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Abstract: Unmanned aerial vehicles (UAVs) can be used to relay sensing information and compu-
tational workloads from ground users (GUs) to a remote base station (RBS) for further processing.
In this paper, we employ multiple UAVs to assist with the collection of sensing information in a
terrestrial wireless sensor network. All of the information collected by the UAVs can be forwarded
to the RBS. We aim to improve the energy efficiency for sensing-data collection and transmission
by optimizing UAV trajectory, scheduling, and access-control strategies. Considering a time-slotted
frame structure, UAV flight, sensing, and information-forwarding sub-slots are confined to each time
slot. This motivates the trade-off study between UAV access-control and trajectory planning. More
sensing data in one time slot will take up more UAV buffer space and require a longer transmis-
sion time for information forwarding. We solve this problem by a multi-agent deep reinforcement
learning approach that takes into consideration a dynamic network environment with uncertain
information about the GU spatial distribution and traffic demands. We further devise a hierarchi-
cal learning framework with reduced action and state spaces to improve the learning efficiency
by exploiting the distributed structure of the UAV-assisted wireless sensor network. Simulation
results show that UAV trajectory planning with access control can significantly improve UAV energy
efficiency. The hierarchical learning method is more stable in learning and can also achieve higher
sensing performance.

Keywords: UAV; multi-agent deep reinforcement learning; trajectory planning; access control

1. Introduction

Nowadays, with the development of unmanned aerial vehicles (UAVs) and the in-
creasing traffic demand on future wireless networks, UAVs can be integrated into wireless
networks and used to build an air–ground integrated wireless sensing network for the
Internet of Things (IoT), e.g., [1–3]. Traditionally, direct links between ground users (GUs)
and a remote base state (RBS) can be unreliable due to channel blockage, GU mobility,
and limited energy supply. Thanks to enhanced air-to-ground direct channel conditions
and UAVs’ fast mobility, UAVs can play an important role assisting GU data sensing and
information forwarding to the RBS. UAVs can be used as aerial access points to enhance
service provisioning to the GUs or as relay nodes to assist data transmissions beyond
the RBS’s service coverage area [4,5]. For example, by leveraging their flexibility in fast
deployment, UAVs can serve as mobile access points for emergency rescue [6,7].

Currently, there are still some limitations to joint control of UAV trajectory and
transmission-control strategies due to the complexity of high-dimensional optimization,
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the lack of centralized coordination, and unknown dynamics of network environments,
e.g., [8–10]. To exploit the performance gain of UAV-assisted wireless networks, UAV
trajectory planning is one of the most beneficial design problems to make use of UAV
mobility and reshape the network structure dynamically in favor of data transmission,
e.g., [11–22]. There are many existing works that focus on the trajectory planning problem
in UAV-assisted wireless networks. The GUs’ uplink-data transmission strategy is also a
critical design aspect for efficient data collection and transmission in UAV-assisted sensing
networks. Due to variations in UAV coverage at different locations, GUs have to be smartly
divided among different UAVs as a trade-off between interference and network cover-
age [23,24]. When some UAVs have a low altitude and are closer to the GUs, the UAV may
have a restricted coverage area and only serve a limited number of GUs; however, it will
have better channel conditions for the GUs under its coverage. In other cases, when more
GUs are covered by the same UAV, the sensing information can be of a large amount and
thus take up more of the UAV’s buffer space. This implies more sensing time and higher
transmission power for the UAV to forward all information to the RBS. Such a performance
trade-off motivates us to optimize the UAVs’ access-control strategy jointly with UAV
trajectory planning. It is clear that UAV access control depends on UAV trajectories in
each time slot and on the time-varying network environment, including the GUs’ spatial
distribution, channel conditions, traffic demands, and energy supply. Most of the existing
works in the literature focus on energy and spectrum efficiency in UAV-assisted sensing
networks by designing UAV trajectories and effective scheduling strategies [25–29].

In this paper, we focus on the joint optimization of UAV trajectory, transmission-
scheduling, and access-control strategies in a wireless powered sensor network. The GUs
are low-power sensor devices with limited energy supply, but they can harvest and convert
RF signals into energy supply. As the UAVs fly over their trajectories, they not only collect
the sensing data from the GUs but also adapt their access-control strategies to balance GU
energy harvesting and consumption. This can help sustain the GUs’ sensing activities and
prolong the lifetime of the sensor network. In particular, we consider a time-slotted frame
structure for the UAVs to sense and report GU sensing information. In each time slot, the
UAVs decide the optimal hovering locations and the transmission-scheduling strategy for
information forwarding. Given the UAVs’ locations, each GU can upload its sensing data
via either low-power backscatter communications or conventional RF communications
with a higher transmission rate. The GUs’ mode selection between backscatter and RF
communications can be optimized to balance the GUs’ energy consumption and traffic
demands. The GUs’ access-control strategy can be further optimized at each UAV to balance
the sensing and transmission overhead. Considering the non-convexity and complexity in
such a high-dimensional control problem, we first propose the multi-agent DRL approach
to jointly adapt UAV trajectory and transmission-scheduling and GU mode-selection and
access-control strategies via continuous interactions with the network environment. To
improve the multi-agent learning efficiency, we further propose a hierarchical learning
framework to decompose the control variables into two parts. Based on the UAVs’ local
observations, the UAV trajectory and scheduling strategy is firstly updated by the upper-
layer MADDPG algorithm. Then, given the fixed sensing locations, the GU mode-selection
and access-control strategies can be further adapted by the lower-layer DQN method.
Our simulation results demonstrate that the hierarchical learning framework has more
preferable convergence performance and achieves a significantly higher reward than the
conventional MADDPG algorithm.

2. Related Works
2.1. Multi-UAV-Assisted Wireless Networks

Many traditional optimization methods are applied to solve the problems of trajec-
tories, resource allocation, and scheduling in UAV-assisted wireless sensor networks. To
jointly optimize UAV trajectory, resource allocation, and power-allocation strategies, a non-
convexity and combinatorial problem was formulated in [11], wherein the authors derived
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an approximate and iterative algorithm to solve it. The authors in [12] aimed to maximize
the minimum average data collection rate of all sensing nodes (SNs). However, the problem
lacks a closed-form solution for effective power control. Instead, a data regression method
was employed to approximate the optimal solution by the block coordinate descent (BCD)
method. To maximize the GUs’ sum rate, the author in [13] proposed using an intelligent
reflecting surface (IRS) to improve channel conditions. Similarly, the BCD method was used
to optimize resource allocation, IRS phase shift, UAV trajectory planning, and transmission
power in an iterative manner. Optimization methods typically require complete network
information to adapt UAV trajectory-planning and resource-allocation strategies. This
becomes inflexible in a dynamic wireless network as the UAVs frequently change their
sensing locations. The overhead for information exchange can be extremely high. Addition-
ally, trajectory optimization in the spatial–temporal domain essentially relies on dynamic
programming, which is computational demanding in a large-scale UAV-assisted network.

