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Abstract: To perform Earth observations, low-Earth orbit (LEO) satellites require attitude maneuvers,
which can be classified into two types: maintenance of a target-pointing attitude and maneuvering
between target-pointing attitudes. The former depends on the observation target, while the latter has
nonlinear characteristics and must consider various conditions. Therefore, generating an optimal
reference attitude profile is difficult. Mission performance and satellite antenna position-to-ground
communication are also determined by the maneuver profile between the target-pointing attitudes.
Generating a reference maneuver profile with small errors before target pointing can enhance the
quality of the observation images and increase the maximum possible number of missions and
accuracy of ground contact. Therefore, herein we proposed a technique for optimizing the maneuver
profile between target-pointing attitudes based on data-based learning. We used a deep neural
network based on bidirectional long short-term memory to model the quaternion profiles of LEO
satellites. This model was used to predict the maneuvers between target-pointing attitudes. After
predicting the attitude profile, it was differentiated to obtain the time and angular acceleration profiles.
The optimal maneuver reference profile was obtained by Bayesian-based optimization. To verify the
performance of the proposed technique, the results of maneuvers in the 2–68◦ range were analyzed.

Keywords: LEO satellites; reference attitude profiles; target-pointing attitude; data-based learning;
deep neural networks

1. Introduction

In recent decades, low-Earth orbit (LEO) satellites have been developed and launched
for various purposes. LEO satellites use attitude maneuvers to perform Earth observa-
tions [1,2]. Attitude maneuvers can be classified into two types: performance during the
mission (maintenance of a target-pointing attitude) and maneuvering between missions
(maneuvering between target-pointing attitudes). The pointing stability of the line of sight
for Earth observations is the critical mission performance factor, and the attitude control
performance of the satellite, pointing knowledge, and rate drift are also important fac-
tors [3,4]. The attitude profile of the target-pointing segment of the mission is determined
by the user’s observation requirements. Typically, the target-pointing attitude is designed
to have low angular rates to minimize drift during observations [2,5]. Observation mis-
sion requirements, such as the imaging area and location, are used as input conditions
to generate the attitude profile of the target-pointing segment. The attitude profile of the
target-pointing duration generated in this way has a deterministic solution depending on
the observation target. Therefore, deviations in the performance of the attitude profile of
the target-pointing segment of the mission are generally insignificant.

In contrast, the attitude maneuver profile between target pointings has various initial
and final attitude conditions and must be executed within certain constraints, such as
the allowable range of angular rates and maneuver time requirements [6,7]. Therefore,
depending on the cost function and generation logic, significant variations in the maneuver
time and attitude error at the starting point of the target pointings can occur. Generally,

Sensors 2023, 23, 4650. https://doi.org/10.3390/s23104650 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23104650
https://doi.org/10.3390/s23104650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23104650
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23104650?type=check_update&version=1


Sensors 2023, 23, 4650 2 of 17

the maneuvering between target pointings is a critical indicator of a satellite’s mission
performance capability and requires optimization [7,8]. However, without an initial guess,
the optimization process can be time-consuming.

Because the demand for high-agility satellites that maximize the observation time is in-
creasing, many satellites that minimize the maneuver time between the target pointings and
attitude error at the initiation of the mission are being developed [9–11]. Additionally, as de-
mand for satellite imagery for urgent missions (e.g., disaster response) increases, the need to
maximize mission performance through rapid maneuvers also increases [12]. Therefore, a
satellite’s agile performance is crucial to all commercial, military, and government-led satel-
lite developments because it indicates the satellite’s ability to quickly change its attitude to
meet specific mission requirements [12,13].

