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Abstract: Ellipticity performance of space telescopes is important for exploration of dark matter.
However, traditional on-orbit active optical alignment of space telescopes often takes “minimum
wavefront error across the field of view” as the correction goal, and the ellipticity performance after
correcting the wave aberration is not optimal. This paper proposes an active optical alignment strategy
to achieve optimal ellipticity performance. Based on the framework of nodal aberration theory
(NAT), the aberration field distribution corresponding to the optimal full field-of-view ellipticity
is determined using global optimization. The degrees of freedom (DOFs) of the secondary mirror
and the folded flat mirror are taken as the compensation DOFs to achieve the optimal ellipticity
performance. Some valuable insights into aberration field characteristics corresponding to optimal
ellipticity performance are presented. This work lays a basis for the correction of ellipticity for
complicated optical systems.
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1. Introduction

Point-spread function (PSF) ellipticity of space telescopes is of great significance for
the exploration of dark matter and dark energy. Dark matter and dark energy do not
absorb, emit or radiate light, so they cannot be observed directly, and can only be observed
indirectly by using the weak gravitational lensing effect. At present, the strength of the
weak gravitational lensing effect is mainly measured by the change in the ellipticity of
stars or galaxies. Therefore, accurate measurement of the ellipticity of stars or galaxies in
the universe is of great significance for the observation and research of dark matter and
dark energy.

Influence of weak gravitational lens effect on the ellipticity of celestial bodies or
galaxies is very weak [1–3]. In order to accurately measure it, the change in ellipticity
caused by the optical system itself should be limited to a very small range so as to minimize
the influence of the ellipticity of the optical system on the observation of dark matter and
dark energy. The ellipticity of the optical system itself is mainly caused by the asymmetrical
pupil shape and wave aberration of the optical system itself [4]. Generally speaking, the
smaller the wave aberration is, the smaller the ellipticity of the point-spread function is.
However, the “full field wave aberration optimization” and “full field point-spread function
ellipticity optimization” of optical system essentially correspond to two different system
states and cannot be confused.

It is critical to align large aperture space telescope on orbit [5,6]. At present, active
alignment methods are mainly divided into two classes: numerical method and analytic
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method. On the numerical computing side, sensitive table method (STM) [7], artificial neu-
ral networks method (ANN) [8], merit function (MF) regression method [9–11], differential
wavefront sampling (DWS) [12–14] and image features [15–17] are widely used in ground
alignment. The analytical method is mainly nodal aberration theory (NAT) [18–23]. Impor-
tantly, NAT provides an aberration model that yields to obtain insight into the aberration
response to misalignments [24–27] and guide optical alignment [28–37].

However, traditional on-orbit active optical alignment of space telescopes often takes
“optimal wavefront aberration in the full field of view” as the correction goal, and the
ellipticity performance after correcting the wave aberration is not optimal. It is necessary
to formulate different correction targets for different astronomical observation needs of
space telescopes. Specifically, when observing dark matter and dark energy, the mode of
“optimal ellipticity performance in the full field of view” is adopted to make the point-
spread function ellipticity caused by the optical system itself as small as possible so as
to better identify and judge the weak gravitational lens effect caused by dark matter and
dark energy.

In this paper, an active alignment strategy to achieve optimal ellipticity performance is
proposed. Chinese Space Station Telescope (CSST) is taken as an example to demonstrate its
performance. (At the beginning of CSST design, the distribution of ellipticity and wavefront
aberration was balanced. Correcting ellipticity is one of the requirements for CSST in orbit.
The results of integrated simulation analysis (for CSST) are used for simulation analysis in
this paper.). Based on the framework of nodal aberration theory (NAT), the aberration field
distribution corresponding to the optimal full field-of-view ellipticity is determined using
global optimization. In this process, the objective function is the mean ellipticity value of
41*41 field points and all misalignments of mirrors are taken as the variable. Then, the
degrees of freedom (DOFs) of the secondary mirror and the folded flat mirror are taken
as the compensation DOFs to achieve the optimal ellipticity performance on orbit. Some
valuable insights into aberration field characteristics corresponding to the optimal ellipticity
performance are also presented concerning the proportion of different aberration types.

