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Abstract: In classification tasks, such as face recognition and emotion recognition, multimodal
information is used for accurate classification. Once a multimodal classification model is trained with
a set of modalities, it estimates the class label by using the entire modality set. A trained classifier
is typically not formulated to perform classification for various subsets of modalities. Thus, the
model would be useful and portable if it could be used for any subset of modalities. We refer to this
problem as the multimodal portability problem. Moreover, in the multimodal model, classification
accuracy is reduced when one or more modalities are missing. We term this problem the missing
modality problem. This article proposes a novel deep learning model, termed KModNet, and a novel
learning strategy, termed progressive learning, to simultaneously address missing modality and
multimodal portability problems. KModNet, formulated with the transformer, contains multiple
branches corresponding to different k-combinations of the modality set S. KModNet is trained using a
multi-step progressive learning framework, where the k-th step uses a k-modal model to train different
branches up to the k-th combination branch. To address the missing modality problem, the training
multimodal data is randomly ablated. The proposed learning framework is formulated and validated
using two multimodal classification problems: audio-video-thermal person classification and audio-
video emotion classification. The two classification problems are validated using the Speaking Faces,
RAVDESS, and SAVEE datasets. The results demonstrate that the progressive learning framework
enhances the robustness of multimodal classification, even under the conditions of missing modalities,
while being portable to different modality subsets.

Keywords: multimodal learning; person classification; emotion classification; missing modality;
multimodal portability; sensor fusion

1. Introduction

In classification tasks, such as face recognition and emotion recognition, multimodal
information is often used to enhance classification accuracy and robustness. Multimodal
classification addresses the limitations of state-of-the-art visible-camera-based classifica-
tions. These limitations include illumination and environmental variations, occlusions,
background noise, and low light conditions. Multimodal classification addresses these
limitations through the effective fusion of a visible camera with different sensors, such as a
thermal camera [1–5]. However, given a set of K modalities, S, the multimodal classification
framework typically relies on the availability of complete multimodal data for all modalities.
Under the condition of incomplete multimodal data, where one or more modalities are
missing, the performance of multimodal classification is affected [6–8]. This problem is
referred to as the missing modality problem. Sensor failures, data corruption, and envi-
ronmental noise are examples of scenarios resulting in incomplete multimodal data. For
example, in the audio-visible emotion recognition problem, if the query person is outside
the camera’s field of view, their visible camera appearance is not available and only audio
data is available for classification. Similarly, in the case of loud background noise, audio
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data is not available, and only visible data is available. Illustrations of the missing modality
problem are presented in Figures 1 and 2.

No missing
Thermal 
missing

Visible 
missing

Person A Person B

Data with a single missing 
modality (uni-missing data)

Data with no 
missing modality 

Audio & 
thermal 
missing

Audio 
missing

Visible & 
thermal 
missing

Audio & 
visible 
missing

Data with two missing 
modalities (dual-missing data)

AVTPC AVTPC AVTPC AVTPC AVTPC AVTPC AVTPC AVTPC

Person A Person A Person A Person A Person A Person A

Figure 1. An overview of the missing modality problem in the audio-visible-thermal person classifi-
cation (AVTPC) framework with complete, uni-missing, and dual-missing multimodal data.
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Figure 2. An illustration of the missing modality problem in the audio-visible emotion classification
(AVEC) framework with complete and uni-missing multimodal data.
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For a given set S with K modalities, power set P(S) represents the set of all subsets of
S. We define the set of the k-combination subsets, Sk ∈ P(S), by selecting subsets of size
k as

Sk = {s | s ∈ P(S), |s| = k}. (1)

Typically, a multimodal classification framework is defined and trained using an original
set of modalities. Subsequently, the trained framework is tested using the same modality set.
This reduces the portability of the framework to different subsets, Sk. For example, given the
set of {audio, visible, thermal} data, the 1-combination subsets S1 = {s1

i }3
i=1 correspond to

{audio}, {visible}, and {thermal} unimodal data. The 2-combination subsets S2 = {s2
i }3

i=1
correspond to {audio, visible}, {visible, thermal}, and {audio, thermal} bimodal data. The
3-combination subset S3 = {s3

1} corresponds to {audio, visible, thermal} trimodal data. In
this scenario, the standard trimodal classifier is often defined for trimodal data, and is not
directly applied to unimodal or bimodal classification problems. We refer to this problem as
the multimodal portability problem. An illustration of the problem is presented in Figure 3.
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Figure 3. An overview of the multimodal portability problem. “Multimodal Classifier * represents
the same classification model for the varying inputs”.

In this study, we propose a novel deep learning model, termed KModNet, which is
trained with a novel progressive learning framework to simultaneously address missing
modality and multimodal portability problems. KModNet is implemented with K blocks,
with each k-th block containing different k-combination branches, where k ≤ K. KModNet
is trained using a novel multi-step progressive learning framework, where each k-th step is
used to train the different blocks in KModNet up to the k-th combination block. For example,
the first step in the progressive learning framework is used to train the 1-combination block,
and the second step is used to train the 1- and 2-combination blocks.