To achieve a high level of satellite agility, it is necessary to consider factors such as
actuators capable of producing high torque, which minimize the moment of inertia (MOI)
of the satellite, and the sending of reference attitude commands for maneuvering between
targets [6,7]. Actuators, such as high-torque reaction wheels and control moment gyros,
are the hardware that needs to be considered in the early stages of satellite development.
They exhibit characteristics with limiting factors, such as reliability, cost, and schedule. The
weight and size of the payload tend to increase as the observation performance increases,
which limits the potential for the reduction of the MOI through optimization. In addition,
a control system that combines feedforward and feedback control methods (rather than
a single feedback controller) needs to be designed to achieve the shortest maneuvering
time [14,15]. In this control system, the command for the satellite’s attitude maneuver
is provided as feedforward, whereas any disturbance to the maneuvering is controlled
as feedback [7]. Finally, to minimize disturbances, the reference attitude command for
the maneuver between target pointings should be developed to minimize the attitude
error (quaternion and angular rate) at the start of the mission under the constraint of the
satellite’s maneuvering limits [12].

The attitude maneuver profile of an LEO satellite is used as the input for driving
the antenna to transmit mission data, and a reference profile for the antenna maneuver
is created [16–18]. Observation missions generate a large number of data owing to high-
resolution images and also require a high data transfer rate [16]. As a result, limited error
ranges in the beam width are required to accommodate the high data transfer rates. To
generate an accurate ground station pointing profile, it is necessary to have the attitude
information of the satellite while the ground station is in contact with it, including the target-
pointing maneuvers. Owing to the difficulty in generating the attitude reference profile
for the interval between target pointings, the attitude information is often not generated
or provided by the ground station, and the range of allowable errors in the beam width is
limited, owing to the need for high data transfer rates. Therefore, if the attitude reference
profile for the duration of the target pointing is generated only on the ground, there may
be an antenna pointing error between the ground prediction and actual attitude during
the maneuver, which leads to problems in the continuous transmission of the data [18].
In particular, steady and stable attitude profile generation is essential for modern high-
resolution satellites that transmit large datasets. If the generated profile does not match the
initial attitude and angular rate at the beginning of the mission, an additional stabilization
time may be required for initializing the target pointing, limiting the maximum number of
possible missions [2]. Therefore, generating the optimal reference profile for maneuvering
between the target pointing of the observation satellite is essential for maximizing the
performance of the satellite mission and driving the antenna for transmitting the data.
However, it is difficult to find a generalized solution owing to satellite limiting conditions,
nonlinearity, and various startup and end conditions [4,7,8,10,19].

In this study, we optimize the reference attitude command for the pointing maneuver
between target pointings via a control method with feedforward and feedback control, and
we propose a technique for developing a reference attitude command that optimizes the
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maneuvering between target-pointing intervals using data training to predict the attitude
during maneuvering.

A summary of the contributions of this study is as follows:

• This paper proposes a ground-based technique for generating optimal reference pro-
files for maneuvers between target pointings of LEO observation satellites.

• The proposed technique predicts the quaternions of the maneuver through data-based
learning and uses the predicted value as an initial guess for optimization to generate
the maneuver profile.

• To demonstrate the performance of the proposed technique, the error of the starting
point of the target pointing according to various maneuver angles, start and end angu-
lar rates are analyzed, and its performance is compared with the existing technique.

The remainder of this paper is organized as follows. Section 2 describes the back-
ground and constraints of the maneuvering of LEO satellites. Section 3 explains the
approach for generating reference attitude profiles for maneuvering between target point-
ings using the proposed data-based initial guess estimation and optimization technique.
Section 4 describes the network and training results of the data-based initial guess esti-
mation. Section 5 presents the attitude profile generation results based on the angle and
angular rate. Finally, the conclusions are summarized in Section 6.

