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Abstract: As a basic task and key link of space situational awareness, space target recognition has
become crucial in threat analysis, communication reconnaissance and electronic countermeasures.
Using the fingerprint features carried by the electromagnetic signal to recognize is an effective method.
Because traditional radiation source recognition technologies are difficult to obtain satisfactory
expert features, automatic feature extraction methods based on deep learning have become popular.
Although many deep learning schemes have been proposed, most of them are only used to solve
the inter-class separable problem and ignore the intra-class compactness. In addition, the openness
of the real space may invalidate the existing closed-set recognition methods. In order to solve the
above problems, inspired by the application of prototype learning in image recognition, we propose
a novel method for recognizing space radiation sources based on a multi-scale residual prototype
learning network (MSRPLNet). The method can be used for both the closed- and open-set recognition
of space radiation sources. Furthermore, we also design a joint decision algorithm for an open-set
recognition task to identify unknown radiation sources. To verify the effectiveness and reliability
of the proposed method, we built a set of satellite signal observation and receiving systems in a
real external environment and collected eight Iridium signals. The experimental results show that
the accuracy of our proposed method can reach 98.34% and 91.04% for the closed- and open-set
recognition of eight Iridium targets, respectively. Compared to similar research works, our method
has obvious advantages.

Keywords: space radiation source; closed set recognition; open set recognition; prototype learning

1. Introduction

Space situational awareness (SSA) refers to the ability to monitor, recognize and predict
the identity, position and behavior of space targets, including debris and active satellites.
References [1,2] pointed out that space situational information is crucial for ensuring the
safety and sustainability of space operations. Therefore, space target recognition (STR) is a
critical technology that can recognize potential threat targets, including debris or hostile
satellites. Developing advanced STR capabilities is essential for maintaining the security
and longevity of space missions.

The term “space targets” refers to a variety of satellites with various goals in this
paper. These satellites can be used for communication, navigation, earth observation and
scientific research purposes. They are an essential component of modern technology and
play a significant role in our daily lives [2]. In the field of signal processing, these satellites
can also be known as space radiation sources. However, non-cooperative, threatening or
hostile satellites may also pose a significant risk to our security through some means, such
as communication reconnaissance and intelligence collection. Therefore, it is important
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to continue monitoring and recognizing them. Additionally, understanding these space
radiation sources can also help us improve our ability to quickly take countermeasures.

The signals emitted by space radiation sources to the ground usually exhibit signifi-
cant nonlinear distortion because the high-power amplifier incorporated into the satellite
transponder commonly operates in the saturated state or a state comparable to the saturated
state to ensure high work performance [3]. In addition, due to the inherent differences
in the manufacturing process of the internal components of the amplifier, the nonlinear
distortion generated by the signal is different. It enables each space radiation source signal
to carry unique fingerprint features different from other space radiation sources, which
can be used for individual recognition and identity authentication. Therefore, it is of great
significance to use the fingerprint information of electromagnetic signals to carry out the
task of space radiation source recognition.

The individual recognition of radiation sources is essentially a pattern recognition
problem [4]. In the early stage, the methods based on experience-driven strategy [5–11]
take the leading position. They usually use traditional signal processing and expert feature-
matching algorithms instead of recognition algorithms, which is difficult to achieve the ex-
pected accuracy in complex electromagnetic environments [12]. Recently, data-driven strat-
egy based on massive data and deep learning has become popular. A lot of studies [13–21]
have confirmed that deep learning has a strong feature extraction ability, which makes
it superior to traditional methods in many recognition tasks. However, these works are
mainly based on improved or new proposed network models. When Softmax Loss is used
to train these models, they can only learn the inter-class separable features [22]. It may force
us to increase the complexity of data preprocessing and network models in exchange for
improving the recognition effect. Therefore, further enhancing the intra-class compactness
of features may be a better choice.

In addition, the more realistic scenes we face are often open-set or open-world recog-
nition [23], such as face recognition and automatic driving. Because new satellites will
be launched continuously (at least at present), the space radiation source recognition task
is more inclined to open set recognition. When judging the unknown radiation sources,
the closed-set recognition methods are easy to fail. Fortunately, the problem of open set
recognition has been paid attention to by researchers in many fields and given some works
in recent years [24–31]. In addition, Refs. [32,33] describe the probability model theory and
the latest research progress of open set recognition, respectively, which provide a broader
idea to solve the problem. However, the research about open set recognition of radiation
sources is in a nascent stage. To the best of our knowledge, the probability threshold
methods [12,24,27] and generative adversarial network (GAN) [28,29] are mainly used to
solve the problem. Because the probability threshold is difficult to select and the training
process of GAN is complex, we urgently need new methods to meet the actual needs.

The center loss in face recognition is introduced into automatic modulation classifi-
cation to learn discriminative features that are easier to classify [22]. Inspired by it, we
hope to improve the recognition ability of the model by optimizing the new loss rather
than designing complex networks. Due to the great success of prototype learning in image
recognition [34,35], we propose a new space radiation source recognition method based on
prototype learning in this paper. The method can be used to complete the closed- and open-
set recognition of space radiation sources. Specifically, the main works and contributions of
this paper are

(1) In order to improve the recognition accuracy of space radiation sources, we introduce
the prototype learning strategy in image recognition into radiation source recognition
and propose a new space radiation source recognition method;

(2) Whether it is closed- or open-set recognition, learning separable and discriminative
features is an important way to improve the network recognition effect. We design a
multi-scale residual prototype learning network to recognize space radiation sources.
Convolution kernels of different scales are used to learn the inter-class separable
features. On the one hand, residual network structure can alleviate the problems
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of gradient disappearance and model degradation. On the other hand, it can fuse
features of different scales. By optimizing the joint loss based on prototype learning,
it can not only enhance the inter-class separability of features but also further enhance
the intra-class compactness of features;

(3) In order to solve the problem of open-set recognition of space radiation sources, we
also designed a joint decision algorithm based on MSRPLNet. The algorithm uses
two distance rules to make joint decisions on sample labels. Compared with the
existing open set recognition methods, its advantages are that it can automatically set
thresholds based on data distribution and has strong generalization ability;

(4) We built a set of satellite signal observation and reception systems with a 13 m large-
aperture antenna and collected eight Iridium satellite time and location (STL) signals.
Experimental results confirm the effectiveness and reliability of the proposed method
for closed-set recognition and open-set recognition. As far as the authors know, this
study is the first to use real space signals received in the outdoor environment to carry
out radiation source recognition work.

The rest of the paper is organized as follows. Section 2 introduces some research works.
Section 3 describes the problem faced by space radiation source recognition. Section 4
introduces the proposed research method. Experimental results are given in Section 5.
Section 6 is the conclusion.

2. Related Works

In this section, we first introduce the works of individual recognition of radiation
sources based on experience-driven and data-driven techniques. Then we present the
current research progress about open set recognition of radiation sources. Finally, we
introduce the related works of prototype learning.