To enhance the robustness, in the k-th step, the 1 to (k− 1) combination blocks trained
in the previous steps are further fine-tuned. For example, the 1-combination block trained in
the first step is further fine-tuned in the k-th step. To address the missing modality problem
during training, multimodal data are randomly ablated to represent the missing modality
data. Additionally, an “unknown” classification label is utilized to reduce the inefficient
learning of certain models in the progressive learning framework. Finally, a multi-head
attention transformer, which has been shown to be effective with missing modality data, is
used [9].
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The proposed learning framework is applied to two different classification tasks: audio-
visible-thermal person classification (AVTPC) and audio-visible emotion classification
(AVEC). The frameworks are validated using the Speaking Faces [10], RAVDESS [11], and
SAVEE [12] datasets. The results demonstrate that the progressive learning framework
enhances the robustness of multimodal classification, even under conditions of missing
modalities, while being portable to different modality subsets. Owing to the formulations
of KModNet with different k-combination blocks and the progressive learning strategy, the
missing modality and multimodal portability problems are effectively addressed, as shown
in the experimental section (Section 5).

The main contributions of this study to the literature are as follows:

• A novel multimodal classification framework termed the KModNet with 1 to k-
combination blocks.

• A novel multimodal progressive learning framework to train the KModNet to address
the missing modality and multimodal portability problems.

The remainder of this paper is organized as follows: The related literature is reviewed
in Section 2. The proposed progressive learning framework is presented in Section 3, and
its application for two classification tasks is presented in Section 4. The validation of the
framework is performed in Section 5. Finally, we summarize and present our conclusions
in Section 6.

2. Literature Review

Multimodal learning addresses the limitations of vision-based perception [4,5,13–18].
For example, an effective sensor fusion of the visible image with the audio and ther-
mal image is shown to enhance the classification accuracy [2–5,13,19–24]. However, the
aforementioned studies are limited by the missing modality and the multimodal portabil-
ity problems.

In recent years, different approaches have been proposed to address the missing
modality problem [7,8,25,26]. The different approaches can be categorized as generative,
latent-space, data augmentation, and optimal fusion approaches. In the generative ap-
proach, the missing modality or supplementary data predicted from the available modality
are used to enhance the classification accuracy. John et al. [27] proposed the audio-visible
person classification framework, the CTNet, where the person label is estimated even when
the visible image is missing. Here, person attributes, such as age, gender, and race, are
predicted from the audio data. The person label is then estimated using the predicted
attributes along with the audio data.

In the latent-space approach, the latent space is learned from multimodal data to
address the missing modality problem [6,26,28,29]. Recently, John et al. [6] proposed a
missing modality loss function to learn the latent space even under conditions of missing
data. The latent space is used within the AVTNet to estimate the person class. Similarly,
Zhao et al. [26] learned the latent representation from multimodal data using a residual au-
toencoder, which was subsequently used within the MMI network for emotion recognition.

In the data augmentation approach, researchers augment the training of multimodal
data with ablated data, where the data corresponding to a missing modality are represented
using pre-defined fixed data [6,30]. Finally, researchers have proposed optimal fusion
frameworks using transformers to address the missing modality problem [9,31]. In the work
by Ma et al. [9], a dataset-dependent fusion strategy was learned to enhance perception.
Alternatively, Han et al. [31] adopted an implicit fusion strategy using multi-task learning,
where the output layers were effectively shared by different modalities.

Although the aforementioned literature addresses the missing modality problem, it has
not yet been solved. Moreover, the studies referred to also do not address the multimodal
portability problem. In this article, compared to the literature, we propose a novel deep
learning framework, the KModNet, and a novel progressive learning framework where
we address the missing modality problem with multiple missing modalities in addition to
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the multimodal portability problem. In Table 1, we address the differences between the
proposed algorithm and the related missing modality literature.

Table 1. Comparison of the related literature addressing the missing modality problem (MMP). MPP
represents the multimodal portability problem.

Algo Research Modalities No. of Missing MMP Approach Address
Problem Modalities in MPP

Data

Prop. Person & Aud.-Vis.-Th. Single Data Augment. & Yes
Emotion Class. Aud.-Vis. & Double Prog. Learning

Ma et al. [25] Multilabel, Aud.-Vis. Single Generative No
Binary, & Aud.-Vis.-Txt.
Multiclass Class. Vis.-Txt.

Zhao et al. [26] Emotion Class. Aud.-Vis.-Txt. Single & Latent Space & No
Double Generative

Yang et al. [7] FAU Class. Vis.-Th.-Depth. Missing Opt. Fusion No
Patches

Cai et al. [8] Disease Det. PET-MRI Single Generative No
John et al. [27] Person Class. Aud.-Vis. Single Generative No
Pham et al. [28] Sentiment Pred. Aud.-Vis.-Txt. Single & Latent Space No

Double
John et al. [6] Person Class. Aud.-Vis.-Th. Single Latent Space & No

Data Augment.
Parthasarathy et al. [30] Express Class. Aud.-Vis. Single Data Augment. No
Han et al. [31] Emotion Class. Aud.-Vis. Single Opt. Fusion No
Ma et al. [9] Multiclass Class. Vis.-Txt. Single Opt. Fusion No

3. Proposed Classification Framework
3.1. Overview

For a set S with K modalities, powerset P(S) is the set of all subsets of S. The different
k-combination subsets in P(S) are represented by the set Sk ∈ P(S). Each Sk contains Nk

elements that are given by Sk={sk
i }

Nk
i=1.