2. Background
2.1. LEO Satellite Attitude Guidance Profile

Research on satellite maneuver optimization has been conducted since the 1970s [3–5].
The satellite’s actuator performance limitations, transmission capacity in orbit, and through-
put should be considered for the optimal maneuvering of LEO satellites. A depiction
of attitude maneuvers required for observation missions of LEO satellites is illustrated
in Figure 1. Generally, attitude maneuvering for an LEO satellite can be divided into
the target pointing for the duration of the observation mission, maneuvering between
target pointings, and sun pointing for maximum power generation. The target-pointing
duration is the period in which the attitude is determined according to the user’s desired
observation target (e.g., Earth, star, or other region in space). Therefore, this duration
generally requires minimal or no attitude changes. Furthermore, the attitude required for
the target-pointing duration is determined by the satellite’s position, velocity, observation
target, and observation interval.
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The duration of attitude maneuvers between two target points varies according to
the maneuvering constraints and attitude generation method. It is difficult to determine
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this duration because of the differences in boundary conditions between the attitudes
and angular velocities at the end of the previous target pointing and the beginning of the
next pointing [19–21]. Therefore, because of the different initial and final maneuvering
conditions, the available torque and angular rate of the satellite are limited, and it is difficult
to obtain a generalized solution [10]. Generally, as the time for attitude maneuvering
between target pointings decreases, the number of possible missions increases. In this
study, we optimized the attitude maneuvering between target pointings using data-based
learning to maximize LEO mission performance.

Finally, after a LEO satellite completes its observations, a sun-pointing attitude ma-
neuver is required for maximizing the power generation [22].

2.2. LEO Satellite Attitude Guidance Profile Constraints

The maximum allowable values for the angular acceleration and angular rate should
be used to maximize the attitude maneuver performance of an LEO satellite. The maximum
torque and momentum of the actuators primarily limit the maximum angular acceleration
and angular rate of an LEO satellite [7,10,19]. There may be additional constraints on the
angular rate to ensure the performance of the GPS receivers and star trackers.

When generating the attitude profiles for target pointings and maneuvering between
target pointings, there may be an increase in the throughput of the flight software, which
can lead to difficulties in performing complex missions. Furthermore, this approach may
not be applicable to satellites in orbit. Therefore, we considered a ground-based technique
for generating a reference attitude maneuver profile for operational applications. The
reference attitude maneuver profile, which is generated on the ground and uploaded to the
satellite, should minimize the increase in throughput when restored onboard. In particular,
the contact time with LEO satellites is limited [23]. As a result, the upload time for mission
execution, scheduled command sets for the next satellite contact, and playback execution
for receiving satellite data during the time in which the satellite is inaccessible are also
limited. Therefore, it is important to also minimize the data size uploaded. Accordingly,
we developed an optimization approach to provide LEO satellites with reference data for
attitude maneuvers between target pointings using the acceleration profiles for each axis,
as shown in Figure 2. In other words, the size of the data sent to the satellite was reduced
by using the time information (t1 to t8), and the maximum and minimum values of the
acceleration profile for each axis (a and b) are shown in Figure 2. Then, onboard the satellite,
the acceleration was integrated to create a reference profile for the satellite’s angular rate
and attitude to maneuver the satellite.
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3. Proposed Technique for Generating Attitude Reference Profiles

Section 2 described the difficulty in obtaining a maneuver profile in a short time, con-
sidering all the limiting factors. This occurs because the satellite’s attitude kinematics model
is nonlinear, and previous research-derived solutions used optimal control theory [24–27].
However, in this approach, the initial guesses influence the quality of the potential solutions.
Therefore, we proposed a technique that uses a data-driven deep neural network (DNN)
to obtain the initial guesses and then is optimized to minimize the pointing error and
maneuvering time as the satellite points to its new target.