2. Ellipticity

The ellipticity of PSF under certain perturbations is defined as follows [38–43]:
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where QXX, QYY and QXY are the second-order moments of the PSF,
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where I represents the two-dimensional intensity distribution of the PSF at certain field
position with certain misalignment parameters, x and y are coordinates in the PSF image,
x and y represent the centroid position of the PSF image, and w is a matrix representing
Gaussian weighting coefficient.

The intensity distribution of a PSF at certain field position with certain misalignment
parameters can be expressed according to Fourier optics and nodal aberration theory, which
can be expressed as [15]
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where i is an imaginary unit, FT−1 is the inverse Fourier transform, and P is a two-
dimensional matrix representing the intensity distribution of the exit pupil surface (the

element value of the matrix is 1 in the normalized aperture, and the rest are 0). W
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)

represents the wavefront phase at field
→
H with system misalignment parameters v. Impor-

tantly, based on the framework of nodal aberration theory, W
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represents the aberration field in the original state which is determined

by the optical design and mirror figures (unaffected by misalignments), and WM
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represents the net aberration field induced by misalignments, which can be expressed as a

linear function of v and
→
H. The specific expression of WM
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can be referred to [15].

3. Active Alignment for Optimal Ellipticity Performance

Using Equations (1)–(5), the relationships between the PSF ellipticity at arbitrary field
position and the misalignment parameters are established. On this basis, we can set average
ellipticity across the field of view as objection function

E(v) =

K
∑

k=1

√[
e1
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)]2
+

[
e2
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Hk, v

)]2

K
, (6)

where K represents the number of sampling points in the field of view, and the specific
value of it depends on the computing power and the calculation accuracy of the average
ellipticity (for example, K is 11*11 in this paper, etc.). Particle swarm optimization algorithm
is used in this paper. Gradient-based optimization algorithms can easily be trapped in



Sensors 2023, 23, 4705 4 of 15

a local minimum, for the searching direction of them mainly depends on the derivative
information of the error metric. At the same time, the objective function in this paper
does not have an advantage in taking derivatives. From this perspective, PSO algorithms
are better, for they rely directly upon objective function values rather than derivative
information [44]. We set the learning factors c1 = 1.6, c2 = 2.65. The value of w is constant,
w = 0.5, T = 0.001. The population size is 40 and the maximum number of iterations
is 800. Using the numerical optimization tool, the set of misalignment parameter (v0)
corresponding to the minimum average ellipticity can be obtained:

E(v0) = min{E(v)}. (7)

We can then obtain the aberration field corresponding to optimal ellipticity performance.
Note that in the process presented above, all the misalignment parameters are consid-

ered. However, when correcting aberration on orbit, only part of the parameters can be
selected as compensating DOFs due to constraints in space. For large-aperture off-axis TMA
telescopes with freeform surface, secondary mirror (SM) and fine steering mirror (FSM) can
be selected as the compensating DOFs based on aberration compensation characteristics.
Then, the aberration field corresponding to the optimal ellipticity performance is taken as
the correction goal; the DOFs of the SM and FSM are utilized to achieve this goal.

The diagram of the proposed approach is illustrated in Figure 1. This approach can be
divided into the following two parts:

(1) In the first part, we obtain the aberration field corresponding to the optimal ellipticity
performance through optimization. The mean ellipticity value of 11*11 field points is
taken as the objective function and the misalignments of each mirror are taken as the
variable. Meanwhile, the relationships between the PSF ellipticity at arbitrary field
position and the misalignment parameters are established based on Fourier optics
and nodal aberration theory.