The novel KModNet is formulated with multiple blocks corresponding to different
Sk ∈ P(S). Each k-th block Bk contains Nk branches corresponding to the different elements
in Sk. Each k-combination branch Bk

i accepts outputs only from the (k− 1)-combination
branches whose modalities are related to the modalities in Sk

i as the input.
The KModNet is trained using a multi-step progressive learning framework. Each

k-th step in the progressive learning framework trains different blocks up to the k-th block
in KModNet. Following the training, the different branches in KModNet can be used to
estimate the class label for all k-combination subsets in P(S). An example of KModNet
implemented for trimodal person classification is shown in Figure 4.

To handle the missing modality problem, first, the training multimodal data is ran-
domly ablated using pre-defined fixed data representing the missing modality data. Next,
to reduce inefficient learning owing to missing modality data, an “unknown” classification
label is used along with the randomly ablated data for certain models in the progressive
learning phase. These are explained in detail in subsequent sections. Finally, we utilize the
multi-head attention-based transformer, which has been previously studied and shown to
be effective for the missing modality problem [9].
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Figure 4. An example of the KModNet’s testing phase for the AVTPC problem.

3.2. Learning Phase

The progressive learning strategy is a multi-step learning framework where the dif-
ferent k-combination blocks in the KModNet are trained. Each k-th step in the learning
strategy trains different blocks up to the kth-combination block in KModNet.

For each k-th step, 1− k combination blocks followed by a classification output head
are used to train the network. In the first step, the 1-combination branches in the 1-
combination blocks corresponding to S1={S1

i }
N1
i=1 are trained independently. Here, the i-th

deep learning model, followed by an individual classification head, is used to train the i-th
1-combination branch B1

i in block B1. These models are termed unimodal models.
In the subsequent k-steps, a single deep learning model called the k-modal model is used

to train the k-combination branches in the k-combination block, Bk = Bk
i

Nk
i=1, corresponding

to Sk = {Sk
i }

Nk
i=1. In the k-modal model, Nk classification heads are used to train the Nk

different k-combination branches.
In the k-modal model, first, to further enhance robustness, previously trained (k− 1)−modal

models without their classification heads are transferred. Next, the i-th k-combination
branch Bk

i in k-th combination block Bk outputs a fused feature from the set of modalities
in Sk

i . This branch selectively accepts the output of some of the branches in the previous
block. The input of the i-th k-combination branch Bk

i is represented by a set of outputs from
the branches in the previous blocks, given as {Bk−1

j | Sk−1
j ∩ Sk

i 6= ∅}. This is referred to as
the input-selection mechanism.

Following the input selection, the transferred (k–1)−modal branches are also trained
along with the k-combination branches. For example, in the case of bimodal KModNet,
in the second step, the transferred unimodal models are also trained along with the 2-
combination branches.

To address the missing modality data, in the learning phase, the multimodal data is
randomly ablated with pre-defined fixed data. For multimodal data, if all modalities are
present, the multimodal data are referred to as “complete” data. For trimodal data, if a
single modality is missing, the data are referred to as “uni-missing” data. If two modalities
are missing, the data are referred to as “dual-missing” data. The data corresponding to
the missing modality is represented by pre-defined fixed data, the details of which are
presented in Section 5. An overview of the KModNet learning phase is shown in Figure 5.
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Figure 5. An overview of the progressive learning framework.

3.3. Testing Phase

Following progressive learning, the trained KModNet is used to estimate the clas-
sification label for the test multimodal data, even in the presence of missing modalities.
Moreover, the trained unimodal, bimodal, and k-modal models in different learning steps
can be used to estimate the class labels for different k-combinations of modality set S.
Consequently, different branches in KModNet can be ported to any subset in P(S). This
addresses the multimodal portability problem.

As shown in Section 5, the missing modality problem is effectively addressed because
of the random ablation of the training data, use of the “unknown” classification labels for
certain training steps, and integration of the transformers.

3.4. KModNet Implementation: Modal Specific

While the k-combination branches are generic, as their inputs are obtained from the
preceding (k− 1)-combination branch, the 1-combination branches should be designed for
their corresponding modality because the multimodal data is given as input directly to
KModNet’s 1-combination block, which represents the 1-combination subsets Sk. Here, we
explain the modal-specific implementation of the 1-combination block.

In this article, KModNet is implemented for audio, visual, and thermal data, but
not limited to them. The multimodal data for these tasks are represented by the audio
spectrogram X, the video Y with j frames of size (64× 64× 3), and thermal video Z with j
frames of size (64× 64× 1).

For visible and thermal videos, each image in the visible or thermal video sequence is
split into 8× 8 fixed-size patches and linearly embedded into a 128-dim projection space.
Subsequently, learnable position embeddings are added to the linear embedding of each
frame. The image embeddings are then concatenated to form a sequence vector. Frame
embedding, which functions as a frame index, is added to the sequence vector. Frame
embedding distinguishes embedded vectors among the three frames in the input video
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sequence. We refer to the aforementioned layers of patch extraction, position embedding,
and frame embedding as standard embedding layers.