First, the upload profile of the LEO satellite was created using angular acceleration
and time data, as mentioned in Section 2. The values of the angular acceleration generated
for each time, shown in Figure 2, are defined as

a(t) = a0 + J·t, 0 < t < t1, (1)

a(t) = a0 + J·t1 = a12, t1 < t < t2, (2)

a(t) = a12 − J·(t − t2), t2 < t < t3, (3)

a(t) = a12 − J·(t3 − t2) = a34, t3 < t < t4, (4)

a(t) = a34 − J·(t − t4), t4 < t < t5, (5)

a(t) = a34 − J·(t5 − t4) = a56, t5 < t < t6, (6)

a(t) = a56 + J·(t − t6), t6 < t < t7, (7)

where a0 is the initial acceleration value and J is the maximum jerk value of satellite.
The angular velocities for each segment from t1 to t7 are given as

ω(t) = a0·t +
1
2

J·t2, 0 < t < t1, (8)

ω1 = a0·t1 +
1
2

J·t1
2, (9)

ω(t) = ω1 + a12·(t − t1), t1 < t < t2, (10)

ω2 = ω1 + a12·(t2 − t1), (11)

ω(t) = ω2 + a12·(t − t2)−
1
2

J·(t − t2)
2, t2 < t < t3, (12)

ω3 = ω2 + a12·(t3 − t2)−
1
2

J·(t3 − t2)
2, (13)

ω(t) = ω3 + a12·(t − t3), t3 < t < t4, (14)

ω4 = ω3 + a34·(t4 − t3), (15)

ω(t) = ω4 + a34·(t − t4)−
1
2

J·(t − t4)
2, t4 < t < t5, (16)

ω(t) = ω4 + a34·(t5 − t4)−
1
2

J·(t5 − t4)
2, (17)

ω(t) = ω5 + a56·(t − t5), t5 < t < t6, (18)

ω6 = ω5 + a56·(t6 − t5), (19)

ω(t) = ω6 + a56·(t − t6) +
1
2

J·(t − t6)
2, t6 < t < t7, (20)
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Finally, the angles for duration are given by

θ(t) =
1
2

a0·t +
1
6

J·t3, 0 < t < t1, (21)

θ1 =
1
2

a0·t1 +
1
6

J·t1, (22)

θ(t) = θ1 + ω1(t − t1) +
1
2

a12·(t − t1)
2, t1 < t < t2, (23)

θ2 = θ1 + ω1(t2 − t1) +
1
2

a12·(t2 − t1)
2, (24)

θ(t) = θ2 + ω2(t − t2) +
1
2

a12·(t − t2)
2 − 1

6
J·(t − t2)

3, t2 < t < t3, (25)

θ3 = θ2 + ω2(t3 − t2) +
1
2

a12·(t3 − t2)
2 − 1

6
J·(t3 − t2)

3, (26)

θ(t) = θ3 + ω3(t − t3) +
1
2

a34·(t − t3)
2, t3 < t < t4, (27)

θ4 = θ3 + ω3(t4 − t3) +
1
2

a34·(t4 − t3)
2, (28)

θ(t) = θ4 + ω4(t − t4) +
1
2

a34·(t − t4)
2 − 1

6
J·(t − t4)

3, t4 < t < t5, (29)

θ5 = θ4 + ω4(t5 − t4) +
1
2

a34·(t5 − t4)
2 − 1

6
J·(t5 − t4)

3, (30)

θ(t) = θ5 + ω5(t − t5) +
1
2

a56·(t − t5)
2, t5 < t < t6, (31)

θ6 = θ5 + ω5(t6 − t5) +
1
2

a56·(t6 − t5)
2, (32)

θ(t) = θ6 + ω6(t − t6) +
1
2

a56·(t − t6)
2 +

1
6

J·(t − t6)
3, t6 < t < t7, (33)

The attitude and angular rate profile of the satellite up to t7 were generated onboard
the satellite using the uploaded acceleration and time data. The commands for satellite
attitude maneuvering were provided in quaternion form instead of Euler angles to avoid
gimbal locks and other issues. The attitude profile for the maneuvering segment was
converted into a quaternion form for training using a direction cosine matrix (DCM).