(2) In the second part, SM and the FSM are selected as the adjustable degrees of freedom
for the optimal correction of ellipticity, and the adjustment amount of SM and FSM is
calculated (multi-field wavefront aberrations are needed in advance).
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In Figure 1, W
(→

H, v0

)
represents the aberration fields corresponding to the optimal

ellipticity performance obtained in the first step using global optimization, W
(→

H, v′1

)
represents the aberration fields after adjusting SM and FSM on orbit to achieve the optimal
ellipticity performance.

4. Simulations
4.1. Optical System Used for Demonstrating the Proposed Active Alignment Strategy

In this paper, the optical system of the Chinese Space Station Telescope (CSST) is used
to demonstrate the effectiveness of the proposed approach, which is a 2 m F/14 COOK-type
unobscured off-axis three-mirror anastigmatic (TMA) telescope with 1.1◦ × 1◦ field of
view (FOV). The optical layout of the CSST is shown in Figure 2, including primary mirror
(PM), SM, tertiary mirror™, which is a freeform surface, a folding mirror (FM), which is
used to correct image plane tilt and switch back-end astronomical measuring instruments,
and an image plane (IMG) [45,46]. The materials used to manufacture mirrors of CSST
are SiC [47–50].
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Figure 2. Optical layout of the CSST.

To maintain the exceptional image quality of the CSST, wavefront sensing and control
(WFS and C) is vital to ensure the optical alignment of the telescope throughout the mission.
For CSST, the five degrees of freedom (DOFs) of SM (XDESM, YDESM, ADESM, BDESM
and ZDESM) and three DOFs of the FM (ADEFM, BDEFM and ZDEFM) are selected as the
adjustable DOFs to align and compensate for the effects of misalignments on wavefront
aberrations (XDE and YDE are the mirror vertex decenters in the x-z and y-z plane, respec-
tively, BDE and ADE are the mirror tip-tilts in the x-z and y-z plane, respectively, and ZDE
represents the errors in spacing between mirrors). Specifically, SM is used to compensate
for the non-rotationally symmetric aberrations of the PM and TM. FM is used to correct
defocused aberration and inclination of the image plane.

To evaluate the ellipticity performance of the CSST, 41 × 41 PSFs are generated by the
CODE V corresponding to 41 × 41 field points uniformly distributed in the FOV. The PSF is
sampled on a 512 × 512 grid with an image sampling step of 0.4 micron [4] in this section.
In addition, the root mean square wavefront errors (RMS WFE) of these 41 × 41 field points
are used to evaluate the wavefront aberration of the CSST. The full-field distribution of
ellipticity and RMS WFE distribution in nominal state are shown in Figures 3a and 3b,
respectively. The maximum and mean values are 0.0843 and 0.0234, as shown in Figure 3a.
The maximum and mean values are 0.0523λ and 0.0256λ, as shown in Figure 3b.
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However, the mirror has certain surface deformations due to manufacturing error,
gravity loading and other reasons. The existence of these deformations reduces the imaging
quality of the system, which can also lead to changes in the ellipticity distribution of the
system. According to the characteristics of the support structure of the CSST, the simulation
group provides the surface deformation caused by changes in external environmental
factors such as gravity unloading and temperature variations. These surface deformations
can be loaded into the optical model through the CODE V software. The figures of each
mirror (including surface deformation) considered in this paper are shown in Figure 4.
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Figure 4. The figure of each mirror (including surface deformation) considered in this paper for CSST:
(a) figure of PM, (b) figure of SM, (c) figure of TM, (d) figure of FM.