For the audio data, the audio spectrogram is given as input to three layers of Conv-1D
with 32, 64, and 128 filters of size 11, 11, and 3, stride 1, and ReLU activation. We refer to
this architecture as the audio convolution layers.

3.5. KModNet Implementation: Multi-Head Attention Transformer

Each branch in KModNet is implemented using a multi-head attention transformer.
The layers in the transformer are termed standard transformer layers. Given the transformer
input, the standard transformer layers have an initial layer normalization layer, followed by
a multi-head attention layer with four heads and 0.1 drop out. The output of the attention
layer is added to the input to obtain the attention output vector. This vector is given as an
input to two multilayer perceptron (MLP) layers with 256 and 128 units with 0.1 dropout.
The MLP output is then added to the attention output vector to obtain the output of the
transformer branch.

For the 1-combination block, the inputs to the visible and thermal standard transformer
layers in the visible and thermal-unimodal models correspond to the outputs of the standard
embedding layers. For the audio standard transformer layers, the input to the audio-
unimodal model is the output of the audio convolution layers.

For the k-combination blocks, the inputs to the k-modal model’s standard transformer lay-
ers are obtained by concatenating the outputs of certain branches in the (k− 1)-combination
block. The branches in the (k− 1)-combination block are selected according to the previ-
ously described input selection mechanism.

4. Application of the Proposed Classification Framework

In this article, KModNet is formulated for two classification tasks: audio-visual-
thermal person classification (AVTPC) and audio-visible emotion classification (AVEC).

4.1. AVTPC Problem

The KModNet for the AVTPC problem is trained to identify people using an audio-
visible-thermal camera dataset Dt = {Xi, Yi, Zi, li}Ut

i=1 with Ut samples, where Xi represents
the audio, Yi represents the video with j frames, Zi represents the thermal video with
j frames, and li represents the person label. The audio input Xi is represented by the
Log-Mel-spectrogram of size 128× 889 obtained from the audio using a sampling rate
of 44,000 Hz. Video input Yi is represented by three uniformly sampled frames of size
(64× 64× 3). Thermal input Zi is represented by three uniformly sampled frames of size
(64× 64× 1). The video and thermal sequences are synchronized in the dataset.

4.1.1. Classification Model

KModNet is formulated with three blocks with the corresponding k-combination
branches. The first block contains three 1-combination branches, the second block contains
three 2-combination branches, and the final block contains one 3-combination branch.

In the first block, in the visible (B1
1) and thermal branches (B1

2), visible and thermal
sequences are provided as inputs to the standard embedding layers (Section 3.4). In the audio
branch (B1

3), the audio spectrogram is provided as an input to the audio convolutional layers.
The output of these layers is then provided as an input to an individual standard transformer
layer (Section 3.5).

In the second block, the outputs of the selective standard transformer layers are concate-
nated using the input selection mechanism and are provided as inputs to the specific standard
transformer layers. For example, the outputs of the visible (B1

1) and thermal (B1
2) branches

are concatenated and provided as inputs to the visible-thermal branch (B2
1). Similarly, the

audio-visible (B2
2) and audio-thermal (B2

3) branches are implemented using individual
standard transformer layers, the input of which is obtained by selective concatenation of the
different branches in the first block.
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Similar to the other blocks, the 3-combination branch (B3
1) in the final block is also

implemented using standard transformer layers. Here, the transformer inputs correspond to
the concatenated outputs of the three 2-combination branches. The output of this block is
given as input to the classification head, which contains a dense layer with 128 neurons,
batch normalization, and a ReLU activation unit, followed by a dense layer with 143 neurons
with a softmax activation function. Hereafter, we refer to the output head as the person
classification head.

The three blocks are progressively trained in three steps using the unimodal, bimodal,
and trimodal models. Following training, KModNet estimates the person label for the
complete data, “uni-missing”, and “dual-missing” data. Trained unimodal and bimodal mod-
els can be used for different k-combination subsets to address the multimodal portability
problem. An overview of the testing phase of the KModNet is shown in Figure 4.

4.1.2. Progressive Learning

In the first step, the 1-combination branches in the 1-combination block representing
the audio, visible camera, and thermal camera data are trained using three unimodal models.
The visible and thermal unimodal models contain standard embedding layers (Section 3.4),
standard transformer layers (Section 3.5), and a person classification head. The audio uni-
modal model contains audio convolution layers, standard transformer layers (Section 3.5), and
a person classification head.

In the second step, a deep learning model termed the bimodal model, is used to train the
three 2-combination branches in the 2-combination block using three person classification
heads in a multi-task formulation. The 2-combination branches represent the audio-visible,
audio-thermal, and visible-thermal camera data. In the bimodal model, the three trained
unimodal models without their classification heads are first transferred to the bimodal
model. Subsequently, each 2-combination branch implemented by the standard transformer
layers accepts the outputs of specific unimodal branches. The audio-visible branch accepts
the outputs of the audio and visible unimodal branches. The audio-thermal branch accepts
the outputs of the audio and thermal unimodal branches. The visible-thermal branch accepts
the outputs of the visible and thermal unimodal branches.

Each 2-combination branch has an individual person classification output head result-
ing in a multi-task formulation. During the learning phase, the bimodal model trains the
pre-trained unimodal models along with the 2-combination branches.