2.1. Recognizing Radiation Sources Using Experience-Driven and Data-Driven Techniques

Traditional radiation source individual recognition methods are mostly based on
experience-driven. It first relies on the manual extraction of intuitive and reliable expert fea-
tures from samples and then matches these features with all templates in the feature library.
The most similar template attribute is the recognition result. Expert features are mainly
divided into modulation domain features and waveform domain features [13]. Modulation
domain features mainly include I/Q amplitude and phase imbalance, carrier frequency
offset and modulation offset of received signal caused by small-scale hardware-level de-
fects [5]. Common waveform domain features include compressed bispectrum [6], fractal
box dimension [7], multi-dimension approximate entropy [8], Hilbert–Huang transform [9],
empirical mode decomposition [10] and variational mode decomposition [11]. However,
on the one hand, the experience-driven methods depend on the prior knowledge of the
signal and the existing signal processing tools. On the other hand, the extracted expert
features are easily affected by noise, and the recognition accuracy fluctuates greatly [20].

With the development of deep learning theory and parallel fast computing support
provided by GPU in recent years, the recognition methods based on data-driven have
become a research hotspot in this field. A lot of research works are devoted to using deep
learning technology to automatically extract individual features of radiation sources. A
deep, complex residual neural network was proposed to capture the fingerprint features of
I/Q baseband signals of WiFi network card devices [13]. In [14], a convolutional neural
network (CNN) was used to learn RF impairments contained in the transmitter signals
and compared with traditional classifiers such as support vector machine and logistic
regression. In [15], the authors ingeniously constructed a three-dimensional convolutional
neural network by using the short-term spatio-temporal properties of the raw I/Q signal
rather than the idea of processing time series. In the experiments of recognizing identical
and heterogeneous transmitters, the accuracy is about 99%. However, the increase in
convolution dimension makes the construction of the data set and network training process
more complex. Ref. [16] developed a convolutional neural network framework using the
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time-domain complex baseband error signals. The framework achieves 92.29% recognition
accuracy on seven commercial ZigBee devices. The application of machine learning in RF
transmitter recognition was studied in [17]. The authors evaluated the recognition effect of
support vector machines, conventional deep neural nets, convolutional neural nets and
deep neural nets with multi-stage training on 12 transmitters. The latter has significant
advantages in the recognition of large transmitter populations. In [18], the author collected
the I/Q signals emitted by five individual radiation sources and adopted multiple different
neural networks to obtain a satisfactory classification effect. Ref. [19] used the features
extracted by the residual network and complex-valued residual network as the real and
imaginary parts of the classifier, respectively. The method works well when there are fewer
labeled samples. However, using two networks to extract features is time-consuming. In
addition, in order to further improve the recognition accuracy of communication radiation
sources, part of the research works [6], Refs. [20,21] combined the manually extracted expert
features with deep learning to obtain fusion features. However, the essence of the above
works is still only to extract inter-class separable features. They all ignore the intra-class
compactness of features.

2.2. Open-Set Recognition of Radiation Sources

Whether based on experience-driven methods or data-driven methods, the works
in Section 2.1 are discussed under the premise of closed set recognition. Different from
other fields, such as the open-set recognition of images, there are few studies on the open-
set recognition of radiation sources. At present, methods based on probability threshold
and GAN have been proposed. Refs. [24,27] used the Softmax threshold and OpenMax
threshold to recognize unknown radiation sources, respectively. Besides, two outlier
detection methods and an autoencoder are introduced in [27]. However, outlier detection
is difficult to separate known classes. Ref. [12] proposed a combined siamese neural
network. The network is equivalent to establishing a binary anomaly detection classifier
for each known radiation source. However, the detection threshold of each classifier only
depends on experience. In [28], the authors designed a radio frequency adversarial learning
(RFAL) framework based on GAN to recognize “trusted” transmitters and “adversarial”
transmitters. The generative model generates false signals that are very similar to real
signals by inferring parameter space and copying time-invariant features. The discriminator
model recognizes the “trusted” transmitters by judging the real signals and the false
signals. For identifying “adversarial” transmitters, RFAL can achieve about 99.9% accuracy.
Ref. [29] pointed out that for wireless signal data sets, directly using the existing open-set
recognition algorithms cannot obtain satisfactory results. The authors proposed a multi-
task counterfactual GAN framework to capture the modulation features and fingerprint
features of wireless communication signals. It can enhance the robustness of the model
and the adaptability of open set recognition. Although the frameworks based on the GAN
can achieve good results, it is difficult to apply to practical scenarios because of complex
architecture and long training time.

2.3. Prototype Learning

Ref. [34] successfully applied prototype learning and deep learning to image recogni-
tion for the first time. In this paper, Yang et al. proposed a new learning framework called
convolutional prototype learning (CPL) and introduced several loss functions based on
prototype learning. CPL aims to solve the closure of the Softmax layer in traditional CNN
models. The authors also showed that the loss functions based on prototype learning could
be used to learn discriminative features. Later, Yang supplemented the relevant concepts
of CPL and loss functions based on prototype learning from other perspectives [35]. He
pointed out that prototype learning has obvious advantages in closed-set recognition,
open-set recognition and incremental learning. The work in [25] is most similar to our
research content. The author proposed the surrounding prototype loss (SPL) for radar
high-resolution range profile (HRRP) open set recognition. SPL can further learn inter-class
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separable features. However, SPL introduces new hyperparameters, and the thresholds of
open-set recognition are all empirical values.

3. Problem Description

The downlink signals broadcast by satellites to the ground are usually affected by the
complex space channel environment. When the ground antenna is aimed at the satellite, the
signal received by the antenna usually contains various noises and interference in addition
to useful information. Discrete IF signal x(n) obtained by signal collector system can be
modeled as

x(n) = [s(n) ∗ h(n) + w(n)]·ej2π fmn, n = 1, 2, . . . , N (1)

where s(n) and h(n) represent useful information and channel impulse response, respec-
tively. w(n) is defined as additional noise and interference. ∗ is the convolution operator.
fm is the mixed frequency produced by the crystal oscillator of the mixer, and j =

√
−1. N

is the number of sampling points of the signal.
The actual received satellite signal x(n) is real signal data. To make full use of the

amplitude and phase information contained in the signal, we perform a Hilbert transform
on x(n) to obtain its complex form hilbert[x(n)] and extract the I/Q signals, which are
recorded as

I(n) = Real{hilbert[x(n)]}, n = 1, 2, . . . , N (2)

Q(n) = Imag{hilbert[x(n)]}, n = 1, 2, . . . , N (3)

where I(n) and Q(n) represent the operators of the real and imaginary parts of
hilbert[x(n)], respectively.