The full-field distribution of ellipticity and the full-field distribution of RMS WFE
distribution in the presence of surface deformation are shown in Figures 5a and 5b, respec-
tively. The maximum and mean values are 0.1152 and 0.0351, as shown in Figure 5a. The
maximum and mean values are 0.0778λ and 0.0472λ, as shown in Figure 5b. Comparing
Figures 3 and 5, we can see that after introducing the set of surface deformations, both
full-field distribution of ellipticity and RMS WFE deviate from the nominal state.
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4.2. Comparison of Ellipticity Distribution between the State of “Optimal Wavefront Aberration”
and “Optimal Ellipticity Performance” in the Presence of Surface Deformation

The wavefront aberrations induced by surface deformations can be compensated
by wavefront aberrations induced by misalignments to some extent (only the low-order
wavefront aberrations induced by surface deformation can be compensated). In this section,
full-field distribution of ellipticity and RMS WFE under different correction targets are
compared in the presence of surface deformation.

On the one hand, “optimal wavefront aberration in the full FOV” is taken as the
correction goal of on-orbit active optical alignment. Referring to JWST [5], the Sensitivity
Table Method (STM) is selected to calculate the alignments of SM and FM for compensating
wavefront aberrations. For the given set of surface deformations, the amount of adjustable
DOFs required to correct the wavefront are XDESM = −0.0367 mm, YDESM = 0.0061 mm,
ZDESM = −0.0078 mm, ADESM = 0.0006◦, BDESM = 0.0007◦, ZDEFM = 0.1178 mm,
ADEFM = 0.0019◦ and BDEFM = −0.0001◦. The full-field distribution of ellipticity and
RMS WFE after correction are shown in Figures 6a and 6b, respectively. The maximum
and mean values are 0.0857 and 0.0369 in Figure 6a. The maximum and mean values are
0.0647λ and 0.0426λ in Figure 6b.
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On the other hand, “optimal ellipticity performance in the full FOV” described
in Section 3 is taken as the correction goal of on-orbit active optical alignment. The
amount of adjustable DOFs required to correct the ellipticity are XDESM = −0.0662 mm,
YDESM = −0.0346 mm, ZDESM = 0.0068 mm, ADESM = −0.0013◦, BDESM = 0.0019◦,
ZDEFM = −0.0040 mm, ADEFM = 0.0003◦ and BDEFM = −0.0029◦. The full-field distri-
bution of ellipticity and RMS WFE after correction are shown in Figure 7a,b. The maximum
and mean values are 0.0670 and 0.0228, as shown in Figure 7a. The maximum and mean
values of RMS WFE are 0.0825λ and 0.0492λ, as shown in Figure 7b.
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performance”.

Comparing Figures 6 and 7, we can recognize that a different correction goal will lead
to a different ellipticity and RMS WFE performance, as shown in Table 1. Importantly, the
mean value of ellipticity in the full FOV for the state of “optimal wavefront aberration”
and the state of “optimal ellipticity performance” are 0.0369 and 0.0228, respectively. This
fact demonstrates that the method proposed in this paper can effectively improve the
ellipticity performance. Meanwhile, the mean value of RMS WFE in the full FOV for the
state of “optimal wavefront aberration” and the state of “optimal ellipticity performance”
are 0.0426 and 0.0492, respectively. The mean value of RMS WFE in the full FOV for
the state of “optimal ellipticity performance” is also acceptable (which is still within the
diffraction limit).

Table 1. The typical values of ellipticity and RMS WFE in the different state.

Different State Ellipticity RMS WFE
Maximum Values Mean Values Maximum Values Mean Values

Nominal state 0.0843 0.0234 0.0523λ 0.0256λ
In the presence of surface deformations 0.1152 0.0351 0.0778λ 0.0472λ

“Optimal wavefront aberration” 0.0857 0.0369 0.0647λ 0.0426λ
“Optimal ellipticity performance” 0.0670 0.0228 0.0825λ 0.0492λ

4.3. Comparison of Ellipticity Distribution between the State of “Optimal Wavefront Aberration”
and “Optimal Ellipticity Performance” in the Presence of Surface Deformation and Mirror
Misalignments

This subsection continues to discuss that the full-field distribution of ellipticity and
RMS WFE under a different active alignment goal in the presence of both surface deforma-
tion and mirror misalignments (including lateral and axial misalignments [25–27]).