In the third step, a deep learning model, termed the trimodal model, is used to train
a single 3-combination branch in the 3-combination block representing the audio-visible-
thermal camera data. Similar to the previous step, the pre-trained bimodal model is
first transferred to the trimodal model without the three classification heads. Next, the
3-combination branch implemented by the standard transformer layers accepts the outputs
of all the bimodal branches. Finally, a single person classification head is used to train
the 3-combination branch along with the transferred 1- and 2-combination branches. An
overview of the learning phase is shown in Figure 6.

To eliminate inefficient learning owing to missing training data at the output head,
the “unknown” person label is included in addition to the person labels for training the
unimodal and bimodal models. In the case of the trimodal model, the output head does not
receive training data with missing modalities. Consequently, the “unknown” person label
is not added to the person labels.
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Figure 6. Progressive learning for the AVTPC problem.

4.2. AVEC Problem

The KModNet used for the AVEC problem is trained to identify emotions using an
audio-visible camera dataset De = {Xi, Yi, li}S

i=1 with Ue samples, where Xi represents the
audio, Yi represents the video with j frames, and li represents the emotion label. The audio
input Xi is represented by the Log-Mel-spectrogram image of size 128× 889. Video input
Yi is represented by three frames of size (64× 64× 3).

4.2.1. Classification Model

For the bimodal classification problem, KModNet contains two blocks with two 1-
combination branches and one 2-combination branch (Figure 7). In the visible branch of the
first block (B1

1), visible sequences are provided as inputs to the standard embedding layers
(Section 3.4). In the audio branch (B1

2), the audio spectrogram is provided as an input to the
audio convolutional layers (Section 3.4). The output of these layers is then provided as an
input to an individual standard transformer layer (Section 3.5).

The second block is implemented using standard transformer layers. Here, the outputs
from the two 1-combination branches are concatenated and provided as inputs to the
transformer. The output of the second block is given as input to the classification head,
which contains a dense layer with 128 neurons, batch normalization, and a ReLU activation
unit, followed by a dense layer with O neurons with a softmax activation function. The
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number of output neurons O varies with the dataset. Hereafter, we refer to the output head
as the emotion classification head.

Visible
Branch	(𝐵𝟏𝟏)

Audio
Branch	(𝐵𝟐𝟏)

Audio-Visible	
Branch	(𝐵𝟏𝟐)
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Output
Head

Multimodal	
Input

1-Combination
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2-Combination
Branch

Output	
Head

Valid	or	
missing	
visible

Valid	or	
missing	
audio

Emotion
Label

Figure 7. An overview of the KModNet’s testing phase for the AVEC problem.

The different k-combination branches are trained progressively in two steps using the
unimodal and bimodal models. Following training, KModNet estimates the emotion label for
complete data and “uni-missing” data. Moreover, trained unimodal models can be used for
1-combination modalities. An overview of the testing phase of the KModNet is shown in
Figure 7.

4.2.2. Progressive Learning

In the first step, the 1-combination branches representing the audio and visible camera
data are individually obtained using a unimodal model. The visible unimodal model contains
standard embedding layers (Section 3.4), standard transformer layers (Section 3.5), and an
emotion classification head. The audio unimodal model contains an audio convolution layer,
standard transformer layers (Section 3.5), and an emotion classification head.

In the second step, the bimodal model is used to train the 2-combination branch. The
2-combination branch represents audio–visible camera data. Similar to the AVTPC problem,
in the bimodal model, the two trained unimodal models, without their classification heads,
are transferred to the bimodal model. Subsequently, the audio-visible branch, implemented
with standard transformer layers, accepts the audio and visible unimodal branch outputs.
The output of the transformer layers is provided as input to the emotion classification head.
An overview of the progressive learning is shown in Figure 8.
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Figure 8. An overview of the progressive learning for the AVEC problem.
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5. Experiments

The proposed framework for the AVTPC problem is validated using the audio-visible-
thermal Speaking Faces dataset [10]. Similarly, the proposed framework for the AVEC prob-
lem is validated using the audio-visible RAVDESS dataset [11] and the SAVEE dataset [12].

5.1. AVTPC Problem
5.1.1. Dataset

In the Speaking Faces dataset, 3310 audio-visible-thermal sequences corresponding to
142 people are selected and randomly partitioned into the training and testing sequences.
For the learning phase, we generate a missing dataset from the original dataset by randomly
ablating 20% of the training data. For the 20% missing dataset, half of the sequences have
ablated data corresponding to a single missing modality representing the uni-missing data,
whereas the remaining half have ablated data corresponding to two missing modalities
representing the dual-missing data.

The proposed framework is validated using multiple baseline algorithms. In addition,
we perform a detailed validation of the progressive learning framework.

5.1.2. Baseline Algorithms

The first baseline algorithm is formulated using the convolution neural network
(CNN). The audio data are provided as input to the audio convolution branch, and audio
feature maps are extracted. Next, each frame in the visible and thermal videos is given
as input to three layers of Conv-2D with 32, 64, and 32 filters of size 2, stride 2, and ReLU
activation to extract the visible and thermal feature maps. The audio, visible, and thermal
feature maps are then concatenated according to the classification problem and provided
as input to the person output head.