2.2. Multi-Agent DRL for UAV-Assisted Wireless Networks

Compared to traditional optimization methods, the recent application of DRL can
make the UAVs more adaptive to a dynamic network environment with incomplete in-
formation, e.g., imperfect channel conditions and unknown traffic demands. The authors
in [14] studied the joint IoTD association, partial offloading, and communication-resource-
allocation problem. A multi-agent DDPG algorithm was proposed to maximize the service
satisfaction of the IoTD while minimizing its total energy consumption. The authors in [15]
proposed an air computing system to provide computing services for ground equipment.
Multi-agent proximal policy optimization (MAPPO) was employed to maximize the num-
ber of computing tasks within the heterogeneous QoS requirements by jointly optimizing
the UAV resource-allocation and task-offloading strategies. The authors in [16] leveraged
the twin-delayed deep deterministic policy gradient (TD3) algorithm to plan UAV tra-
jectories and achieve the goal of minimizing task completion delay. The authors in [17]
considered complicated spatial- and temporal-coupling in UAV trajectory planning and
network formation. A heuristic algorithm was proposed to update the UAVs’ network
formation while optimizing UAV trajectories by using the multi-agent deep deterministic
policy gradient (MADDPG) algorithm. In particular, each UAV can collect and cache GU
sensing data first and then forward the cached data to the next UAV when they meet each
other on their trajectories. The authors in [18] proposed a federated multi-agent deep deter-
ministic policy gradient (F-MADDPG) algorithm for UAV trajectory planning to maximize
the average spectral efficiency. Federated averaging (FA) is used to eliminate the isolation
of data and thus accelerate the convergence of learning. The distributed F-MADDPG
(DF-MADDPG) method is further designed to reduce the communication overhead in
the distributed architecture. The design idea of a layered learning algorithm appears in
many publications. For example, the authors in [19] aimed to minimize the UAV’s total
energy consumption. A two-layer hybrid learning algorithm was designed to adapt the
UAV’s trajectory by the DRL method in the top layer and then optimize the underlying
resource allocation by using a model-based optimization method. The authors in [20]
adopted the hierarchical multi-agent DRL (H-MADRL) framework to improve overall
energy efficiency in a mobile edge-computing system by jointly optimizing a high-level
access point’s beamforming strategy and the low-level users’ offloading decisions. The
authors in [21] proposed a hierarchical DRL framework to minimize the age of information
in two steps. The first step is to determine the users’ transmission-scheduling strategy
through the outer-loop DRL method, and the second step aims to adapt the uplink and
downlink transmission strategies of all nodes through an inner-loop optimization method.
Different from the above hierarchical learning frameworks, our method in this paper in-
cludes two DRL learning layers instead of a hybrid learning and optimization framework.
The upper-layer MADDPG is used to solve the UAV trajectory-planning problem, while
the lower-layer DQN is used to solve the GU access-control strategy. The authors in [22]
studied UAV network formation and trajectory optimization by a hierarchical learning
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approach. The network formation aims to adapt the UAV-to-UAV links to improve the
UAVs’ transmission capabilities. In the outer-loop, a heuristic algorithm is used to adapt
the UAVs’ network formation. Given the fixed network formation strategy, UAV trajectory
planning is adapted by the multi-agent DDPG algorithm, which is further enhanced by the
Bayesian optimization method. Different from [22], our work in this paper assumes that
all UAVs are required to report information directly to the base station, and we focused
on UAV trajectory planning, GU transmission scheduling, and access control, which were
not considered in [22]. Additionally, we design a two-layer learning algorithm in this
paper instead of the outer-loop heuristic algorithm, which can be inflexible for a large-scale
UAV-assisted wireless network.

2.3. UAV-Assisted Sensing Scheduling and Access Control

Given UAVs’ high mobility, it becomes an important task to adaptively update the the
GUs’ sensing-scheduling and access-control policies according to the time-varying network
environment. The authors in [29] employed UAVs to assist with downlink transmissions in
cellular networks. To maximize the users’ sum achievable rate subject to limited fronthaul
capacity, mixed-integer nonlinear programming (MINLP) was proposed to jointly design
the UAVs’ positions, transmission beamforming, and the UAV-UE association strategies.
The authors in [26] proposed a framework for charging scheduling and energy management
for UAVs. To maximize charging efficiency, UAVs have to be properly scheduled to fly back
to the charging tower. A multi-agent DRL method was developed to achieve collaborative
energy sharing between the UAVs and the charging tower. The authors in [27] aimed to
collect the latest information from the GUs by minimizing the averaged age-of-information
(AoI). A UAV was employed as a relay node to assist with information transmission to the
receiver. The authors in [28] used a UAV as an edge cloud that provides data processing
services for IoT devices. The goal was to minimize the UAV’s energy consumption while
meeting quality-of-service (QoS) requirements. The authors in [25] aimed to navigate a
swarm of UAVs to provide optimal communication coverage for mobile users under partial
observation. They proposed a stochastic DRL strategy, namely the soft deep recurrent
graph network (SDRGN) approach, to reduce the training cost through distributed online
learning. Considering the non-convexity and the unavailability of channel state information
due to the UAVs’ movement, the deep Q-learning algorithm was used to update the UAVs’
locations, while the difference of convexity algorithm is used to iteratively update the
UAVs’ transmission beamforming and UAV-UE association. The authors in [30] considered
rate-splitting multiple access (RSMA) to serve multiple GUs simultaneously in a UAV-
assisted wireless network, with the goal of maximizing the overall capacity. The authors
in [31] also considered RSMA for a multi-UAV-assisted downlink wireless network to
maximize the multi-user ergodic sum rate. The authors in [32] considered using a UAV as
a flying base station to serve multiple GUs. The GUs’ uplink information transmissions
to the UAV followed the non-orthogonal multiple access (NOMA) strategy to improve
spectrum efficiency. GUs’ NOMA transmissions were also studied in [33], which considered
a multi-UAV-assisted vehicular communication network.

3. System Model

We consider a UAV-assisted wireless network with one RBS and multiple UAVs to
serve multiple GUs, as shown in Figure 1a. The set of UAVs is denoted asN = {1, 2, . . . , N},
and the set of GUs is denoted asM = {1, 2, . . . , M}. Due to blockage or large distances
between GUs and the RBS, direct links between GUs and the RBS are unavailable. The
UAVs can fly over the GUs, collect the GUs’ sensing data, and then carry the information
to the RBS. Each GU can harvest energy from the UAVs’ RF beamforming signals to charge
its battery and sustain its operations. Each UAV has F antennas, while the GU has a single
antenna. Via beamforming optimization, the UAV can control its energy transfer to different
GUs and also adapt the uplink transmission rates. Each GU’s sensing data can be uploaded
to the UAV by either active RF communications or passive backscatter communications [34],
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depending on its energy status, the channel condition, and traffic demand. After collecting
the GUs’ sensing information, the UAV then forwards the information to the RBS.

Energy harvesting

��

Active uploading

GU-1

��

�2

GU-2

GU-N

MEC 
server

Remote base station 
(RBS)

RF beamforming

Mutual 
interference

Flying 
trajectory

Flying 
trajectory

UAV reporting

Passive uploading

�1

(a) UAV-assisted sensing network

Sensing ReportingFlying

· · ·

· · ·Slot-1 · · ·Slot-2 Slot-k Slot-k

(b) Time allocation for flying, sensing, and reporting phases

Figure 1. UAV-assisted downlink wireless power transfer and uplink information transmission.