The format of the data uploaded to the LEO satellites and used for maneuvering
between target pointings is shown in Table 1. Table 1 shows that the maximum and
minimum acceleration values (a, b) and time duration data (t1 to t7) are used for each
axis. The value of t8 was determined at the start of the mission according to the mission
design requirements for the satellite, and it was defined as the difference between the
user-controlled maneuver time and the time interval from t1 to t7. To account for the size
of the uploaded data, the same time (t1 to t8) values were used for the roll, pitch, and yaw
axes. In other words, all three axes had the same timeline, and only the acceleration values
were generated differently.
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Table 1. Parameters of proposed technique for generating the reference attitude between target pointings.

Parameter

Roll Maximum acceleration, Minimum acceleration for roll axis
Pitch Maximum acceleration, Minimum acceleration for pitch axis
Yaw Maximum acceleration, Minimum acceleration for yaw axis

Time Acceleration duration
t1, t2, t3, t4, t5, t6, t7

The proposed technique that employs DNN-based prediction uses data-based learning
to obtain the initial guess for optimization. To perform data-based learning, it was necessary
to preprocess the data, separate the data for training and validation, design the network
and optimize it for learning, and validate the predictions.

In the preprocessing stage, the input and output features must be selected. For
this process, it was necessary to select features that correlated with the output feature. As
mentioned in Section 2, to reduce the dimension of the features and improve the accuracy of
the model, the next point quaternion (Q1next point, Q2next point, Q3next point, Q4next point) was
selected as the output feature. For the input feature, the Earth-centered, Earth-fixed (ECEF)
frame’s position and velocity, the current point quaternion (Q1current point, Q2current point,
Q3current point, Q4current point) of the satellite’s orbital parameters, and the relative angle and
rate difference between the target pointing’s initial position for the next mission and the
current time were selected. The selected features are presented in Table 2.

Table 2. Input and output features for maneuver duration modeling of LEO satellites.

Parameter Number of Features

Input features

Current point quaternion 4
Satellite position vector 3
Satellite velocity vector 3

Relative angle difference to target point 3
Relative angular rate difference to target point 3

Output features Next point quaternion 4

Because the values of the selected features have different ranges, the values were
normalized to optimize learning via the gradient descent. Preprocessing was executed
using the min—max method to process each feature uniformly according to

Xtraning data − min
(

Xtraning data

)
max

(
Xtraning data

)
− min

(
Xtraning data

) , (34)

where min
(

Xtraning data

)
and max

(
Xtraning data

)
are the minimum and maximum values

of each training data, respectively.
To proceed with the training, the dataset was generated and divided into four parts

to train the modeling network, select the parameters and network, test the quaternion
prediction performance, and verify the maneuver profiles. The dataset was generated using
a satellite dynamic attitude simulator under the following conditions: the maximum jerk
was 9 deg/s3, the maximum angular acceleration was 0.9 deg/s2, the maximum angular
rate was 2.9 deg/s, and the MOI values of the satellite for each axis were assumed to be
2500 kg m2, 2500 kg m2, and 1000 kg m2. The optimal maneuver quaternion time-series
dataset was obtained by performing trial-and-error with dynamic simulations to achieve
the minimum feasible maneuver time and error.

The dataset was composed of 1000 time-series samples with different initial and final
orientations and angular velocities, of which 60, 10, 10, and 20% were used for training,
modeling the network, and selecting the parameters, testing the quaternion prediction
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performance based on the trained model, and verifying the performance of the generated
profiles, respectively.

The procedure for creating a quaternion prediction model for maneuvering is shown
in Figure 3. The optimal network and parameters were selected using a genetic algorithm
to minimize the error of the time-series prediction results during the maneuver period
based on the training and parameter selection datasets. The cost function for selecting the
optimal network and parameters for training was designed to minimize the error of the
time-series prediction results during the maneuver period, as indicated by

cost f untion f or traning =

√
1
n
·∑
(

Qveri f ication − QPrediction

)2
, (35)

where Qveri f ication is the reference quaternions of the verification dataset, n is the number of
the verification quaternions data, and QPrediction is the predicted quaternion values of the
DNN model.
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Figure 3. Training process for quaternion prediction of maneuvering duration.