The second baseline algorithm is formulated using the multi-head attention trans-
former [32]. The audio features are extracted using the audio convolution branch. Visible
and thermal features are obtained using standard embedding layers. The audio, visible, and
thermal features are then concatenated according to the classification problem and given
as inputs to the standard transformer branch and the person output head. Hereafter, this
baseline will be referred to as the transformer model.

The third baseline algorithm is formulated using the standard transformer branch
and the missing modality loss proposed by John et al. [6]. Similar to the second baseline
algorithm, audio, visible, and thermal features are extracted using the audio convolution
branch and standard embedding layers. The individual latent spaces are first learned using a
metric-learning-based missing modality loss with the extracted features. Next, the extracted
features are concatenated, and the joint latent space is learned using the same loss function.
Finally, the individual and joint latent spaces are used within a k-NN classifier to estimate
the person label. Hereafter, we refer to this baseline as the latent model.

5.1.3. Progressive Learning Validation

In this study, we validate the progressive learning framework by comparing the
accuracies of the trained unimodal, bimodal, and trimodal models trained at different steps of
the framework. Here, we utilize the trained models and their person classification heads
(Section 4.1.2).

Additionally, we perform a comparative analysis of the two variants of the proposed
KModNet. The first variant is an end-to-end framework (E2E-KModNet), where KModNet
is trained directly in a single step without any multi-step progressive learning.

In the second variant, KModNet is trained using a multi-step learning strategy, but
the unimodal, bimodal, and trimodal branches are trained only once. More specifically,
following the training of the 1-combination branches in the first step, their weights are
frozen and transferred to the bimodal model. In the second step, only the 2-combination
branches are trained, and the 1-combination branches are not fine-tuned. In the case of the
AVTPC problem, in the third step, only the 3-combination branches are trained without
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any fine-tuning of the other branches. Hereafter, we refer to the second variant as the
DT-KModNet.

5.1.4. Training Parameters

The proposed frameworks are implemented with TensorFlow 2 using NVIDIA 3090 GPUs
on an Ubuntu 20.04 desktop. The different deep learning models and baseline algorithms
are trained for 50 epochs, except for the multi-tasking bimodal model and third baseline
models (latent space algorithm), which are trained for 100 epochs. The deep learning mod-
els are trained at a learning rate of 0.001, β1 = 0.5, and β2 = 0.99. The training parameters
are empirically selected and represent the best performances of the different algorithms.

5.1.5. Experimental Results

The performance of the proposed, the baseline, and the ablation study variants are
reported in Tables 2 and 3. In the testing phase, we report the classification accuracy for
different ablations of the testing sequences. The ablations are represented by replacing the
modality data with pre-defined fixed data. Apart from the original data, the test ablations
include the uni-missing and dual-missing data.

Table 2. Comparative analysis of the average person classification accuracy for the Speaking Face
dataset. Bold accuracy represents the best classification accuracy.

Algo No Miss. Aud. Miss. Vis. Miss. Th. Miss. Vis-Th. Aud-Th. Aud-Vis. Avg
Miss. Miss. Miss.

Prop 98.64 95.77 87.46 97.20 35.20 88.51 68.70 81.64

CNN 87.91 87.61 39.27 46.1 2 54.5 52.7 52.87
Trans. [32] 90.1 90.1 56.49 70.99 2 70.99 60.1 62.96
Latent [6] 95.1 91.1 85.2 86.5 18 77.1 77.5 75.7
E2E-KModNet 98.79 86.7 93.3 79.15 25.5 42.74 63.89 70
DT-KModNet 97.3 87.6 86.7 92.74 40.4 70.84 54.53 75.7

Table 3. Validation of the progressive framework for the Speaking Face dataset. Bold accuracy
represents the best classification accuracy.

Algo No Miss. Aud. Miss. Vis. Miss. Th. Miss. Vis-Th. Aud-Th. Aud-Vis. Avg
Miss. Miss. Miss.

Unimodal 87.83 59.5 56.69 59.86 28.49 31.36 28.19 50.27
Bimodal 97.33 89.1 79.4 82.83 42.46 59.13 52.41 71.80
Trimodal 98.64 95.92 87.91 97.58 36.55 88.67 68.58 81.97

The comparative results of classification accuracies are listed in Table 2. The results
show that both the proposed frameworks have better accuracy than the baseline algorithms.

The results of the progressive learning validation are shown in Table 3. The results
clearly demonstrate the advantage of the multi-step learning framework used within the
proposed frameworks.

5.2. AVEC Problem
5.2.1. Dataset

In the SAVEE dataset, 480 audio-visible sequences from four people with seven differ-
ent emotions are selected. In the RAVDESS dataset, 1440 sequences from 24 actors with
eight emotions and two trials are selected. The SAVEE dataset is randomly partitioned into
training and testing sequences, whereas in the RAVDESS dataset, the first trial sequences
are used for training, and the second trial sequences are used for testing. In the learning
phase, the missing dataset is generated from the original data by randomly ablating 20% of
the training sequences to obtain uni-missing data. The ablated visible and thermal images
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are represented by zero images of size 64× 64× 3 and 64× 64× 1. In contrast, ablated
audio is represented by a zero image of size 128× 889.