3.1. UAV Trajectory Planning

UAV trajectory planning is realized in a time-slotted frame structure, as shown in
Figure 1b. Each time slot has a fixed length τ, which is further divided into three sub-slots
for flying, sensing, and reporting phases. The UAV can fly to a preferable location in the
first sub-slot τf , can collect the GUs’ information during sensing sub-slot τs, and can then
report the information to the RBS in sub-slot τd. In sensing sub-slot τs, the UAVs adopt a
time-division protocol to collect GU information. In particular, each GU under the UAV’s
coverage is allocated a mini-slot τz. All GUs can upload their information to the UAV
one-by-one via active or passive communications. Additionally, each GU can harvest RF
energy when the other GUs are actively transmitting. The third sub-slot τd is used for the
UAV to report its information to the RBS. We assume that the UAV-GU and the UAV-RBS
channel conditions are constant in each time slot and may change over different time slots
as the UAVs fly their trajectories.

Similar to [17], each UAV-i’s trajectory can be defined as a set of locations over dif-
ferent time slots, i.e., Li = [`i(t)]t∈T . Each location is specified by a 3-dimensional (3D)
coordinate, i.e, `i(t) = (xi(t), yi(t), zi(t)). Let `0(t) denote the RBS’s location and di,0(t)
denote the distance between UAV-i and the RBS in slot-t. Given that UAV-i moves in
direction di(t) with limited speed vi(t) ≤ vmax, UAV-i’s location in the next time slot can be
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updated as `i(t + 1) = `i(t) + vi(t)τf di(t). We have the following inequalities to regulate
UAV mobility:

di,j(t) , ||`i(t)− `j(t)|| ≥ dmin, and ||`i(t + 1)− `i(t)|| ≤ vmaxτf , (1)

where dmin denotes the minimum allowable distance between two UAVs to ensure safety.
Given the location `u

m of GU-m on the ground, its distance to UAV-i is given by
dm,i(t) = ||`i(t) − `u

m||. We consider a realistic channel model consisting of both line-
of-sight (LOS) and non-line-of-sight (NLOS) components. Let hm,i(t) ∈ CF×1 denote
the channel vector between UAV-i and GU-m at the t-th slot, which can be modeled as
hm,i(t) =

√
ψm,i(t)h̃m,i(t), where ψm,i(t) = ω0(dm,i(t))−α denotes large-scale fading, while

small-scale fading is characterized as follows:

h̃m,i(t) =
√

K
1 + K

h̄m,i(t) +
√

1
1 + K

ĥm,i(t).

The first term h̄m,i(t) accounts for the LOS component, and the second term ĥm,i(t) denotes
the NLOS component. The Rician factor K sets different weights for the LOS and NLOS
components. Similarly, we can define gi(t) as the channel vector from UAV-i to the RBS.

3.2. GU Access Control and Mode Selection

Given the UAVs’ hovering locations in sensing sub-slot τs, there may be multiple GUs
under the same UAV’s coverage. Some GUs may have worse channel conditions, and
thus the data rate for information uploading can be low. This implies that the UAV has to
design an access-control strategy to improve the energy efficiency for uplink information
transmission. Let Mi(t) ⊂ M denote the set of all GUs under UAV-i’s coverage. Let
Ma

i (t) ⊂Mi(t) denote the set of GUs that are allowed to upload sensing information to
UAV-i. The other part of the GUs in setMi(t) \Ma

i (t) suspend their data transmission in
the current time slot due to insufficient energy or undesirable channel conditions. They
can resume data transmission when their channel conditions improve. Let xm,i(t) ∈ {0, 1}
denote the access-control strategy of GU-m to UAV-i in the t-th time slot, i.e., Ma

i (t) =

{m ∈ Mi(t) : xm,i(t) = 1}. We require ∑N
i=1 xm,i(t) ≤ 1 to ensure that GU-m only accesses

to one UAV in each time slot.
For all GU-m in the setMa

i (t), we consider a time division protocol to upload their
sensing data. In particular, sensing sub-slot τs can be further divided into |Ma

i (t)|mini-slots
with equal length τz. Each mini-slot is assigned to one GU inMa

i (t) and can be used for RF
active transmission or low-power backscatter communications. For active RF transmission,
the received signal at UAV-i can be denoted as $a

m,i(t) =
√

pmhm,i(t)vm(t) + v0, where pm
is GU-m’s transmission power, vm(t) is the information symbol with unit power, and v0
denotes the noise signal. Then, the data rate in RF communications is given by

ra
m,i = τz log2

(
1 + pm|hm,i|2

)
, (2)

where we assume a normalized noise power. In passive data uploading, GU-m relies
on UAV-i’s beamforming signals to backscatter its own information symbols [34]. Let

um,i(t) =
√

pA
i wm,is denote UAV-i’s beamforming signals in the t-th mini-slot, where wm,i

denotes the normalized beamforming vector for GU-m, pA
i denotes the fixed transmission

power of UAV-i, and s is a random symbol with unit power. After GU-m’s backscattering,
the data rate in passive transmission can be approximated as follows:

rb
m,i = τz log2

(
1 + pA

i |Γo|2||hm,i||2|hH
m,iwm,i|2

)
,
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where Γo is an antenna-specific constant coefficient [35]. For simplicity, we assume that UAV-
i uses the maximum ratio combining (MRC) scheme when detecting GU-m’s information.
Hence, we have wm,i = hm,i/||hm,i||, and then we can simplify rb

m,i as follows:

rb
m,i = τz log2

(
1 + pA

i |Γo|2||hm,i||4
)

. (3)

Similar to [35], we allow each GU to optimally select its transmission mode based on the
energy status and channel conditions. Let zm(t) ∈ {0, 1} denote GU-m’s transmission
mode selection in the t-th time slot, i.e., GU-m chooses backscatter communication when
zm(t) = 0 and switch to RF active communication when zm(t) = 1. Let sm,i(t) denote the
size of sensing data uploaded from GU-m to UAV-i in mini-slot τz, which can be evaluated
as follows:

sm,i(t) = zm(t)ra
m,i(t) +

(
1− zm(t)

)
rb

m,i(t).

3.3. UAV Transmission Scheduling and Buffer Dynamics

In the reporting phase, we use yi(t) ∈ {0, 1} to indicate whether UAV-i is scheduled to
forward its data to the RBS. To avoid interference among UAVs, we require ∑N

i=1 yi(t) ≤ 1
to ensure that only one UAV can be scheduled to transmit its data in each time slot. Hence,
we expect a dynamic update of each UAV’s data buffer over different time slots. Let Am(t)
denote the size of sensing data arriving at GU-m at the beginning of the t-th time slot.
For each GU-m, we assume that Am(t) ∈ [Am,min, Am,max] is independent and identically
distributed (i.i.d) with mean value λm. Let (ζm(t), Qi(t)) denote the sizes of remaining data
in GU-m’s and UAV-i’s buffers, respectively, which can be updated as follows:

ζm(t + 1) =

[
ζm(t)− ∑

i∈N
xm,i(t)sm,i(t) + Am(t)

]+
, (4)

Qi(t + 1) =

Qi(t) + ∑
m∈Ma

i (t)
sm,i(t)− yi(t)Oi(t)

+, (5)

where [X]+ , max{0, X}, and Oi(t) denotes the size of sensing data forwarded to the RBS
when UAV-i is allowed to transmit in the t-th time slot, i.e., yi(t) = 1.