A set of random mirror misalignment is generated within the predicted misalign-
ment ranges, which are presented below: XDEPM = −0.0032 mm, YDEPM = 0.0020 mm,
ZDEPM = 0.0036 mm, ADEPM = 0.0002◦, BDEPM = 0.0009◦, XDESM = 0.0033 mm,
YDESM = −0.0001 mm, ZDESM = −0.0042 mm, ADESM = 0.0004◦, BDESM = 0.0009◦,
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XDETM = 0.0031 mm, YDETM = −0.0041 mm, ZDETM = 0.0033 mm, ADETM = 0.0009◦,
BDETM = −0.0003◦, XDEFM = −0.0007 mm, YDEFM = −0.0042 mm, ZDEFM = −0.9935 mm,
ADEFM = 0.0008◦ and BDEFM = 0.0001◦. The full-field distribution of ellipticity and RMS
WFE in the presence of both surface deformation and mirror misalignments are shown in
Figures 8a and 8b, respectively. The maximum and mean values are 0.1641 and 0.0854, as
shown in Figure 8a. The maximum and mean values are 0.6881λ and 0.6448λ, as shown
in Figure 8b.
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tion and mirror misalignments.

Comparing Figures 5 and 8, it can be seen that the influence of mirror misalignments
on the full-field distribution of ellipticity and RMS WFE is more obvious than the influence
of surface deformation. Therefore, it is of great significance to verify the correction effect of
a different correction goal on the full-field distribution of ellipticity and RMS WFE in the
presence of both surface deformation and mirror misalignments.

On the one hand, “optimal wavefront aberration in the full FOV” is taken as the
correction goal of on-orbit active optical alignment. For the given set of and surface
deformation and mirror misalignments, the amounts of adjustable DOFs required to cor-
rect the wavefront are XDESM = 0.0497 mm, YDESM = 0.0069 mm, ZDESM = 0.0065 mm,
ADESM = 0.0006◦, BDESM = 0.0003◦, ZDEFM = 1.0107 mm, ADEFM = −0.0011◦ and
BDEFM = 0.0028◦. The full-field distribution of ellipticity and RMS WFE after correction are
shown in Figures 9a and 9b, respectively. The maximum and mean values are 0.0810 and
0.0374, as shown in Figure 9a. The maximum and mean values are 0.0633λ and 0.0430λ, as
shown in Figure 9b.

On the other hand, “optimal ellipticity performance in the full FOV” described in
Section 3 is taken as the correction goal of on-orbit alignment. For the given set of surface
deformation and mirror misalignments, the amounts of adjustable DOFs required to correct
the ellipticity are XDESM = 0.0202 mm, YDESM = −0.0339 mm, ZDESM = 0.0213 mm,
ADESM = −0.0013◦, BDESM = 0.0015◦, ZDEFM = 0.8872 mm, ADEFM = −0.0028◦ and
BDEFM = 0.0000◦. The full-field distribution of ellipticity and RMS WFE after correction are
shown in Figures 10a and 10b, respectively. The maximum and mean values are 0.0664 and
0.0233, as shown in Figure 10a. The maximum and mean values are 0.0807λ and 0.0486λ, as
shown in Figure 10b.
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Figure 10. Full-field distribution of ellipticity and RMS WFE after optimizing by optimal ellipticity
performance: (a) ellipticity distribution and (b) RMS WFE distribution.

Comparing Figures 9 and 10, we can further conclude that a different correction
goal leads to a different ellipticity performance and RMS WFE performance, as shown in
Table 2. From Figures 7 and 10, it can be clearly seen that the method proposed by this
paper has a certain correction effect on the ellipticity performance with the mean value of
the RMS WFE under 1/14λ. On-orbit active alignment method with the goal of optimal
ellipticity performance can effectively optimize the full-field ellipticity performance. While
the RMS WFE in this state is not optimal, it is still comparable to the state of “optimal RMS
WFE”. Therefore, the proposed method is specifically suitable for the case where high
ellipticity performance is required in the presence of both surface deformation and mirror
misalignments.