K training samples {(xi, yi)|i = 1, 2, . . . K} with known labels can be constructed by
I(n) and Q(n). xi and yi are the i data sample and its corresponding category label,
respectively. Each xi can be recorded as

xi =

(
I(N(i−1)

K + 1), I(N(i−1)
K + 2), · · · , I(Ni

K )

Q(N(i−1)
K + 1), Q(N(i−1)

K + 2), · · · , Q(Ni
K )

)
(4)

As shown in Figure 1a, it is assumed that the original database of space radiation
sources contains K known label samples, which are denoted as TR = {(xi, yi)|i = 1, 2, . . . K}.
These samples come from M known radiation sources, and yi ∈ [1, M]. As shown
in Figure 1b, S new samples TE =

{
(xj, yj)

∣∣j = 1, 2, . . . S
}

are from the above M known
and other P unknown radiation sources, and yj ∈ [1, M + P]. We hope that training TR
can not only allow the recognition of unknown radiation source samples but also correctly
classify radiation source samples.
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Sensors 2023, 23, 4708 6 of 25

Once we train a perfect neural network model f (θ) using TR, the model has a powerful
feature extraction ability. When using TE for testing, the features z extracted by f (θ) can be
represented as

z = f (xj; θ) (5)

where xj is a test sample in TE, θ is the trained network parameters.
Closed set recognition gives the closed classification boundary in Figure 1c. It can

correctly classify the categories agreed upon in advance but cannot expand new categories.
This is because the back end of the model f (θ) uses a closed Softmax layer [33]. The
Softmax layer is often connected to the last fully connected layer (FC) of the model f (θ).
The number of neurons in the last FC is the number of known radiation sources. Therefore,
the Softmax layer can only convert output features z of the last FC into the probability that
the test sample xj belongs to each known radiation source, which makes it exhibit inherent
closeness and unable to adapt to the open set world. The probability conversion function
of the Softmax layer can be expressed as

p(y = j) =
ezj

∑M
m=1 ezm

, j ∈ [1, M] (6)

∑M
j=1 p(y = j) = 1 (7)

where p(y = j) is the probability that the sample is classified as known class j. M is the
number of known classes in the original database. zj is the j feature of the output z of the
last FC. Because p needs to follow the probability distribution condition (7), the Softmax
layer can easily classify unknown samples as one of the known radiation sources. In
addition, the Softmax layer in the process of network training will gradually incline to the
category with the largest probability distribution, which leads to the Softmax layer giving
false high confidence more confidence.

Open set recognition gives the ideal open classification boundary in Figure 1d. It can
not only recognize unknown radiation source samples but also correctly classify known
radiation source samples. In a mathematical sense, open-set recognition requires us to find
the measurable identification function f and minimize the joint risk [32]:

argmin
f

CO( f ) + λCε( f (V)) (8)

where joint risk consists of open space risk CO(•) and experiential risk Cε(•). CO(•) refers
to the risk of labeling samples in an open space (an unknown space far from known
radiation sources) as known radiation sources. Cε(•) represents the risk of confusion
between known radiation sources. We need to minimize CO(•) and Cε(•) as much as
possible to meet the requirement of open set recognition. V represents the training data
and only contains known radiation source samples. λ is a user-defined constant used to
balance the two risks. It requires recognizing unknown radiation source samples on the
basis of correctly recognizing known radiation source samples.

4. Proposed Method

In this section, we first introduce the framework of the proposed space radiation
source recognition method. Compared with existing radiation source recognition works,
our method can be used for both closed- and open-set recognition tasks. Then we give
a detailed description of the proposed MSRPLNet. MSRPLNet improves the recognition
performance of radiation sources by enhancing the inter-class separation and intra-class
compactness of sample features, while the novel models designed in most of the other works
only improve the inter-class separation of features. Finally, we introduce the proposed joint
decision algorithm for unknown radiation source recognition. The algorithm solves the
problem of manually setting empirical thresholds and provides better generalization ability
compared to traditional methods.
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4.1. Space Radiation Source Recognition Method Based on MSRPLNet

By introducing the prototype learning strategy, we propose a new space radiation
source recognition method. Unlike the works in [12,28,29], our method pays more attention
to learning separable features and discriminative features. The method can be used for the
closed- and open-set recognition of space radiation sources. Figure 2 shows the framework
of our proposed method, including data preprocessing, network training, feature extraction
and recognition modules. In the data preprocessing module, raw I/Q signals are first
sliced and normalized to construct the training set, validation set and testing set. The
training set and validation set need to be labeled to learn the discriminative model. In
the network training and feature extraction module, MSRPLNet is used to extract features
with intra-class compactness and inter-class separability. When MSRPLNet training is
completed, we can obtain the optimal model parameters, prototype representation and
feature representation of the validation set. In the recognition module, when MSRPLNet
extracts features from the testing set, the prototype representation and prototype matching
can be used to recognize the closed set of space radiation sources. In addition, when the
testing set contains unknown radiation source samples, the joint decision algorithm based
on MSRPLNet can not only classify known radiation source samples but also detect and
reject unknown radiation source samples.
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4.2. Multi-Scale Residual Prototype Learning Network (MSRPLNet)
4.2.1. Model Structure of MSRPLNet

As shown in Figure 3, a multi-scale residual prototype learning network MSRPLNet is
proposed in this section. It is composed of an input layer, a convolutional layer, a batch
normalization layer, an average pooling layer, an ReLU activation layer, a dropout layer, a
multi-scale residual block, a flatten layer and a fully connected layer. The input of MSR-
PLNet is raw IF I/Q signal slices after standard normalization. We first use a convolutional
layer with a 1× 9 kernel to extract features from raw data. A 1× 9 convolutional kernel
has a larger receptive field, which can better capture spatial information contained in the
data and extract global features. The batch normalization layer is used to standardize the
features of each channel to promote the stable distribution of features and accelerate the
learning speed of the network. Considering that the length after using the flatten layer to
pull the extracted features into one dimension is too large, we take the average pooling
operation on the feature maps in the early stage to reduce the amount of calculation and
the required memory. The pooling size of 2× 2 means that the features in each channel
will be merged into one channel, and the number will be quartered. The ReLU activation
layer is used to process the output of the upper neurons nonlinearly and transmit it to
the lower neurons. The dropout layer prevents the model from overfitting by discarding
some neurons. Then we input the extracted shallow features into multiple continuous
multi-scale residual blocks. As shown in Figure 4, the construction of multi-scale residual
blocks is the same, and their design inspiration comes from the residual unit in the residual
neural network. In multi-scale residual blocks, input x will perform four convolutional
block operations. Each convolutional block contains a convolutional layer, a Batch nor-
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malization layer, an ReLU activation layer and a Dropout layer. The difference between
each convolutional block operation is the use of different convolutional kernels. The first
route feature is extracted by two 1× 7 kernels, the second route feature is extracted by two
1× 5 kernels, the third route feature is extracted by two 1× 3 kernels and the fourth route
feature is the original feature, which can be considered to be extracted by two 1× 1 kernels.
Convolutional kernels of different sizes have different receptive fields, and they can capture
more different features. Four route features are transformed into one route feature through
the Add layer. On the one hand, Add layer inherits the advantages of the residual unit and
can be used to alleviate the problems of gradient disappearance and model degradation.
On the other hand, Add layer fuses four route features to obtain more separable features.
Features Y extracted from a multi-scale residual block can be recorded as

Y = ReLU(Y1 ⊕Y2 ⊕Y3 ⊕Y4) (9)

Y1 = Fβ=(1,7)(Fβ=(1,7)(x)) (10)

Y2 = Fβ=(1,5)(Fβ=(1,5)(x)) (11)

Y3 = Fβ=(1,3)(Fβ=(1,3)(x)) (12)

Y4 = x (13)

where Fβ(x) performs the convolutional block operation, which consists of a convolutional
layer with a 1× β kernel, a batch normalization layer, an ReLU activation layer and a
dropout layer with a discard rate of 0.5. x is the input of the multi-scale residual block. ⊕
represents the add operator. Y1, Y2, Y3 and Y4 represent the first route feature, the second
route feature, the third route feature and the fourth route feature, respectively.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 3. Proposed MSRPLNet. 