Oi(t) = τd log
(

1 + pi,r(t)||gi||2
)

, (6)

where pi,r(t) is UAV-i’s transmission power in the t-th time slot. It is clear that Oi(t)
depends on the distance di,0(t) and the channel condition gi between UAV-i and the RBS.

4. Learning for Energy-Efficiency Maximization

We aim to maximize the energy efficiency of the UAV-assisted sensing network by
jointly optimizing UAV trajectory, access-control, and transmission-scheduling strategies,
as well as GU mode-selection strategies. The overall energy consumption in each time slot
includes UAV operation energy consumption during flying and hovering and UAV RF
energy consumption during sensing and reporting. For simplicity, we assume that UAV
operation energy consumption ei,o is a constant that depends on the overall length of time of
flying and hovering. UAV RF energy consumption in sensing ei,s(t) depends on UAV signal
beamforming in different mini-slots. Given a fixed beamforming power pA

i , UAV RF energy
consumption can be evaluated as follows: ei,s(t) = ∑m∈Ma

i (t)
pA

i τz(1− zm(t)), where τz is
the fixed length of each mini-slot. Note that ei,s(t) relates to the GUs’ access-control strategy
Ma

i (t) and model selection {zm}m∈Ma
i (t)

in each time slot. For example, when the GUs
have insufficient energy supply and rely on backscatter communications more often, the
UAVs have to consume more energy for signal beamforming. When a larger set of GUs are
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allowed to upload their sensing data, this depletes the GUs’ energy faster, especially for
those GUs with the worst channel conditions. UAV RF energy consumption in reporting
ei,r(t) = yi(t)pi,rτd can be simply modeled as a linear function of the data transmission
time τd and UAV transmission power pi,r(t) when yi(t) = 1.

When GU-m is associated with UAV-i, its active RF communication relies on the energy
harvested from UAV-i. Let Eh

m(t) denote the energy harvested by GU-m in the t-th time
slot. Considering a linear energy harvesting model, the harvested energy Eh

m(t) can be
estimated as follows:

Eh
m(t) = ∑

n∈Ma
i (t),n 6=m

µpA
i τz

(
1− zn(t)

)
E
[
|hH

m,iwn,i(t)|2
]
, (7)

where µ is the energy conversion efficiency. Note that the energy harvesting model in (7)
can be easily extended to a more practical nonlinear model. When some other GU-n is
backscattering its information to UAV-i, i.e., zn(t) = 0, GU-m can harvest RF power from

UAV-i’s beamforming signal un,i(t) =
√

pA
i wn,i(t)s. Therefore, we have the following

energy budget constraint:

zm(t)pmτz ≤ min
{

Em(t) + Eh
m(t), Emax

m

}
, (8)

where Em(t) denotes the energy status at the beginning of the t-th time slot and Emax
m is the

maximum battery capacity.
Up to this point, we have defined the energy efficiency Ξ as the time-averaged ratio

between the overall throughput received by the RBS and the UAVs’ energy consumption:

Ξ , lim
|T |→∞

1
|T | ∑

t∈T
∑

i∈N

yi(t)Oi(t)
ei,o + ei,s(t) + ei,r(t)

, (9)

which depends on the GUs’ access and transmission-control strategies as well as the UAV
trajectory-planning and scheduling strategies. Let z = {zm(t)}m∈M,t∈T denote the GUs’
transmission mode-selection strategy. Let X = {xm,i(t)}m∈M,i∈N ,t∈T denote the GUs’
access-control strategy. Let L = {Li}i∈N and y = {yi(t)}i∈N ,t∈T denote UAV trajectory-
planning and transmission-scheduling strategies, respectively. Therefore, we can formulate
the energy efficiency maximization problem as follows:

max
z,X,y,L

Ξ(z, X, y,L) s.t. (1)–(8). (10)

For simplicity, we consider a fixed beamforming strategy in Problem (10). Thus, the
uplink transmission rate and downlink energy transfer to each GU only depend on the
channel conditions. The inequalities in (1) define the UAVs’ feasible trajectory-planning
strategies. The equalities in (2) and (3) denote the uplink data rates in different transmission
modes. The constraints in (4)–(6) describe the buffer dynamics of both UAVs and GUs. The
constraints in (7) and (8) ensure sustainable operation of the sensing network. Practically,
UAV operation energy consumption ei,o is much larger than the sensing power ei,s(t) and
the reporting power ei,r(t), which can be ignored in objective (9).

Problem (10) is a combinatorial optimization problem and is difficult to solve optimally.
To simplify this problem, we reformulate it into a Markov decision process (MDP), which
can adapt the GU access-control and mode-selection strategies as well as the UAV trajectory
and scheduling strategies based on continuous interaction with the network environment.
Considering that each UAV needs to make decisions independently, we regard each UAV as
a decision-making agent and leverage the multi-agent DRL (MADRL) algorithm to solve it.
MADRL can effectively coordinate the interactions among multiple agents with large state
and action spaces by using a centralized training and decentralized execution scheme [36].
It is built on multiple pairs of actor and critic networks designed for different agents, i.e.,



Sensors 2023, 23, 4691 9 of 22

the UAVs in this paper, as shown in Figure 2. During the training phase, each critic network
needs not only the local observation and action but also the actions of all other agents.
This requires information exchange among all UAVs. In online learning, each UAV’s actor
network generates its own actions based on local observations, which enables decentralized
implementation.

Actor 1

Critic 1

s1 a1 aN

. . .

Q1 QN

Dynamic environment

. . .

Replay samples for agents from experience memory

sN

UAVs’ observations

Data buffer | Energy queue | Channel conditions Target critic N

Actor N

Critic N

Target actor N

Copy 

weights
sN(t) aN(t)

�’�(t+1)

Copy weights

�’�(t+1)�’�

��

TD-error

Minimize

Actor N

Critic N

Agent N

Figure 2. MADDPG framework for UAV centralized training and decentralized execution.

We denote the UAVs’ state in each time slot as st = (s1(t), s2(t), . . . , sN(t)), which
includes all UAVs’ energy storage and data buffers and the channel conditions in the
network. Let χi = (Ei, ζ i, Qi) denote UAV-i’s local state. The vector Ei represents the
energy states of UAV-i and all GUs in the set Ma

i under its coverage. The vector ζ i
denotes the GU buffer states for all GUs in the setMa

i , and Qi represents UAV-i’s buffer
state, as shown in (4) and (5), respectively. UAV-i’s channel conditions are denoted as
ψi = (hi, gi), where hi denotes the GU-UAV channels for uplink information transmission
and gi is the channel vector from UAV-i to the RBS. Hence, for each UAV-i, its state can
be denoted as si(t) , (χi, ψi). We assume that all the states can be measured at the
beginning of each sensing slot. The UAVs’ actions in each time slot are defined as the vector
at = (a1(t), a2(t), . . . , aN(t)). Motivated by the optimization problem in (10), each UAV-i’s
action will include the GUs’ access control Xi = [xm,i(t)]m∈Ma

i
and the mode selection

zi = [zm(t)]m∈Ma
i
, as well as UAV-i’s schedule yi(t) and trajectory `i(t). For simplicity, we

denote ai(t) , (zi, Xi, yi, `i) as the action vector for each UAV.
We denote UAV-i’s long-term reward as Ri = ∑T

t=0 ςtri(t), where ς ∈ (0, 1) is a
discounting factor and ri(t) denotes the instant reward in each time slot. In our problem,
we aim to collect all GU sensing data as much as possible and forward them to the RBS
with minimum delay. Hence, the throughput includes two parts, i.e., one part denotes the
size of uplink data transmission and the second part denotes the size of data forwarded to
the RBS. Additionally, a penalty term rp(t) can be added to the reward to avoid interference
and collision between UAVs. As such, we define each UAV-i’s reward as follows:

ri(t) =
∑m∈Ma

i
xm,ism,i + γyiOi

ei,o + ei,s + ei,r
− ηrp(t). (11)