Table 2. The typical values of ellipticity and RMS WFE in the different state for complex working
condition.

Different State Ellipticity RMS WFE
Maximum Values Mean Values Maximum Values Mean Values

Nominal state 0.0843 0.0234 0.0523λ 0.0256λ
In the presence of complex working condition 0.1641 0.0854 0.6881λ 0.6448λ

“Optimal wavefront aberration” 0.0810 0.0374 0.0633λ 0.0430λ
“Optimal ellipticity performance” 0.0664 0.0233 0.0807λ 0.0486λ
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From Figures 6, 7, 9 and 10, it can be seen that mirror misalignments do not change
the optimal full-field distribution of ellipticity and RMS WFE within a certain range of
misalignments, which is consistent with the aberration compensation theory. Some valuable
insights into aberration field characteristics about on-orbit active alignment are discussed
in the next section.

5. Results

Some valuable insights into aberration field characteristics corresponding to optimal
ellipticity performance are presented in this section. The full-field distribution of defocus,
astigmatism and coma in a different state are shown in Figures 11–13.
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Figure 11. FFDs for defocus (Z4). 
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Figure 12. FFDs for astigmatism (Z5/Z6). 

Figure 11. FFDs for defocus (Z4).
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Figure 11. FFDs for defocus (Z4). 
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Figure 12. FFDs for astigmatism (Z5/Z6). Figure 12. FFDs for astigmatism (Z5/Z6).
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Figure 13. FFDs for coma (Z7/Z8).

The following conclusions can be drawn from Figures 11–13:

(1) The full-field distribution of defocus and astigmatism is the main factor affecting the
full-field distribution of ellipticity, while the full-field distribution of coma has little
influence on the full-field distribution of ellipticity.

(2) At the same field point, different values of defocus and astigmatism can produce
different values of ellipticity. On orbit, the full-field distribution of ellipticity can be
corrected by adjusting the full-field distribution of defocus and astigmatism.

(3) There exists an inherent relationship between the proportion of full-field distribution
of defocus and astigmatism for the state of “optimal ellipticity performance”: if the
value of defocused aberration at a certain field point is comparatively large, the value
of astigmatism at the corresponding point is relatively small, and if the value of
astigmatism at certain field point is large, the value of defocus at the corresponding
field point is relatively small. However, there is no similar “relationship” when the
correction goal is “optimal wavefront error”.

6. Conclusions

This paper proposes an active optical alignment strategy to achieve optimal ellipticity
performance and demonstrates that there exists certain difference between the state of
“optimal ellipticity performance” and the state of “optimal wavefront error”. Based on the
framework of nodal aberration theory (NAT), an active alignment method of large-aperture
space telescopes for optimal ellipticity performance is proposed, where the aberration field
distribution corresponding to the optimal full field-of-view ellipticity is determined with
global optimization, and the degrees of freedom (DOFs) of the secondary mirror and the
folded flat mirror are taken as the compensation DOFs to achieve the optimal ellipticity
performance. The simulations show that the mean ellipticity value corresponding to
optimal ellipticity performance is 0.03, while this value is 0.04 for optimal wavefront
performance (the optical system of CSST is used for simulation). Some valuable insights
into aberration field characteristics corresponding to the optimal ellipticity performance
are presented, which shows that the proportion between astigmatic aberration field and
medial focal surface can affect the ellipticity performance. In practice, we can change the
goal of on-orbit alignment from “optimal wavefront error” to the goal of “optimal ellipticity
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performance” if a higher ellipticity performance is required. This work lays a basis for the
correction of ellipticity for complicated optical systems.
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