 
Figure 4. Structure of multi-scale residual block. 

After passing through several successive multi-scale residual blocks, MSRPLNet can 
extract deep features of signals from different space radiation sources. The number of 
multi-scale residual blocks used depends on the learning ability of MSRPLNet. Finally, 
we use a flatten layer and three fully connected layers with different numbers of neurons 
to integrate the extracted abstract features and obtain the output features. 

4.2.2. Training Method of MSRPLNet 
MSRPLNet has multi-scale residual blocks that can be used to fuse different levels of 

separable features, which improves the inter-class recognition effect. However, when the 
inter-class distance is less than the intra-class distance, the intra-class diversity will reduce 
the recognition effect. As shown in Figure 5, MSRPLNet introduces distance cross-entropy 
loss (DCE Loss) and prototype loss (PL Loss) for model training to further enhance the 
inter-class separation and intra-class compactness of features. MSRPLNet will maintain 
and learn several prototypes for each class. We denote the prototype as ijm  , where 

∈ {1, 2, , }i M   represents the category index, M  is the number of categories, 
= {1, 2, , }j K  represents the index of the prototypes in each class and K  is the number 

of prototypes in each class. Prototypes can be seen as abstract representations of features 
and learned along with features. Joint Loss based on prototype learning is weighted by 
DCE Loss and PL Loss. During the training process of MSRPLNet, the Adam optimizer is 
used to optimize Joint Loss to update network parameters and prototypes. In addition, 
when the current recognition accuracy of the validation set is lower than before, the learn-
ing rate l  is multiplied by a decay factor r . 

Figure 3. Proposed MSRPLNet.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 3. Proposed MSRPLNet. 

 
Figure 4. Structure of multi-scale residual block. 

After passing through several successive multi-scale residual blocks, MSRPLNet can 
extract deep features of signals from different space radiation sources. The number of 
multi-scale residual blocks used depends on the learning ability of MSRPLNet. Finally, 
we use a flatten layer and three fully connected layers with different numbers of neurons 
to integrate the extracted abstract features and obtain the output features. 

4.2.2. Training Method of MSRPLNet 
MSRPLNet has multi-scale residual blocks that can be used to fuse different levels of 

separable features, which improves the inter-class recognition effect. However, when the 
inter-class distance is less than the intra-class distance, the intra-class diversity will reduce 
the recognition effect. As shown in Figure 5, MSRPLNet introduces distance cross-entropy 
loss (DCE Loss) and prototype loss (PL Loss) for model training to further enhance the 
inter-class separation and intra-class compactness of features. MSRPLNet will maintain 
and learn several prototypes for each class. We denote the prototype as ijm  , where 

∈ {1, 2, , }i M   represents the category index, M  is the number of categories, 
= {1, 2, , }j K  represents the index of the prototypes in each class and K  is the number 

of prototypes in each class. Prototypes can be seen as abstract representations of features 
and learned along with features. Joint Loss based on prototype learning is weighted by 
DCE Loss and PL Loss. During the training process of MSRPLNet, the Adam optimizer is 
used to optimize Joint Loss to update network parameters and prototypes. In addition, 
when the current recognition accuracy of the validation set is lower than before, the learn-
ing rate l  is multiplied by a decay factor r . 

Figure 4. Structure of multi-scale residual block.

After passing through several successive multi-scale residual blocks, MSRPLNet can
extract deep features of signals from different space radiation sources. The number of
multi-scale residual blocks used depends on the learning ability of MSRPLNet. Finally, we
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use a flatten layer and three fully connected layers with different numbers of neurons to
integrate the extracted abstract features and obtain the output features.

4.2.2. Training Method of MSRPLNet

MSRPLNet has multi-scale residual blocks that can be used to fuse different levels
of separable features, which improves the inter-class recognition effect. However, when
the inter-class distance is less than the intra-class distance, the intra-class diversity will
reduce the recognition effect. As shown in Figure 5, MSRPLNet introduces distance
cross-entropy loss (DCE Loss) and prototype loss (PL Loss) for model training to further
enhance the inter-class separation and intra-class compactness of features. MSRPLNet
will maintain and learn several prototypes for each class. We denote the prototype as
mij, where i ∈ {1, 2, . . . , M} represents the category index, M is the number of categories,
j = {1, 2, . . . , K} represents the index of the prototypes in each class and K is the number of
prototypes in each class. Prototypes can be seen as abstract representations of features and
learned along with features. Joint Loss based on prototype learning is weighted by DCE
Loss and PL Loss. During the training process of MSRPLNet, the Adam optimizer is used
to optimize Joint Loss to update network parameters and prototypes. In addition, when
the current recognition accuracy of the validation set is lower than before, the learning rate
l is multiplied by a decay factor r.
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The same as Softmax Loss, DCE Loss also uses the Softmax layer to calculate the
probability that the sample x belongs to the prototype mij. From this, we can get

p(x ∈ mij
∣∣x, f ) = Softmax[−d( f (x), mij)/γ] (14)

where d( f (x), mij) =
∥∥ f (x)−mij

∥∥2
2 represents the Euclidean distance between the sample

feature f (x) and the prototype mij. γ is a hyperparameter used to control distance hardness.
Thus, the DCE Loss of sample x belonging to class y can be expressed as

lDCE((x, y); f ; M) = − log[∑K
j=1 p(x ∈ myj

∣∣x, f ) ] (15)

Considering that directly optimizing DCE loss may lead to model overfitting, we
introduce PL loss as a regularization term to improve the generalization ability of the
model. PL Loss is defined as

lPL((x, y); f ; M) =
∥∥ f (x)−myj

∥∥2
2 (16)

where myj represents the nearest prototype of the class y corresponding to f (x).
By weighting DCE Loss and PL Loss, we further obtain Joint Loss:
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lJoint((x, y); f ; m) = lDCE((x, y); f ; m) + λ·lPL((x, y); f ; m) (17)

where λ is a hyperparameter used to balance DCE loss and PL loss.
According to the formulation in [34], Joint Loss is derivable for both prototypes and

network parameters. It means that we can obtain the optimal network parameters and pro-
totypes by optimizing Joint Loss. DCE Loss inherits the advantages of Softmax Loss, which
can be used to learn the inter-class separable features. PL Loss enhances intra-class com-
pactness by penalizing the Euclidean distance between features and their real prototypes.
It plays a decisive role in improving the effectiveness of radiation source recognition.