We omit the time index in (11) for notational convenience. The constant weight
parameter γ puts different priority on the throughput in two parts. The penalty term is
defined as rp(t) = ∑j∈N ,j 6=i I(di,j(t) < dmin), where I(·) is an indicator function and η can
be a large positive value to avoid collision.

After defining the state, action, and reward for each DRL agent, we can proceed to
train the actor and critic networks in the MADDPG framework [36], which implements
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the DDPG algorithm for each agent. Let µi(si, ai|θi) denote UAV-i’s policy, parameterized
by the deep neural network (DNN) (i.e., the actor network) with weight parameter θi. A
delayed copy of the actor network with weight parameter θ′i is also maintained to ensure
smooth learning. Similarly, there are also two sets of critic networks with parameters ωi
and ω′i to estimate the Q-values for each state–action pair. Both θ′i and ω′i are delayed copies
of θi and ωi, respectively. We denote θt = (θ1, θ2, . . . , θN) and ωt = (ω1, ω2, . . . , ωN) as
the sets of DNN parameters for all UAV actor and critic networks, respectively. It is clear
that each agent-i’s expected reward Ji(µi) , Eµi [Ri] becomes a function of the weight
parameters (θi, ωi). By the policy gradient theorem [37], the maximum reward can be
evaluated based on the gradient in terms of θi:

∇θi J(µi) = ∇θi µi(si, ai|θi)∇ai Q
µi
i (st, at|ωi). (12)

Note that agent-i’s policy µi(si, ai|θi) depends on the local state si, while its Q-value
estimation Qµi

i (st, at|ωi) following the current policy µi relates to all UAV actions and
states (st, at). The update to the critic network’s DNN parameter ωi also follows a gradient
descent approach to minimize the squared error between the Q-value estimation and the
one-step look-ahead target Q-value:

minE
[
|Qµi

i (st, at|ωi)− vi|2
]

(13)

where the target Q-value is given by vi = ri(t) + γQµ′i
i (s′t, a′t|ω′i) and µ′i denotes the target

actor network. The complete solution procedure is shown in Algorithm 1. After centralized
training, each UAV-i can follow its actor network to generate its action ai = µi(si|θi) + no,
where no denotes random noise to trade-off between exploitation and exploration. The
action includes all UAVs’ trajectory and scheduling decisions (`i, yi) as well as the access-
control and mode-selection decisions (Xi, zi) for all GUs under its coverage. Then, all GUs
follow UAV-i’s decisions (Xi, zi) to upload their sensing data, as shown in lines 12–16 of
Algorithm 1. After sensing, UAV-i either forwards its data to the RBS or holds on until the
next time slot, depending on scheduling decision yi, as shown in lines 17–21 of Algorithm 1.
When all UAVs and GUs have updated their actions, the overall reward is evaluated and
used to drive the update of actor networks.

The above MADDPG algorithm provides a general solution framework for high-
dimensional optimization problems, as shown in (10). However, it is still challenging to
deploy in practice due to the requirement for information exchange and large-scale training.
The MADDPG algorithm relies on a centralized training and decentralized execution
scheme that requires each UAV to report its local system observation to the RBS, including
the channel conditions, energy status, and the offloading decisions of the GUs under its
coverage. With a large number of UAVs and GUs, the state and action spaces in the
MADDPG algorithm will increase drastically. The speed of convergence will slow due to
the high-dimensional state and action spaces in a multi-UAV-assisted sensing network. The
cost of the information exchange also becomes significant as the number of UAVs increases.
Information collection from a large set of UAVs inevitably suffers from excessive delays
and slows the training process.
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Algorithm 1 MADDPG for multi-UAV trajectory planning, transmission scheduling, access
control, and mode selection

1: Initialize all data buffer and energy storage queues
2: Initialize channel conditions and UAVs’ observations
3: %UAVs’ trajectory planning
4: for each UAV i ∈ N do
5: Collect state information si
6: Generate the action ai = µi(si|θi) + no
7: Update the UAV’s trajectory point `i
8: Update the UAV’s scheduling decision yi
9: Update the GUs’ access-control decision Xi

10: Update the GUs’ mode-selection decision zi
11: Distribute Xi and zi to GUs in the setMa

i
12: %UAV access control
13: for each GU m ∈ Ma

i do
14: Transmit in RF mode if zm,i = 1, otherwise transmit in backscatter mode
15: Update GU-m’s data queue and energy states
16: end for
17: %UAVs’ reporting schedule
18: if UAV-i is scheduled with yi = 1 do
19: Forward buffered data with size Oi to RBS
20: Update the UAV’s data queue
21: end for
22: Evaluate the UAV’s reward function ri(t)
23: end for
24: Evaluate all UAVs’ rewards
25: Update the target actor and critic networks
26: Loop back to step (3)

5. A Hierarchical Learning Approach

In this part, we intend to improve the learning efficiency and performance of the
conventional MADDPG algorithm by designing a hierarchical framework to reduce the
state and action spaces and to avoid frequent information exchange among GUs, UAVs, and
RBS. Note that a multi-UAV-assisted wireless network naturally has a hierarchical structure.
The RBS is the information receiver and the coordinator of all UAVs. For more efficient
sensing, the RBS can deploy and dispatch different UAVs to collaboratively accomplish
sensing over a large geographical area. Due to channel fading, the UAVs may have little
interference with each other when they are separated in different service regions and aiming
to collect sensing information from different sets of GUs. As such, each UAV only cares
about its own GUs under its coverage. This implies that the UAV’s local decisions, e.g.,
the beamforming and scheduling strategy, only affect the local GUs’ access-control and
mode-selection strategies. When the UAVs are far apart, they can be viewed as independent
devices making their own decisions based on local observations.

5.1. Hierarchical Multi-Agent Learning Framework

The above observations motivate us to design a hierarchical learning framework
to decompose Problem (10) into two sub-problems that can be solved individually and
iteratively. The overall learning algorithm includes the upper-layer learning loop for UAV
trajectory planning and the lower-layer learning loop for GU access control. Each layer only
focuses on a part of the control variables with reduced dimensionality. In particular, we
employ the MADDPG algorithm for the UAVs to update their trajectory and transmission-
scheduling strategies. Then, given the UAVs’ upper-layer decisions, we further employ
the DQN algorithm for each UAV to update the GUs’ access-control strategies under its
coverage. As illustrated in Figure 3, each UAV is viewed as an independent agent in
the upper-layer learning framework. The centralized training phase of the MADDPG
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algorithm can be performed by the RBS. After that, each UAV updates its trajectory and
beamforming strategy in a distributed manner by individual actor networks based on
local observations. When the UAVs move to their new trajectory points, each UAV can
collect the status information of the underlying GUs without reporting such information
to the RBS. Based on the UAVs’ local observations, each UAV can further decide the GUs’
access-control and mode-selection strategies by the lower-layer DQN method. Then, each
GU can follow the UAV’s decision to upload its data to the UAV.