5.2.2. Baseline Algorithms

For the AVEC validation, in addition to the baseline algorithms used for the AVTPC
problem, the following AVEC algorithms by John et al. [33], Ristea et al. [34], and Mandeep
et al. [35] are also used for the comparative analysis.

For progressive learning validation, similar to the AVTPC problem, we validate the
progressive learning framework by comparing the accuracy of the trained unimodal and
bimodal models with their emotion classification heads (Section 4.2.2).

In addition, a comparative analysis is performed using the two variants of the pro-
posed framework. The first variant is an end-to-end framework (E2E-KModNet), in which
the bimodal model is directly trained in a single step without any pre-training. In the second
variant, multi-step learning is utilized, but the unimodal branches are trained only once.
More specifically, following the training of the 1-combination branches in the unimodal
model, their weights are frozen and transferred to the bimodal model. Henceforth, we refer
to the second variant as the DT-KModNet framework.

5.2.3. Training Parameters

The different deep learning models and baseline algorithms are trained for 50 epochs,
except for the third baseline model (latent-space algorithm), which is trained for 100 epochs.
The deep learning models are trained at learning rates of 0.001, β1 = 0.5, and β2 = 0.99. The
training parameters are empirically selected and represent the best performances of the
different algorithms.

5.2.4. Experimental Result

The performances of the proposed, baseline, and variants are reported in Tables 4–7. In
the testing phase, we report the classification accuracy for different ablations of the testing
sequences. The ablations are represented by replacing the modality’s data with pre-defined
fixed data. In addition to the original data, the test ablations include uni-missing data.

The comparative results for emotion classification accuracy are listed in Tables 4 and 5.
The results show that both the proposed frameworks have better accuracy than the baseline
algorithms.

The results of the progressive learning validation are shown in Tables 6 and 7. The
results clearly demonstrate the advantage of the multi-step learning framework used within
the proposed frameworks.

Table 4. Comparative analysis of the average emotion classification accuracy for the RAVDESS
dataset. Bold accuracy represents the best classification accuracy.

Algo No Miss. Aud. Miss. Vis. Miss. Avg

Prop 82.36 42.77 59.02 61.38

CNN 73.75 48.61 40.55 54.30
Transformer. [32] 51.3 40.83 23.8 38.64
Latent [6] 54.5 30.13 15.4 33.34
E2E-KModNet 73.3 47.91 44.30 55.17
DT-KModNet 80.83 38.05 62.08 60.32
John et al. [33] 66.9 29.0 41.6 45.83
Ristea et al. [34] 69.7 37.36 47.22 51.42
Mandeep et al. [35] 52.7 52.7 13.3 39.56
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Table 5. Comparative analysis of the average emotion classification accuracy for the SAVEE dataset.
Bold accuracy represents the best classification accuracy.

Algo No Miss. Aud. Miss. Vis. Miss. Avg

Prop 81.66 78.33 44.16 68.05

CNN 88.33 79.16 25.83 64.44
Transformer. [32] 85.83 87.5 29.16 67.49
Latent [6] 89.16 90 19.16 66.10
E2E-KModNet 89.1 82.5 30.8 67.46
DT-KModNet 80.83 68.3 49.16 66.09
John et al. [33] 65 42.5 21.6 43.03
Ristea et al. [34] 86.6 76.6 29.1 64.1
Mandeep et al. [35] 85.8 85.83 14.16 61.93

Table 6. Validation of the progressive framework on the RAVDESS dataset. Bold accuracy represents
the best classification accuracy.

Algo No Miss. Aud. Miss. Vis. Miss. Avg

Unimodal 64.55 43.7 20.8 43.01
Bimodal 81.2 40.7 57.9 59.93

Table 7. Validation of the progressive framework on the SAVEE dataset. Bold accuracy represents the
best classification accuracy.

Algo No Miss. Aud. Miss. Vis. Miss. Avg

Unimodal 65.4 43.75 21.65 43.01
Bimodal 85 79.1 43.3 59.93

5.3. Discussion

Missing Modality: The missing modality problem is observed in the results, where the
performance drops with the single missing modality. The performance of the original test
dataset, without any missing modality, was the best. Moreover, in Table 3, we observe
further degradation of accuracy when the two modalities are missing.
Comparison with Baseline Models: The advantages of the proposed framework are ob-
served in Tables 2, 4 and 5 where the progressive framework reports a better classification
accuracy than baseline algorithms while addressing the missing modality problem. In
addition, unlike the different baseline algorithms, the proposed framework addresses the
multimodal portability problem.

Among the different baseline methods, for the AVTPC problem (Table 2), the transformer-
based baseline models, including the transformer model, E2E, and DT, report better results
than the CNN-based baseline models. In the case of the SAVEE dataset results of the
AVEC problem (Table 5), the CNN and transformer-based baseline models, on average,
report similar accuracies. On the other hand, in the case of the RAVDESS dataset (Table 4),
the performance of certain CNN and transformer-based baseline models, such as the
CNN, E2E, DT, and Ristea et al. [34] are similar and higher than those of the remaining
CNN and transformer-based baseline models. On average, the transformer-based models
report better accuracy than the CNN-based models, which is similar to observations in the
literature [9,32].