4.2.3. Decision Method of MSRPLNet

Traditional neural networks directly use the Softmax layer to calculate the classi-
fication probability after extracting features, while prototype learning is different, and
it completely abandons the Softmax layer. Figure 6 shows the process of classifying
samples using the prototype matching method during the recognition stage. When
MSRPLNet training is completed, we first need to calculate the Euclidean distances
D =

{
dij
∣∣i = 1, 2, . . . M; j = 1, 2, . . . K

}
between the features extracted by MSRPLNet to

the testing sample x and each prototype mij. Then find the smallest distance dmin in the D.
The prototype category i corresponding to dmin is the label of the testing sample x. Sup-
pose that f (x; θ) is a well-designed feature extractor and θ represents the learned network
parameter. The prototype matching process can be expressed as follows:

x ∈ class,
M

argmax
i=1

gi(x) (18)

where gi(x) is the discriminative functions of class i, and it represents the similarity between
sample x and class i. gi(x) is denoted as

gi(x) = −
K

min
j=1

∥∥ f (x; θ)−mij
∥∥2

2 (19)
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4.3. Joint Decision Algorithm

In the prototype matching method, when the Euclidean distance between a sample
feature and a type of prototype is the smallest, the class of the prototype is assigned to the
sample. However, prototype matching cannot be used to recognize unknown radiation
sources. It will still recognize the unknown sample as the class corresponding to the most
recent prototype. Therefore, we propose a joint decision algorithm based on prototype
distance and center distance to recognize unknown space radiation sources in Figure 7 and
Algorithm 1.
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Algorithm 1 Open set recognition of MSRPLNet.

Input: Training set xtrain, Validation set xvalid, Testing set xtest, Initialized learning rate l = 0.001.
Initialized prototypes mij, hardness parameter γ, balance parameter λ, network parameter θ,
maximum epochs and the number of “Early Stopping.” Initialized learning rate decay factor r and
the number of iterations t = 0.
Output: The parameter θ, prototypes mij and testing set labels ytest

Stage 1:
While the stopping criterion does not meet, do

t = t + 1
Select a min-batch m sample from xtrain

i and feed it into MSRPLNet
Compute the Joint Loss lJoint = lDCE + λ·lPL
Compute two gradients by error back-propagation and chain rule: ∂lJoint/∂θ and ∂lJoint/∂mij

Update θt+1 by θt+1 = θt − l·(1− rt)·(∂lt
Joint/∂θt)

Update mt+1
ij by mij

t+1 = mt
ij − l·(1− rt)·(∂lt

Joint/∂mt
ij)

End while
Return θ, mij, f (xvalid; θ) and f (xtest; θ)
Stage 2:
For k = 1: number(xvalid

correct)

Compute
∥∥∥ f (xvalid

k ; θ)−mij

∥∥∥2

2

Compute ci =
1
n ∑N

n=1 f (xvalid
correcti

; θ) and
∥∥∥ f (xvalid

k ; θ)− ci

∥∥∥2

2
End
Find prototype distance dmi and center distance dci
Return dmi, ci and dci
Stage 3:
For b = 1: number(xtest)

Compute
∥∥∥ f (xtest

b ; θ)−mij

∥∥∥2

2
and find the minimum prototype distance dmb

Compute
∥∥ f (xtest

b ; θ)− ci
∥∥2

2 and find the minimum center distance dcb
Let δ1 = dmi and δ2 = dci

If dmb ≤ δ1 and dcb ≤ δ2:
xtest

b is the known target sample and ytest
b = i

Else:
xtest

b is the unknown target sample and ytest
b = unknown

End
End
End
Return ytest
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As shown in Figure 7, we assume that each class has only one prototype. Let the
feature of the sample x extracted by MSRPLNet is f (x). The prototype with the smallest
Euclidean distance from f (x) is mi. The center feature of class i corresponding to mi is
ci. ci is given by the average value of the sample features recognized correctly for each
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class in the validation set. Given two thresholds δ1 and δ2, when the following relationship
is satisfied {

‖ f (x)−mi‖2
2 ≤ δ1

‖ f (x)− ci‖2
2 ≤ δ2

(20)

We can think that the sample x belongs to class i. Otherwise, it is from unknown
radiation sources. The most important problem is how to determine δ1 and δ2. We give the
following method to set two thresholds automatically:

(1) When the network verification accuracy reaches the expected level, it means that the
network training is complete. For any sample x that is correctly recognized in the
validation set, its corresponding feature f (x) and the most recent prototype mi are
output and placed in class i;

(2) After the classification is completed, the center feature ci of the class i is calculated;
(3) Find the sample that is furthest from its prototype in each class of correctly recognized

samples and calculate the corresponding prototype distance dmi ;
(4) Find the sample that is furthest from its center in each class of correctly recognized

samples and calculate the corresponding center distance dci ;
(5) Let δ1 = dmi , δ2 = dci . We can automatically get δ1 and δ2 from the data.

In the testing stage, MSRPLNet is first used to extract feature f (z) of the testing sample
z. Then the distance dmb from f (z) to its nearest prototype and the distance dcb from f (z)
to its nearest center are calculated. If {

dmb ≤ δ1
dcb ≤ δ2

(21)

The testing sample z is from known space radiation sources and is classified as class i.
In any other case, it is determined that the testing sample z belongs to unknown classes.

The advantages of the joint decision algorithm of unknown space radiation sources
based on prototype distance and center distance are (1) The algorithm can automatically
set the thresholds. Thresholds are derived directly from data distribution without having
to be set manually. (2) The features of unknown samples are likely to be close to a certain
class of prototype in the feature space. It will cause the inter-class distance to be less than
the intra-class distance and make a wrong decision. The introduction of center distance
makes up for this shortcoming. (3) When the data distribution of the radiation source
signal changes, the thresholds can be adjusted adaptively. It can improve the generalization
ability of Algorithm 1.

5. Experiments and Results

In this section, we test the proposed space radiation source recognition method using
eight Iridium signals acquired in the real environment. The experimental content is divided
into two parts: closed-set recognition and open-set recognition. All experiments are
implemented on a situational awareness workstation with an Intel Xeon W-2133 CPU and
an NVIDIA Quadro P2000 GPU. The construction and testing of MSRPLNet are based on
the Python and TensorFlow deep learning frameworks.

