performance of heatmap regression but also the performance of backward propagation
between CCRs.

Table 8. Evaluation of different backward propagation settings. NMEheatmap-stage and
NME4th-CCR-stage are checked values in each task stage. NMEheatmap-stage–NME4th-CCR-stage is the
difference of both NMEs. The best scores are denoted in bold.

Method NMEheatmap-stage (%) NME4th-CCR-stage (%) NMEheatmap-stage–
NME4th-CCR-stage

Task-Wise Connection 4.22 4.11 0.11
Fully Connection 4.24 4.11 0.13
CCRs Connection 4.21 4.07 0.14

5.4. Model Complexity

The CHS requires a relatively high computational load. The proposed heatmap regres-
sion network is based on the AWing [28] network, which consists of many parameters, and
the CCR network also consists of many parameters due to the independent convolution
kernels having each landmark after the ROI pooling. However, as described in Section 3.3,
CCR pruning reduces the computational cost while maintaining the performance of the
NME. Table 9 and Figure 14 present the results of the network models trained on the
WFLW dataset for comparison with other state-of-the-art models. Although the number
of parameters of the four CCR networks proposed in this study is large, the NME’s per-
formance is the best. With the proposed one-CCR network, the pruning model of the
one-CCR network slightly increased 1.14 times in FLOPs compared to the AWing network
but achieved a 7.1% improvement in the NME. A network with all CCRs pruned has the
same structure as the AWing network using the selective feature. The computational cost of
this network increases very slightly compared to the AWing network, but the network with
all CCRs pruned shows better performance than the AWing network with the selective
feature trained from scratch. Because the feature extractor and the heatmap regression
network are improved by multi-task learning with CCR.

Table 9. Model complexity.

Method #Params (M) FLOPs (G) NME (↓)
LAB [9] 32.05 28.58 5.27

AWing (baseline) [28] 24.15 26.79 4.36
SDFL [21] 24.68 5.17 4.35

HIHc (2 HGs) [10] 14.47 10.29 4.18
ADNet [47] 13.48 17.47 4.14
DTLD-s [24] 13.30 2.50 4.14

SLPT [25] 13.19 6.12 4.14

AWing 4HGs + SF 24.15 26.80 4.27
CHS 4 CCRs 154.04 41.69 4.04

CHS 4→ 2 CCRs 89.09 34.25 4.04
CHS 4→ 1 CCR 56.62 30.52 4.05
CHS 4→ 0 CCR 24.15 26.80 4.06
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6. Discussion

This study improved the quality of feature maps and the performance of face alignment
using heatmap-guided selective feature attention and the multi-task learning-based net-
work.

The heatmap-guided selective feature attention selected valid feature maps, which are
robust against noisy environments, from multi-level feature maps with different properties.
Figure 4 shows the visualized feature maps with reduced noise by the proposed method.
In Section 4, the proposed method obtained good results even on noisy datasets, including
the 300W challenging subset, AFLW, and COFW. The proposed method also significantly
improved 5.3% and 4.7% compared to the previous best one in the WFLW pose and
occlusion subsets, respectively.

The multi-task learning-based network controlled the information propagation using
the proposed backward propagation connection at the last layer connected between task
stages of the CHS. Table 8 shows the performance improvement of the CCR connection,
which connects to the same type of task. In addition, the proposed network showed good
generalization performance. As shown in Table 5, the CHS performed better on FR10
relative to other evaluation metrics. This result means that the proposed method makes
fewer estimation failures with challenging data.

Previous face alignment methods based on multi-task learning trained regression
tasks separately [9,10] or with other facial properties [37,38]. This study demonstrated
the positive effect of multi-task learning by improving the performance of the proposed
network trained with the same objective tasks, which are coordinate and heatmap regression
for facial landmark detection. As shown in Table 9, the network trained from scratch with
selective feature attention and four-stacked hourglass networks but without CCRs obtained
a 4.27 NME. However, the network trained with all components and 4-CCRs obtained a
result of 4.06 NME, which improved by 4.9% even after pruning the 4-CCRs.

The proposed method showed robust performance on most face images but bad
performance in a few large pose face images. The leading cause of failure in large pose
cases is that all the datasets used in learning have many samples with the frontal pose
but few with large poses. Similar failure cases are also observed in other face alignment
methods. Figure 15 shows several failure cases of the proposed method. However, as
shown in Section 4 comparison experiments, the performance of all face alignment methods
is low on the challenging subset of 300W and the pose subset of WFLW, which contain
relatively large pose face images. However, the proposed method in this paper performs
better than other methods in large pose subsets. To deal with the imbalance of samples for
large poses, we will improve in future work through oversampling, such as pose-based
data balancing [18] or data augmentation using synthesis samples such as GEAN [48].
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7. Conclusions

We propose a heatmap-guided selective feature attention and a multi-task learning-
based network with a refinement strategy that combines a heatmap regression task and
cascaded coordinate regression tasks for face alignment.

The proposed method improves the quality of feature maps by using valid feature
maps, which are selected from multi-level feature maps. Multi-level feature maps provide
rich information on various properties, and heatmap-guided selective attention helps to
select valid feature maps by focusing on facial components. The designed backward propa-
gation connection improves multi-task learning of the proposed network with coordinate
and heatmap regression tasks.

Various experiments have shown that the proposed method is superior to conventional
methods. The proposed method is 5.3% and 4.7% higher than the previous best one in
NME performance for WLFW pose and occlusion subsets, respectively.

Ablation studies have shown that the proposed method improves the performance
of face alignment. Each proposed component has demonstrated effectiveness through
evaluations of various network structures in which the components are combined. The
heatmap-guided selective feature attention has been compared to other attention methods,
and an experiment on designing backward propagation connections finds that the CCR
connection with the same task type helps multi-task learning.

The proposed method has shown robust performance on most face images but has
failed on large pose face images because most of the datasets consist of mainly frontal
pose face images. In the future, we plan to study methods to improve performance using
data balancing.
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