The selection factors for the network and parameters used to model the quaternion
include the number of bidirectional long short-term memory (bi-LSTM) layers, number of
hidden units for each bi-LSTM, maximum epoch number, mini-batch size, initial learning rate,
drop rates of the first and last drop-out layers, and frequency of the feature data [28–30]. As
the reverse order of time-series data is also meaningful, learning using bi-LSTM was used
because of its high prediction accuracy of time-series data [31,32]. Next, the frequency of
the feature data was chosen as the selection factor for optimization. If the frequency of
each feature data is too dense, training can become time-consuming, and overfitting may
occur. Conversely, if the frequency is extremely low, the accuracy of the training model
may decrease.

The factors for developing the network were selected using a genetic algorithm (GA)
to modify each parameter and find the DNN that minimized the cost function within a
specified number of iterations (in this case, 500). The DNN architecture determined using
the GA is shown in Figure 4.
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Figure 4. Maneuver reference profile generation network for LEO satellites.

The process proposed for generating the maneuver profile of an LEO satellite between
its target pointings was performed in two stages. In the first stage, an initial guess for
the profile was obtained for optimization. The satellite’s position, velocity, relative angle,
angular rate difference to the target point, and quaternion at the start of the maneuver
were fed to the pretrained DNN to output the next point’s quaternion. Then, the next
point’s position, velocity, relative angle, angular rate difference to the target point, and the
generated quaternion were sent as current information to predict the quaternion of the next
point. This process was repeated to predict the quaternion until the next target pointing’s
starting point was reached. The aim of this process was to reproduce the quaternion from
the initial point to the final point of the maneuver. The predicted quaternion values were
then converted into angular accelerations and time profiles for each axis, which were
uploaded to the LEO satellite via Euler angle transformation and differentiation.

In the second stage, the angular acceleration and time profiles of each axis obtained
as initial guesses in the first stage were used for optimization. The cost function for this
optimization process utilized the quaternion at the end of the generated profile, maneuver
time, and angular rate error. The comparison point of the cost function affected the final
performance. If the calculation point of the cost function is set as the initial target pointing
of the mission, errors may occur at the beginning of the mission, requiring additional
time for stabilization depending on the attitude control. Therefore, t7 in Figure 2 was
selected as the calculation point for the cost function to secure additional stabilization time
for optimization.

As shown in Figure 2, the generated profile only has angular acceleration values
up to t7. Therefore, to calculate the quaternion and angular rate error at the end of the
profile for optimization, the quaternion and rate values at t7 generated up to that point was
compared using the quaternion and rate information at the start of the mission, and it was
backpropagated for a duration of t8 as follows:

θ(t)back = ωmission(t − t8), (36)

where θ(t)back is the backpropagated angle from the start of target pointing and ωmission is
the angular rate at the start of target pointing.

The cost function used for generating an optimized profile for the maneuver segment
in the second step is given by

Cost f unction f or optimization = (Quaternion error)target pointing start time + (Rate error)target pointing start time. (37)

When applying the generated reference maneuver profile to an actual satellite’s attitude
control logic, the additional errors that may arise during the restoration process must be
considered. Thus, we included a margin in determining the convergence range of the
cost function used for optimization, taking into account the potential additional errors. A
quaternion error of 10−4 and a rate error of 10−3◦/s were used for optimization. The process
for generating the maneuver reference profile for LEO satellites is shown in Figure 5.
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4. DNN Training Results

In this section, we summarize the quaternion prediction results of the data-based
learning model generated in the first step. To verify the accuracy of the data-based learning
model predictions, pointing maneuver profiles in the range of 2–68◦ were used as a reference
for validation.