5.1. Data Collection

In order to truly verify the effectiveness and reliability of the proposed method, we
build a set of satellite signal observation and receiving systems in the Xi’an Experimental
Field of the National Time Service Center, Chinese Academy of Sciences. Figure 8 shows
the main equipment used in the system, including a spectrum analyzer, an L-band 13 m
large-aperture antenna, a signal collector system and a signal processing workstation. We
first calculate the tracking time, azimuth and pitch angle of the antenna based on the TLE
data of the Iridium. The above information is then imported into the antenna’s computer so
that the antenna automatically tracks the position of the Iridium and receives the maximum
gain signal. We use the spectrum analyzer to observe and search for Iridium signals in the
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L-band. When the signal frequency range is determined, the signal collector system is used
to acquire the Iridium signal in this frequency range. The subsequent processing of the
Iridium signal is completed on the workstation.
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We collected eight Iridium STL signals for experimental validation. Table 1 gives
some information about Iridium and its STL signal. The signal-to-noise ratio (SNR) range
of the Iridium STL signals is about 10~14 dB by using the M2M4 algorithm. Because
the wide-band signal collector system we use may collect multiple frequency signals, we
perform parametric analysis and spectrum detection of all received Iridium signals before
the experiment and separate the target signals. Figure 9 shows the spectrogram of an
Iridium STL signal after smoothing filtering.

Table 1. Iridium system and Iridium STL signal.

Orbital Altitude 780 km (Low Earth Orbit Satellite)
Signal Type Burst Signal

Carrier Frequency 1626~1626.5 MHz (L band)
Symbol Rate 25 K symbol/s

Modulation Format Tone (No Modulation) + Unique Word(BPSK) + Useful Information(QPSK)
Signal Duration 6.5~20.32 ms
Signal Function Navigation, Positioning and Timing

5.2. Data Set Construction

Ref. [36] and Iridium STL signal preamble verification work tell us that the preamble
part of the signal is sufficient to distinguish different radiation sources and performs well.
This is because the preamble usually contains important information that the receivers can
quickly capture and track satellite signals. Figure 10 shows the time-domain waveform
after demodulation of an Iridium STL signal. We can see that the preamble occupies the
first 2.6 ms of the baseband signal. Therefore, we construct the data set using only the first
2.6 ms tone signal of all Iridium STL signals. The data used in the experiment are all IF I/Q
signals, which are not down-converted and demodulated to baseband signals. It makes



Sensors 2023, 23, 4708 14 of 25

more practical sense. Because for most space radiation source signals, we have almost no
prior knowledge and cannot demodulate them.
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We use the signal collector system to collect 2 s data for each Iridium signal. The
sampling frequency of the signal collector system is 250 MHz, and each Iridium STL signal
contains 500 M sampling points. After data preprocessing, the number of samples of each
Iridium STL signal is 2700, and the sample length is 4000. The total number of samples is
21,600. Each sample is standard normalized before being fed into the neural network. In
all closed-set experiments, the data set is divided into a training set, a validation set and a
testing set. Their split ratio is 0.64:0.16:0.2.

5.3. Closed Set Recognition

In this section, the proposed method is verified based on the data set constructed by
eight Iridium STL signals. MSRPLNet has an initial learning rate of 0.001, a maximum
epoch of 50 and a batch size of 64. If the current recognition accuracy of the validation set is
lower than before, the learning rate is multiplied by a decay factor. In addition, the “Early
Stopping” strategy is used in the network training process to prevent model overfitting.
We first discuss the hyperparameters that affect MSRPLNet recognition performance and
compare MSRPLNet with common models of different network structures and loss func-
tions. We also analyze the degree of confusion in the recognition of eight Iridium targets.
In the following experiments, each set of data in the boxplot and histogram is the result of
multiple experiments.

In order to explore the influence of network structure hyperparameters on MSRPLNet
recognition performance, Figure 11a,b show the recognition results of the number of
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convolution kernels and multi-scale residual blocks on the above eight Iridium targets,
respectively. In Figure 11a, according to the average recognition accuracy in the boxplot,
it can be seen that when N > 12, the improvement in average recognition accuracy of
eight Iridium targets is no longer significant. In Figure 11b, we can see that the number
of the multi-scale residual block M has a significant effect on the recognition accuracy of
eight Iridium targets. When M = 1, MSRPLNet performs best and achieves an average
recognition accuracy of 98.24%, which is 1.09% higher than when M = 0. Therefore,
multi-scale residual blocks can further extract separable features. When M > 1, the model
overfitting caused by network deepening reduces the recognition accuracy of MSRPLNet.
Because MSRPLNet adopts a residual network structure, the downward trend is relatively
slow and alleviates the overfitting problem to some extent. Due to the high SNR of
the Iridium STL signals received by the high-gain antenna, we can also obtain a good
recognition effect when using a small number of convolution kernels and multi-scale
residual blocks.
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In order to explore the influence of network training hyperparameters on MSRPLNet
recognition performance, Figure 12a,b show the recognition results of the learning rate
decay factor r and the hardness parameter γ and balance parameter λ of Joint Loss on
the above eight Iridium targets, respectively. In Figure 12a, MSRPLNet is difficult to
converge quickly when r = 0 because the learning rate is too high. The average recognition
accuracy of MSRPLNet only reaches 97.16%. When r = 0.8, the recognition performance of
MSRPLNet decreases because of the fast decay of the learning rate and the slower learning
speed of the model. When r = 0.4, MSRPLNet achieves the best recognition effect. In
Figure 12b, we label the hardness parameter γ and the balance parameter λ as data pair
(γ, λ). (γ, λ) can be used to control the distance between features and prototypes, and
it determines the inter-class separation and intra-class compactness of features. When
γ = 0.5, λ 6= 0, the recognition accuracy of MSRPLNet decreases with the increase of λ.
This is because the feature space is too compact, and the overfitting problem is due to the
increase in the proportion of DL Loss. When γ < 5, λ = 0, the overall performance of
MSRPLNet is significantly reduced. MSRPLNet achieves the best recognition accuracy
of 98.34% when (γ, λ) = (5, 0). Therefore, the selection of (γ, λ) largely determines the
closed-set recognition performance of MSRPLNet.
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In order to verify the influence of different models on the recognition performance of
eight Iridium targets, Figure 13 compares the recognition performance of MSRPLNet with
several representative models, including DNN, 2DCNN, RNN-LSTM, ResNet, CNN/VGG
and CLDNN. Except for the different network structures, all models use the Joint Loss
and prototype matching methods. In addition, the back end of all models employs three
fully connected layers with 128, 16 and eight neurons, respectively, to extract output
features. Table 2 shows the training parameters of MSRPLNet. In Figure 13, MSRPLNet
undoubtedly achieves the best result. ResNet alleviates the model-overfitting problem
due to its “shortcut connection” structure, which makes its average recognition probability
reach 98.13%. Comparing MSRPLNet and ResNet, we can still see that multi-scale residual
blocks can extract more separable features. Compared with DNN, 2DCNN, CLDNN,
CNN/VGG and RNN-LSTM, the recognition accuracy of MSRPLNet is increased by 1.06%,
0.48%, 1.66%, 1.36% and 1.98%, respectively. It further demonstrates the superiority of the
MSRPLNet. Table 3 compares the time consumption when different models are trained
once. Due to the use of multi-scale residual blocks, MSRPLNet training takes a long time.
CLDNN consists of multiple CNNs and LSTMs. Increased network depth means that
training is more time-consuming. In contrast, DNN takes the least time because it only
contains three fully connected layers.
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Table 2. Training parameters of MSRPLNet.