The upper-layer and lower-layer state spaces in each time slot are denoted as So and
S c, separately. Correspondingly, the upper-layer and lower-layer action spaces of each
UAV are given by Ao and Ac, respectively. The state spaces include the environmental
information that can be used to learn the UAVs’ upper-layer and lower-layer actions. The
upper-layer state χo

i ∈ So includes each UAV’s channel information gi, energy status Eo
i ,

and buffer size Qi following the dynamics in (5). Thus, we denote it as χo
i = (gi, Eo

i , Qi).
Similarly, the lower-layer state χc

i ∈ S c includes all information of the GUs in the setMa
i

under the UAV’s coverage, including all GUs’ energy statuses Ec
i , the GU-UAV channels hi

for uplink information transmission, and the buffer size ζ i following the dynamics in (4).
Thus, we denote it as χc

i = (hi, Ec
i , ζ i). The system reward is determined by the state

{So,S c} and joint action by {Ao,Ac}. As such, we can define the hierarchical learning
framework by the information tuple ({So,S c}, {Ao,Ac}, {Ro,Rc}). Correspondingly,
{Ro,Rc} denotes the reward functions for the upper- and lower-layer agents. In the sequel,
we explain the two parts of the algorithm design.

Data buffer

GU-m

Upper-layer agent

MADDPG method for 

UAVs’ trajectory 

planning and 

transmission scheduling
Energy queue

Channel conditions

Lower-layer agent

DQN method for GUs’ 

access control and mode 

selection

Network information

Information 

transmission

RF 

beamforming

. . .

UAV-i

(z, X)

(L, y)

. . . UAVs’ locations

GU-m

UAV-j

Figure 3. Illustration of the hierarchical framework.

5.2. Upper-Layer MADDPG for Trajectory Planning and Scheduling

UAV trajectory-planning and transmission-scheduling strategies can be updated by
the MADDPG algorithm according to the UAVs’ local states, including the GUs’ data
demands, the UAVs’ energy status, and the channel conditions with the RBS. The RBS
can collect all UAVs’ state information and carry out centralized training in the offline
phase. For each UAV, the MADDPG algorithm maintains individual actor and critic
networks, which have to be trained jointly during the offline phase. After centralized
training, the RBS disseminates the actor networks to individual UAVs and allows them to
make trajectory-planning and scheduling decisions Ao in a distributed manner according
to local observations. Then, each UAV hovers at a specific location in the next time slot
to collect sensing information from a subset of GUs. The upper-layer action space can
be expressed as Ao = {Li, yi}i∈N , which includes the UAV’s trajectory-planning Li and
transmission-scheduling yi decisions in the next time slot. When the UAV-to-GU distance
is less than a threshold, the GU’s uplink signals can be successfully decoded by the UAV,
and thus, the GU is considered to be covered by the UAV. It is clear that UAV-i’s reward
Ro

i firstly relates to the amount of sensing data received from the GUs under its coverage,
which is determined by the lower-layer access-control decision. LetRc

i denote the lower-
layer sensing reward, which characterizes the amount of sensing data and the resource
consumption during the UAV’s sensing phase. The detailed expression ofRc

i is defined in
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the next subsection. Secondly, UAV-i’s rewardRo
i also includes the transmission reward,

which depends on the UAV’s buffer size and the distance to the RBS. A positive reward
is accrued yiOi when UAV-i is scheduled to forward its buffered information to the RBS.
Additionally, UAV-i’s rewardRo

i has to punish any potential collision with the other UAVs
to ensure safety. Similar to (11) for the conventional MADDPG algorithm, the penalty term
is defined as rp(t) = ∑j∈N ,j 6=i I(di,j(t) < dmin). As such, we can define the UAV’s reward
in the upper-layer learning framework as follows:

Ro
i = Rc

i + yiOi − rp. (14)

Let πo
i denote UAV-i’s trajectory-planning and transmission-scheduling policy and πo

−i
denote the other UAVs’ joint policies in the upper-layer learning phase. The long-term
expected reward of all UAVs in the upper-layer learning for trajectory and scheduling
strategies can be defined as follows:

Vo(πo
i , πo

−i) = E
[

∞

∑
t=0

γtRo
i (s

o
t , ao

t )

]
, (15)

where the UAVs’ joint states and actions are denoted as so
t = [χo

1(t), χo
2(t), ..., χo

N(t)], and
ao

t = [ao
1(t), ao

2(t), ..., ao
N(t)], respectively. Each UAV’s policy πo

i determines its own action

given different state, i.e., ao
i (t) = πi(χ

o
i (t)). However, its Q-value estimation Q

πo
i ,πo
−i

i (so
t , ao

t )
has to be trained in a centralized manner by the MADDPG algorithm deployed in the RBS,
relying on the information collection from all UAVs. By jointly adapting all UAV actions, the
value function in (15) can be improved gradually and stabilizes at the convergence. During
online execution, each UAV-i follows its own policy πo

i to generate localized trajectory-
planning and transmission-scheduling action ao

i (t) = (Li(t), yi(t)) based on UAV-i’s local
observation χo

i (t).

5.3. Lower-Layer DQN for GU Access Control and Mode Selection

Given the upper-layer’s trajectory-planning decisions, each UAV is given a new hover-
ing position for information sensing in the next time slot. Thus, in the next step, each UAV
updates the access-control decision for the GUs under its coverage. UAV-i’s lower-layer
action can be defined as ac

i (t) = (zi(t), Xi(t)) ∈ Ac, including each GU’s access-control and
mode-selection decisions in the next time slot. Considering the combinatorial nature of the
discrete action space Ac, we can resort to the classic DQN method to update each UAV’s
lower-layer action ac

i (t). According to the local information regarding the GUs, each UAV
can adapt its access-control and mode-selection strategy for uplink data transmission to
improve the total reward perceived by the UAV. To improve the sensing efficiency, we can
define the UAV’s instant rewardRc

i (t) in the lower-layer learning framework as a weighted
combination of the sensing throughput and the energy consumption as follows:

Rc
i (t) = ∑

m∈Ma
i

xm,ism,i − η1Eh
m, (16)

where η1 is the trade-off parameter for the sensing throughput and the energy consumption.
Thus, UAV-i’s long-term reward in the lower-layer learning can be denoted as follows:

Vc
i (π

c
i ) = E

[
∞

∑
t=0

γtRc
i (χ

c
i (t), ac

i (t))

]
,

which only relates to UAV-i’s local observations χc
i = (hi, Ec

i , ζ i) due to the spatial separa-
tion of different UAVs. Therefore, each UAV can individually adapt the GU access-control
and mode-selection policy πc

i to improve and stabilize the value function Vc
i (π

c
i ).