Figure 6 shows the predicted quaternion results for a mission that performed contin-
uous maneuvers at 27.7◦, 41.2◦, 33.0◦, 24.6◦, and 34.8◦. As shown in the figure, similar
predictions are possible for different target-pointing maneuvers. However, significant
prediction errors occurred for target-pointing periods or particular attitude changes, such
as a final sun-pointing maneuver. This study aimed to minimize the errors between target-
pointing maneuvers; thus, the changes in the target pointings and attitudes were excluded
from the training process, resulting in the observed performance. The data from the mission
duration and certain attitude changes exhibited characteristics of the time-series data that
were difficult to generalize. Therefore, including this data in the training step would result
in performance degradation between pointing maneuvers.
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Because the maneuvers between target pointings were in the form of time-series data,
it was difficult to judge the performance of the entire sequence based on the accuracy
at a single point. In addition, when creating a maneuver profile, the attitude control
performance was affected by the angular rate error at the final point of the maneuver.
Furthermore, the conversion to the angular rate and time uploaded to the satellite was
meaningful for the entire duration of the maneuver. Therefore, the root mean square (RMS)
value of the maneuver duration was used to confirm the prediction performance.

As mentioned in Section 3, we used a dataset to validate the performance of the
quaternion prediction model used to represent the maneuver duration based on various
maneuvering angle conditions and differences in the angular rate at the initial and final
points of the maneuver. Figure 7 shows the RMS error (RMSE) of the quaternion prediction
model for various angle maneuvers, including roll, pitch, and yaw. As seen in the figure,
there are minimal differences in performance depending on the maneuvering angle, and
the prediction is accurate to an error of less than 0.02.
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5. Case Studies

In this section, we examine the generated LEO satellite maneuver profiles that conform
to various initial and final boundary conditions, minimize maneuver time, and satisfy the
constraints described in this paper. As mentioned earlier, when generating maneuver
profiles solely using a DNN, the quaternion is generated within the error range. Therefore,
the satellite attitude and angular rate estimated at the end of the maneuver can be affected
not only by the attitude and angular rate error at the end of the maneuver but also by the
error throughout the maneuver duration, which can lead to more significant estimation
errors. Additionally, performance degradation may occur for certain initial and final
attitudes, angular velocities, and angular accelerations. Therefore, we analyzed the results
of the second-stage optimization correction using the predicted value from the DNN that
was constructed using data-based learning as an initial guess.

Figures 8–10 show the maneuver profiles generated for the five missions. For the target-
pointing segment, a maneuver range of 2–68◦ was assumed, and the angular velocities
exhibited during the mission ranged from 0.01 to 0.25◦/s. In the figures, the yaw maneuver
for the mission duration was assumed to have the angle and angular rate of the pointing
that was aimed at the same direction as the target, considering the Earth’s rotation and the
roll and pitch exhibited various angles and angular velocities to point at different targets.
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The first target-pointing mission required a roll of −30.53◦, a pitch of 8.24◦, and a yaw
of −3.04◦. At the start of the first mission, the initial angular velocities for the roll, pitch,
and yaw axes were 0.01◦/s, 0.02◦/s, and 0.05◦/s, respectively. The second target-pointing
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mission required a roll of 30.54◦, a pitch of 7.79◦, and a yaw of −0.01◦. At the start of the
second mission, the initial angular velocities for the roll, pitch, and yaw axes were 0.03◦/s,
0.01◦/s, and 0.04◦/s, respectively. The start of the third mission required a roll of 30.54◦,
a pitch of 7.79◦, and a yaw of −0.01◦. At the start of the third mission, the initial angular
velocities for the roll, pitch, and yaw axes were 0.04◦/s, 0.03◦/s, and 0.06◦/s, respectively.
The fourth mission required a roll of −35.00◦, a pitch of −17.45◦, and a yaw of −1.67◦. At
the start of the fourth mission, the initial angular velocities for the roll, pitch, and yaw axes
were 0.03◦/s, 0.04◦/s, and 0.08◦/s, respectively. The final mission required a roll of 30.28◦,
a pitch of −9.61◦, and a yaw of 0.63◦. At the start of the fifth mission, the initial angular
velocities for the roll, pitch, and yaw axes were 0.25◦/s, 0.09◦/s, and 0.05◦/s, respectively.