Loss Function Joint Loss
Convolutional Kernels N 12

Multi-Scale Residual Blocks M 1
Leaning Rate Decay Factor r 0.2

Hardness Parameter γ 5
Balance Parameter λ 0

Prototypes 1
“Early Stopping” 10

Table 3. Time consumption of different models.

Model Time(s)

DNN [28] 5.06
2DCNN [14] 12.54

RNN-LSTM [22] 8.71
ResNet [37] 17.38

CNN/VGG [38] 18.23
CLDNN [18] 24.87

MSRPLNet[Ours] 24.74

In order to verify the influence of different losses on the recognition performance of
eight Iridium targets, Figure 14 compares the recognition results using Softmax Loss and
Joint Loss during training. Here we use three models: CLDNN, 2DCNN and MSRPLNet.
When MSRPLNet is trained with Softmax Loss, we define the network name as MSRNet. It
is clear that the three models achieve the best recognition results when using Joint Loss.
For CLDNN, 2DCNN and MSRNet, the recognition accuracy of Joint Loss is 0.42%, 0.39%
and 0.71% higher than Softmax Loss, respectively. It shows that Joint Loss can optimize
and improve the performance of the model. In Figure 15, we use the PCA method to
visualize the output features of the last fully connected layer and prototypes of the three
models and convert them into a two-dimensional scatter map. As shown in the first row,
all three models can learn inter-class separable features when Softmax Loss is used in the
training process. However, although the inter-class separation is obvious, there still exists
an overlap between different target features. When Joint Loss is used, the distance between
the prototypes will gradually increase with the training process because the prototypes
and the network parameters are jointly learned. It makes the inter-class separation more
obvious and also means more compact within the class. For example, the features of target
5, target 6, and target 7 become more compact when 2DCNN is combined with Joint Loss.
It is quite evident that MSRPLNet with Joint Loss works best. In addition, for different
models and loss functions, some features overlap between target 4 and target 5, between
target 6 and target 8 and between target 2 and target 7, which means that the above three
sets of Iridium targets may be difficult to classify.

In order to further understand the difficulty of closed set recognition of eight Iridium
targets, Figure 16a,b show the confusion matrix of MSRNet + Softmax Loss and MSRPLNet,
respectively. When MSRNet and Softmax Loss are trained together, the recognition accuracy
of all Iridium targets except target 4 reaches more than 97%. When MSRPLNet is used
for training, the recognition accuracy of all Iridium targets except target 4 reaches more
than 98%. The result of the confusion matrix shows that MSRPLNet has better recognition
performance on eight Iridium targets. In addition, we can see that target 1 and target 3
have the best recognition effect, and their recognition accuracy can reach 100%. Target 4 has
the worst recognition accuracy at only 95%. As shown in Figure 16a, target 5 is most likely
to be confused with target 4, target 8 is most likely to be confused with target 6, and target
7 is most likely to be confused with target 2. This is consistent with our analysis above.
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5.4. Open Set Recognition

In this section, open-set recognition experiments of eight Iridium targets are carried
out based on the proposed joint decision algorithm of unknown space radiation sources
and MSRPLNet. We take 20% of the samples of each known target and all samples of the
unknown targets as the testing set. The remaining 80% of the samples of each known target
are used as the training set and validation set with a ratio of 0.64:0.36. All unknown targets
are added sequentially according to signal acquisition time. We first discuss the influence
of (γ, λ) on the open set recognition performance. To further illustrate the superiority of
the proposed method, we compare it with other open-set recognition works by ablation
experiments. In addition, we also verify the ability of the proposed method through two
individual evaluation experiments. As with most open-set recognition works, we introduce
the concept of openness [23] to define open space

openness = 1−

√
2× Ntrain

Ntrain + Ntest
(22)

where Ntrain is the number of known targets in the training set. Ntest is the number of
targets to be recognized in the testing set. The larger Ntrain, the smaller openness.

In order to explore the influence of the hardness parameter γ and balance parameter
λ on the open set recognition performance of the proposed method, Table 4 shows
the average recognition accuracy of the testing set under different openness and (γ, λ).
openness = 52.86% means that there are only samples of a known target in the training
set, and there are samples of this known target and seven other unknown targets in the
testing set. The interpretation of the remaining openness can be based on this analogy. In
Table 4, the proposed method works best for the open set recognition of eight Iridium
targets when (γ, λ) = (5, 0.001) or (γ, λ) = (5, 0.01). When λ > 0, because DL Loss
forces the model to learn more discriminative features, the open set recognition effect
is greatly improved compared with λ = 0. When γ = 0.5 and γ = 5, we can see that
the increase in γ also improves the open set recognition effect under different openness.
Therefore, the selection of (γ, λ) also determines the open set recognition performance
of MSRPLNet and the joint decision algorithm. Additionally, our proposed MSRPLNet
and joint decision algorithm can achieve the recognition accuracy of 91.04% for open set
recognition of eight Iridium targets.
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Table 4. Recognition accuracy of different (γ, λ) and openness.

openness (0.5,0) (0.5,0.001) (0.5,0.01) (5,0) (5,0.001) (5,0.01)

3.39% 55.14% 68.20% 53.53% 56.26% 76.06% 72.75%
7.42% 60.73% 68.71% 76.24% 60.75% 78.12% 79.95%
12.29% 65.21% 82.08% 83.04% 66.34% 86.81% 87.26%
18.35% 57.92% 84.65% 85.48% 60.37% 87.29% 88.20%
26.15% 56.46% 80.54% 70.49% 56.63% 90.77% 89.33%
36.75% 62.31% 85.84% 61.33% 62.37% 91.04% 86.26%
52.86% 50.17% 55.01% 54.65% 50.20% 55.52% 56.17%

In order to further understand the influence of (γ, λ) on the recognition performance
of the joint decision algorithm, Figure 17a–c give the recognition accuracy of known Iridium
target samples and unknown Iridium target samples in the testing set respectively when
(γ, λ) = (0.5, 0), (γ, λ) = (0.5, 0.01) and (γ, λ) = (5, 0.01). We can find that when λ = 0,
the proposed joint decision algorithm has a better recognition effect on known Iridium
targets than on unknown Iridium targets. It shows that MSRPLNet only pays attention
to the inter-class separation of known targets and ignores the intra-class compactness.
Therefore, the joint decision algorithm makes the wrong decisions on many unknown
Iridium target samples. When γ increases from 0.5 to 5 and λ increases from 0 to 0.01, the
recognition accuracy of the proposed joint decision algorithm for unknown Iridium targets
gradually increases. It shows that enhancing the inter-class separation and intra-class
compactness of features can significantly improve the open set recognition performance
of the joint decision algorithm. In addition, when openness = 52.86%, the recognition
accuracy of unknown Iridium targets is low. It reflects that too large openness will make
the open set recognition more difficult.
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Next, we compare the proposed method with some current open-set recognition works.
It is worth noting that we do not contrast it with GAN because we hope that the model has
a simple training process in practical application. The Softmax threshold [12] is the simplest
baseline method. OpenMax [13] is the first formally proposed method to solve the problem
of open set recognition. The closest to our work are the PL, GCPL and SPL proposed
in [15]. The three methods are all based on prototype learning, and the difference is that
the model adopts different losses. PL only uses DCE Loss, GCPL uses Joint Loss, and SPL
adds a surrounding constraint term to Joint Loss. Above all, the five open-set recognition
methods used for comparison are all based on Softmax probability. Therefore, an additional
judgment threshold is required. Unfortunately, these five works give empirical thresholds
appropriate to the data they process. It does not guarantee that these thresholds will still
be available when applied to other data. Our approach abandons the Softmax layer and
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makes decisions based on distance. In addition, the distance thresholds in the proposed
method are only related to the feature distribution of the signals. This allows them to be set
automatically and adaptively.