Given any state–action pair (sc
t , ac

t ), the DQN method deployed in each UAV-i esti-
mates its value function Vc

i (π
c
i ) or the variant Q-function Qc

i (χ
c
i (t), ac

i (t)|ωt) by two sets of
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DNNs with weight parameters ωt and ω′t, respectively. To stabilize the learning, the weight
parameter ω′t of the target Q network is copied from the online Q network ωt regularly
every few steps. Hence, the target Q-value can be estimated as follows:

yc
i (t) = Rc

i (t) + γQc
i (χ

c
i (t + 1), ac

i (t + 1)|ω′t), (17)

where the new action ac
i (t + 1) is obtained from the online Q network with the parameter

ωt given the state transition to χc
i (t + 1), i.e., ac

i (t + 1) , arg maxac
i∈A

c
i

Qc(χc
i (t + 1), ac

i |ωt).
Then, the update to the DNN parameter ωt is performed by the gradient descent method
to minimize the mean square error between Qc

i (χ
c
i (t), ac

i (t)|ωt) and the target value yc
i (t)

in (17), similar to (13). The size of the state and action spaces in each learning layer
affects the computational complexity of the algorithm, which depends on the selection
of parameters such as size, depth, learning rate, and discount factor. The deep neural
networks of the lower-layer DQN method include three fully connected layers and two
relu layers. The upper-layer MADDPG includes two sets of DNNs to approximate the Q
network and the policy network, respectively. Each DNN in the MADDPG follows the
same structure as that of the DQN method. The process is shown in Algorithm 2.

Algorithm 2 Hierarchical learning for multi-UAV trajectory planning, transmission schedul-
ing, and access control

1: Initialize the observations of UAVs and GUs
2: Collect state information {So,S c}
3: %Upper-layer MADDPG for trajectory learning
4: for each UAV i ∈ N do
5: Collect UAVs’ state information so

i
6: Execute the upper-layer action ao

i
7: %Lower-layer DQN for transmission learning
8: Collect GUs’ state information S c

i
9: Execute the lower-layer action Ac

i
10: end for
11: Update the joint action {Ao, [Ac

i ]i∈N }
12: Observe total reward function {Ro, [Rc

i ]i∈N }
13: Update all networks
14: Loop back to Step (3)

6. Numerical Results

In this section, we evaluate the performance of the MADDPG and the hierarchical
learning algorithms. Without loss of generality, we focus on a UAV-assisted wireless sensing
network with one RBS and three UAVs assisting with information collection from a group
of GUs randomly distributed in a two-dimensional coordinate system scaled to the range
[−1, 1]. All GUs are far away from the RBS and there are no direct links between the RBS
and GUs. More-detailed parameters are listed in Table 1.
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Table 1. Parameter settings in the numerical simulations.

Parameter Setting

Training cycles per episode 30
Path-loss coefficient α 2

Range of GU’s data size ζm [5, 15] Mbits
Maximum UAV speed vmax 25 m/s

Noise power δ −90 dBm
ε-greedy parameter 0.05
Actor’s learning rate 10−3

Critic’s learning rate 10−4

Batch size 32
Reward discount 0.95
Memory capacity 2000
Target replace iter 100

6.1. Convergence and Reward Performance

Firstly, we evaluate the learning performance for UAV trajectory planning in the
upper-layer learning phase considering two different cases. For Case I, we assume that all
UAVs are initially deployed at random locations to serve the GUs. In Case II, the UAVs are
assumed to take off from the same dispatch point. The reward dynamics in the conventional
MADDPG and the proposed hierarchical learning method for the two cases are compared
in Figure 4. By interacting with the environment and adapting UAV trajectories, the reward
values in both methods increase and eventually stabilized after a number of iterations,
which verifies the effectiveness and convergence of the proposed learning method. An
interesting observation is that the reward in Case I is generally higher than that achieved in
Case II. This implies that the UAVs’ initial dispatch locations are important to the overall
sensing performance with the same data traffic distribution of the GUs. When the UAVs
are scattered over the service coverage area, it can be faster and more efficient for the UAVs
to find preferable sensing locations and trajectories to avoid service overlap and resource
conflicts. When all UAVs start from the same location, there always exists some service
overlap in the early stage of their trajectories. This implies inefficient cooperation among
different UAVs and leads to reduced reward performance.
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Figure 4. The reward dynamics of two algorithms for two cases.

The convergence properties with different training cycles are shown in Figure 5. It
reveals that a shorter training step has difficultly achieving convergence, as shown by the
red dotted lines. The convergence results with training cycles of 30 and 40 are very similar.
Hence, we set the training cycle to 30 in our simulations. We also test different combinations
of learning parameters, including the learning rate, mini-batch size, replay buffer size, and
discount factor, to help select the best hyperparameters for our experiments.
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Figure 5. Performance comparison with different training cycles.

Compared with the conventional MADDPG, the reward curve of the hierarchical
learning method is more stable and is smoother, as shown in Figure 4b. The hierarchical
learning method achieves faster convergence and a much higher reward and stabilizes after
50 k learning episodes, while the MADDPG method still shows obvious fluctuations after
200 k learning episodes. A possible explanation of this observation is that the conventional
MADDPG method adapts the high-dimensional control variables simultaneously, including
UAV trajectory-planning and transmission-scheduling and GU access-control and mode-
selection strategies, while the hierarchical learning method updates a smaller size of
decision variables in each learning episode with reduced action space. Note that the
UAVs’ space separation limits their interference with each other. As such, the hierarchical
learning structure can avoid inefficient action combinations from the UAVs and the GUs,
therefore reducing the overall action space and improving learning efficiency. Another
advantage lies in that the hierarchical learning structure only requires the RBS to have
limited communications with the UAVs. GU status information is not necessarily reported
to the RBS for efficient trajectory planning and transmission scheduling. This avoids
excessive communication overhead and latency in online learning.

6.2. Trajectory Planning in Two Cases

In Figures 6 and 7, we compare UAV trajectory planning in 2D coordinate for two cases
with different algorithms. The colored lines in these figures represent UAV trajectories,
and the hollow circles represent UAV hovering points on the trajectories during different
time slots. We observe that, after training, the UAVs can fly to different service regions
without interfering with each other in both the MADDPG and the hierarchical learning
algorithms. This shows the task collaboration of different UAVs to cover a large service
area. As shown in Figure 6, though UAV trajectories are different with the two planning
algorithms, each UAV intends to serve the closest group of GUs starting from the initial
location. The hierarchical learning method can be more efficient, as UAV trajectories are
confined to small service regions, as shown in Figure 6b, while UAV trajectories in the
MADDPG method cover a larger area, as shown in Figure 6a. Similar observations are
revealed in Case II, where all UAVs plan their trajectories from the same starting point. Both
trajectory-planning algorithms ensure that the UAVs quickly reach their service regions
to efficiently explore their task collaboration in a large-scale sensing network. For Case II,
the trajectory comparison between two planning algorithms also verifies that the proposed
hierarchical learning method achieves a more compact trajectory for each UAV compared
to that of the conventional MADDPG method. This corroborates the more stable and faster
learning performance shown in Figure 4. A possible explanation to this observation is that
the conventional MADDPG needs to collect the status information from both the UAVs
and GUs when making trajectory-planning decisions. The GUs’ random task arrivals and
channel fluctuations may disturb UAV trajectories and thus create instability during the



Sensors 2023, 23, 4691 17 of 22

learning process. On the contrary, the hierarchical learning method only focuses on UAV
status information and reduces the action space in the upper-layer trajectory planning.
The GUs’ dynamic information is evaluated by individual UAVs and is used to assess the
quality of the upper-layer trajectory planning.