The latent-space-based baseline model by John et al. [6] reports a good accuracy for
the AVTPC problem and SAVEE of the AVEC problem’s SAVEE; however, in the case of
the RAVDESS dataset, the latent model does not perform well. The latent-space model
is only formulated for occasionally missing data in an individual modality, and not for a
missing modality in multimodal data [6]. Based on these results, we can observe that the
performance of the different baseline algorithms is dataset-dependent.
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Validation of the Progressive Learning Framework: In this paper, in the novel progressive
learning framework, the multi-step learning and the fine-tuning of the previously trained
branches are important contributions to the literature. We validate these contributions
using the DT and E2E variants of the algorithms. The results in Tables 2, 4 and 5 show the
advantages of multi-step learning, as the proposed framework yields better results than
E2E-KModNet, which corresponds to the single-step trained KModNet.

The results also demonstrate the advantages of fine-tuning the previously trained
branches within the progressive learning framework because the proposed framework
has better accuracy than the DT-KModNet model. Unlike the proposed learning frame-
work, in DT-ModNet, the pre-trained branches transferred from the preceding block are
not fine-tuned.

The advantages of the progressive learning framework are listed in Tables 3, 6 and 7.
Here, a layer-wise increase in classification accuracy across different models can be clearly
observed. This can be attributed to the sensor fusion of the different k-combinations and
the progressive learning framework, where the previously trained branches are fine-tuned.

The results of the 1-combination or unimodal models are obtained as averages of the
different unimodal models. In the case of AVEC, the bimodal model yields better results than
the unimodal models (Tables 6 and 7).

In the case of AVTPC, the results of the bimodal and unimodal models are obtained
by averaging the accuracies of the different output heads. It can be observed that the
trimodal models report better accuracy than the bimodal models, which, in turn, report
better accuracy than the unimodal models. The progressive improvement in accuracy can
be attributed to sensor fusion and fine-tuning of the previously trained branches.
Generalization across Varying Inputs: Compared to the baseline algorithms, the proposed
algorithm reports the best results across the different types of input data, the complete,
the uni-missing, and the dual-missing data, as demonstrated by the average classification
accuracy. For example, in Table 5, the third baseline algorithm (Latent) [6] provides
better accuracy for complete and audio-missing data but does not classify visible-missing data
accurately. This result can be attributed to the latent baseline algorithm overfitting complete
and audio-missing data during the learning phase. However, the proposed algorithm
can learn across different types of missing and complete data without overfitting any
missing data.
Multimodal Portability: The multimodal portability of the proposed framework is ob-
served in the ablation study, where the unimodal, bimodal, and trimodal with their person and
emotion classification heads can be easily ported to a different k-combination of modalities
(Sections 4.1.2 and 4.2.2).
Varying Modalities: In multimodal learning, a given modality can be a dominant or a
weaker modality. The experimental results for the AVTPC problems show that the audio
modality is weaker than the visible and thermal modalities (Table 2). This is observed
in the results of the visible-thermal missing data, where only audio is present, indicating
a low classification accuracy. However, the visible camera is shown to be the dominant
modality, as observed in the unimodal missing data, where the visible missing data report
inferior results compared to the thermal missing and audio missing data.

In the case of the AVEC problem, modality characteristics are dataset-dependent. In
the RAVDESS dataset (Table 4), the audio and visible modalities have similar strengths,
with the audio being marginally dominant, as the visible missing data report better accuracy
than the audio missing data. However, in the case of the SAVEE dataset (Table 5), audio is
the weaker modality because the visible missing data are inferior to the audio missing data.

Based on the results, we can conclude that certain modalities are either dominant
or weaker depending on the situation; thus, their effective sensor fusion in progressive
learning enhances the robustness of classification tasks.
Future work: In the results, we can observe that the absence of the dominant modality,
the visible camera, reduces the classification accuracy (Tables 4 and 5). As part of our
future work, we will investigate and consider multimodal co-learning techniques [36] to
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ensure that all modalities contribute equally to learning. Specifically, we will focus on the
conditions under which the dominant modality is missing.

In the progressive learning framework, different k-combinations can be trained using
an additional unimodal or bimodal dataset. For example, in the AVEC framework, in
addition to training with the bimodal dataset, unimodal models can also be trained with
an audio-only or visible camera-only emotion classification dataset. The advantages of
additionally training a unimodal or bimodal model with a modality-specific dataset will be
investigated in future work.

6. Conclusions

In this article, a novel progressive learning framework is proposed to train a deep
learning framework with multiple k-combination blocks, termed KModNet, to address the
missing modality and multimodal portability problems. Progressive learning is a multi-step
learning strategy formulated to train different k-combination blocks in KModNet. Each k-th
step in the learning strategy is formulated to train all k-combination blocks up to the k-th
combination block. Multiple deep learning models were used in the learning strategy. By
accounting for the different k-combinations in KModNet and utilizing the progressive learn-
ing strategy, we simultaneously address the missing modality and multimodal portability
problems. We validate the proposed learning strategy using two multimodal classification
tasks: person classification and emotion classification. The frameworks are validated using
the Speaking Faces, RAVDESS, and CREMA datasets. The results and ablation study demon-
strate that the progressive learning framework enhances the robustness of multimodal
classification, even under the conditions of missing modalities, while being portable to
different modality subsets.
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