Figure 18a,b compare the recognition performance of the above open-set recognition
works on known Iridium target samples and unknown Iridium target samples in the testing
set, respectively. The open-set recognition methods based on Softmax probability all use
the threshold τ = 0.98 recommended in [24]. It is clear that τ = 0.98 is not suitable for our
data in some openness. Softmax, OpenMax and PL work well for known Iridium target
recognition, but it is not satisfactory for unknown Iridium target recognition. GCPL and
SPL may fail when recognizing known Iridium targets. We attempt to determine a good
threshold, but the output of the Softmax layer is too confident. In addition, we find that
different network initialization parameters also affect the output probability of the Softmax
layer. This adds difficulty to the selection of threshold τ. When openness < 52.86%, our
proposed joint decision algorithm is more efficient. When openness = 52.86%, all methods
fail to recognize unknown Iridium targets because of the maximum openness. Even so, our
method still has better generalization ability than other methods.
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In order to further illustrate the effectiveness of the proposed method for the open-set
recognition of eight Iridium targets, we perform two individual evaluation experiments.
The first experiment shows that MSRPLNet can obviously improve the open set recogni-
tion accuracy. The testing set contains the samples of four known Iridium targets (A~D
corresponds to target 1~4) and four unknown Iridium targets (unknown targets correspond
to 5~8) when openness = 18.35%. The number of feature points for each known Iridium
target is 540, and the number of feature points for each unknown Iridium target is 2700.
As shown in Figure 19a,b, we used the PCA method to convert features and prototypes
into a two-dimensional scatter map. In Figure 19a, it is clear that the four known Iridium
target features are highly separated, while the unknown Iridium target features are almost
overlapped with all known Iridium target features. MSRNet + Softmax Loss can only learn
the inter-class separable features, which makes it more difficult to solve the problem of
open set recognition in real scenarios. In Figure 19b, it is clear that MSRPLNet can learn the
inter-class separable features and intra-class discriminative features at the same time. It
benefits from the use of multiscale residual blocks and Joint Loss. In addition, we can also
see the fact that MSRPLNet does not divide the entire feature space like MSRNet + Softmax
Loss but instead projects features near prototypes. It provides a good idea to detect and
reject unknown targets. However, because the signals used in the experiments are from
multiple Iridium targets with high similarity, some unknown Iridium target features still
overlap with the features of known Iridium targets 2 and 4.
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The second experiment proves that the joint decision algorithm is superior to the single
decision algorithm. We still consider the situation when openness = 18.35%. Figure 20a,b
show the confusion matrix when using the single decision algorithm and the joint decision
algorithm, respectively. The difference between the two algorithms is that different distance
rules are used. Figure 20a only considers the prototype distance, while Figure 20b uses
the prototype distance and the center distance. We can find that no matter which distance
rule is used, there is no confusion between the known Iridium target features. Because
the unknown Iridium target features are likely to be close to a certain type of prototype,
some unknown Iridium target samples may be misidentified as known Iridium targets.
In addition, the use of distance rules can also cause the known Iridium target samples to
be misidentified as unknown Iridium targets. When the prototype distance and center
distance are jointly used, we can see that the recognition accuracy of both known and
unknown Iridium targets will be improved. It reflects the effectiveness and reliability of
the proposed joint decision algorithm in open set recognition of eight Iridium targets.
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6. Conclusions

In this work, we propose a new prototype learning method for the closed-set recog-
nition and open-set recognition of space radiation sources. The idea is to improve the
recognition accuracy of radiation sources by enhancing the intra-class compactness and
inter-class separability of the learning features. To this end, we designed a multi-scale
residual prototype learning network, MSRPLNet. Aiming at the recognition problem of
unknown radiation sources, we propose a joint decision algorithm based on prototype dis-
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tance and center distance. The algorithm relies only on the feature distribution of the data
without setting empirical thresholds. It can also improve the generalization ability of open
set recognition. Based on multiple experimental results on eight Iridium STL signals, we
confirm that the proposed method has obvious advantages for both closed-set recognition
and open-set recognition. Under the condition of closed set recognition, MSRPLNet and
prototype matching can achieve an accuracy of 98.34% for eight Iridium targets. Under the
condition of open set recognition, MSRPLNet and the joint decision algorithm can achieve
the highest unknown target recognition accuracy of 91.04%. However, there are still some
potential deviations or limitations that may affect the effectiveness of this study. We list
them as follows:

(1) The extremely complex dynamic space environment seriously affects the quality of
received signals. We need to improve the robustness of the proposed method to
complex space environments;

(2) The short duration of low earth orbit satellite signals results in a smaller number of
samples. We need to develop new methods for recognizing space radiation sources
under small sample signal conditions;

(3) The difference in data distribution of the same target signal at different time periods
may lead to model failure. We need to study signal fingerprint features that are
relatively insensitive to time changes;

(4) The use of different hardware devices (such as an antenna and signal collector, etc.)
may affect the recognition performance of the model. We need to eliminate the impact
of receiving devices on signal fingerprint features;

(5) We need to consider how to update the model with new target data without retraining
the model.

The above issues require us to think about and solve them in our future research work.
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Abbreviations

MSRPLNet Multi-Scale Residual Prototype Learning Network
SSA Space Situational Awareness
STR Space Target Recognition
GAN Generative Adversarial Network
STL Satellite Time and Location
CNN Convolutional Neural Network
RFAL Radio Frequency Adversarial Learning
CPL Convolutional Prototype Learning
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SPL Surrounding Prototype Learning
HRRP High-Resolution Range Profile
IF Intermediate Frequency
LC Last Fully Connected Layer
DCE Distance Cross Entropy
PL Prototype Loss
SNR Signal-to-Noise Ratio
M2M4 An SNR Estimation Algorithm
BPSK Binary Phase Shift Keying
QPSK Quadrature Phase Shift Keying
DNN Deep Neural Network
2DCNN 2D Convolutional Neural Network
RNN-LSTM Recurrent Neural Network-Long Short-Term Memory
ResNet Residual Network
CNN/VGG Convolutional Neural Network/Visual Geometry Group
CLDNN CNN+LSTM+DNN
PCA Principal Component Analysis
GCPL Generalized Convolutional Prototype Learning
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