(a) MADDPG method (b) Hierarchical learning method

Figure 6. Case I: trajectory planning from different starting points.

(a) MADDPG method (b) Hierarchical learning method

Figure 7. Case II: trajectory planning from the same starting point.

6.3. Access Control and Buffer Dynamics

In this part, we evaluate the GU access-control strategies in the hierarchical learning
algorithm. Since the access-control strategy is updated by the lower-layer DQN method at
each UAV, we can observe the dynamics of the reward functionRc

i (t) in different time slots,
as shown in Figure 8. Taking UAV-i as an example, we show the reward curves in three
consecutive time slots for the UAV’s data sensing. During these time slots, the distances
between UAV-i and the GUs are decreasing. It is clear that UAV-i can achieve a larger
reward as it approaches the GUs gradually. One possible explanation is that both the GUs’
energy harvesting capabilities and the transmission rates for backscatter communications
can be enhanced as the channel conditions between UAV-i and the GUs under its coverage
improve. In each time slot, we can observe that UAV-i’s access-control strategy results in a
gradually increasing reward functionRc

i (t) until convergence after 30k learning episodes.
Even if there is a performance drop in the reward curve, the UAV’s learning can quickly
resume higher reward performance by adapting its access-control strategy, as shown in the
third time slot in Figure 8.
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Figure 8. Reward dynamics in the lower-layer DQN algorithm.

We further verify the performance of the UAVs’ access-control strategies by examining
the GUs’ and UAVs’ buffer dynamics, as shown in (4) and (5), respectively. A preferable
access-control strategy ensures a stable buffer size and fairness among different GUs. For
performance comparison, we introduce a single-agent independent DDPG (denoted as
iDDPG) that regards each UAV as an independent agent. It allows each UAV to learn its
own strategy independently based on its local observations. We apply iDDPG, MADDPG,
and the proposed hierarchical learning algorithms to adapt the UAVs’ access-control
strategies. The UAVs’ and the GUs’ buffer dynamics with different algorithms are shown
in Figures 9–11. In the simulation, we assume that all GUs constantly generate data traffic
and the UAVs help forward GU data to the RBS. If the UAVs complete the data collection
in advance, a new round of data collection can be carried out. The black dotted lines in
Figures 10 and 11 represent the beginning of a new round of data collection.
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Figure 9. The buffer dynamics in the iDDPG algorithm.
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Figure 10. The buffer dynamics in the MADDPG algorithm.
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Figure 11. The buffer dynamics in the hierarchical learning algorithm.

Figure 9 shows the dynamics of the GU and UAV buffer states over different time
slots by the iDDPG algorithm. In Figure 9a, we can see that some GU data traffic cannot be
completely collected by the UAVs and forwarded to the RBS in a timely manner. Hence,
the buffer sizes drop slowly and still remain at non-negative values after 25 time slots.
Additionally, as shown in Figure 9b, the UAV buffer sizes are unbalanced. This implies
that the iDDPG algorithm cannot fully explore the UAVs’ task cooperation to maximize
the overall energy efficiency. In the MADDPG algorithm, as shown in Figure 10, each
UAV has its own service region and collects the GU data traffic more efficiently. By the
UAVs’ cooperative operation, the GUs can deplete their data buffers faster and resume
the next round of data collection, as shown in Figure 10a. Compared with the iDDPG
algorithm, the UAVs’ data buffers are more balanced in the MADDPG algorithm. This is
because the UAVs have different service regions and thus can avoid interfere with each
other, as shown in Figure 10b. In the hierarchical learning algorithm, we find that the UAVs
can complete data transmission faster, as their data buffers turn into zero and then start
a new round of data collection, as shown in Figure 11. Moreover, the data collected by
each UAV is well-balanced by the UAVs’ collaborative trajectory planning. This reveals
that the hierarchical learning algorithm has higher energy efficiency compared to iDDPG
and MADDPG.

Figure 12 compares the GUs’ and the UAVs’ average buffer sizes in the iDDPG,
MADDPG, and hierarchical learning (denoted as the HMADDPG) methods. The average
buffer size slowly decreases in the iDDPG algorithm. The reason is that the UAVs cannot
obtain all of the other UAVs’ status information when making trajectory-planning decisions,
which may lead to suboptimal deployment locations for the UAVs and degrade the overall
energy efficiency of the system. We also observe that the HMADDPG method achieves a
faster decrease in the GUs’ average buffer size compared with the other methods, as shown
in Figure 12a. The UAVs’ average buffer size also goes to zero at a much faster rate, as
shown in Figure 12b. This implies that the HMADDPG method allows the UAVs to collect
more GU sensing data compared to the other baselines by smartly adapting UAV trajectory
and access-control strategies.
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Figure 12. Average buffer size for three learning algorithms.

7. Conclusions and Future Work

In this paper, we proposed a hierarchical learning algorithm to maximize the sensing
capacity of a multi-UAV-assisted sensing network by adapting the GUs’ access-control
and mode-selection strategies as well as the UAVs’ transmission-scheduling and trajectory-
planning strategies. Leveraging the distributed nature of the multi-UAV-assisted network,
we proposed a hierarchical learning framework that decomposes the control variables into
two layers. The upper-layer MADDPG algorithm is employed to adapt the UAV trajectory-
planning and scheduling strategies based on UAV status information, while the lower-layer
DQN algorithm is proposed to update the GU access-control and mode-selection strategies
within each individual UAV’s service coverage area. Our numerical results show that
the hierarchical learning algorithm can efficiently exploit UAV task cooperation and also
improve overall learning efficiency. The distributed and hierarchical learning methods can
improve data transmission performance in future UAV-assisted wireless networks. This
allows UAVs to quickly adapt to the time-varying channel environment in a large-scale
wireless network. However, practically, the hierarchical DRL learning scheme may still
require a long time to train the lower-layer DQN for each upper-layer decision epoch. This
results in an excessive run-time of the learning algorithm. In the future, we can consider
improving the learning efficiency and accelerating the convergence speed of the lower-layer
DQN method by integrating model-based local information.
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Abbreviations

Unmanned Aerial Vehicle UAV
Internet of Things IoT
Ground User GU
Remote Base Station RBS
Block Coordinate Descent BCD
Multi-agent Proximal Policy Optimization MAPPO
Multi-agent Deep Deterministic Policy Gradient MADDPG
Federated MADDPG F-MADDPG
Federated Averaging FA
Hierarchical Multi-Agent DRL H-MADRL
Quality-of-Service QoS
Mixed-Integer Nonlinear Programming MINLP
Line-of-Sight LOS
Markov Decision Process MDP
Deep Neural Network DNN
Independent DDPG IDDPG
Non-Orthogonal Multiple Access NOMA
Rate-Splitting Multiple Access RSMA
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