Figure 8 shows the angular acceleration profiles generated using the proposed tech-
nique for generating maneuver profiles for each of the five missions. To reduce the upload
burden on the LEO satellite, angular accelerations and segment-specific time data were
used to create profiles on the ground. In Figure 8, the red, green, and blue lines represent the
angular acceleration on the roll-, pitch-, and yaw-axes in the local vertical local horizontal
(LVLH) frame, respectively. The generated profiles were used to verify the angular rate at
the start of the mission and the quaternion attitude error.

Figure 9 shows the angular rate profiles for the five target-pointing missions. The red,
green, and blue lines represent the roll, pitch, and yaw rates in the LVLH frame, respectively.
The angular velocities were generated by integrating the uploaded data, which included
angular accelerations and time information. The error in each angular rate at the start of
each target-pointing mission was less than 0.0001◦/s, and significant discontinuities were
not observed in the figure.

Figure 10 shows the angle profile restored via the proposed method using the gen-
erated angular acceleration and time data. The red, green, and blue lines represent the
roll, pitch, and yaw angles in the LVLH frame, respectively. The error of each angle was
maintained at less than 0.007 at the beginning of each target pointing, and no significant
discontinuities were observed in the figure. In addition, when the difference in the rate
between the end of one mission and the beginning of the next was slight (i.e., there was an
RMS difference of less than 0.1◦/s) or significant (i.e., there was an RMS difference of more
than 0.1◦/s), both were generated within a similar error range.

An additional case analysis was performed to evaluate the performance under various
maneuvering conditions. The test set used in the analysis considered a range of ground
observation values with maneuver angles ranging from 2 to 68◦. The angular rate range at the
start and end of the maneuvers was set to a constant range of 0.01–0.25◦/s for all maneuvers.
As mentioned in Section 3, a total of 200 cases in the verification dataset were used for analysis,
and the proposed technique was applied. The results are shown in Figures 11–14.
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Figures 11 and 12 show the range of the quaternion and angular rate errors as a
function of the maneuver angle, respectively. Figures 13 and 14 show the quaternion and
angular rate error values as a function of the difference in angular rate between the target
pointings, respectively. As shown in the figures, the proposed technique generates the
same performance for various maneuvering conditions without any significant degradation
within the range of the quaternion and angular rate errors.

Next, to validate the performance of the proposed technique, we compared the results
of a zero-to-zero analysis, the optimization technique using a zero-to-zero analysis value
as the initial guess, the profiles generated solely by the DNN, and the profiles generated
by the proposed technique, as shown in Figures 15 and 16. The zero-to-zero analysis is
a conventional technique that can obtain a general solution using a simple calculation.
The zero-to-zero analysis involves the generation of a motion profile by assuming that the
angular rate of the target pointing moment is zero. This technique generates fewer errors
when the angular rate of the target pointing duration is small, and it also requires fewer
computations. However, it has limited coverage under various mission conditions. The
optimization technique using a zero-to-zero analysis value as the initial guess can reduce
errors more than the zero-to-zero analysis, but the performance is limited owing to the
limit of the optimal starting point.
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Figures 15 and 16 show that the overall error generated by the zero-to-zero analysis is
more significant than that generated by the other techniques. Additionally, the performance
of the profiles generated solely by the DNN and optimization using the zero-to-zero analysis
to obtain an initial guess was better than that of the zero-to-zero analysis. However, some
sections using the DNN technique solely exhibited worse performances. The optimization
using the zero-to-zero analysis to obtain an initial guess had an error similar to that of
only the DNN technique, but the performance was poor compared to that of the proposed
technique. The proposed technique exhibited an overall smaller error range than the other
techniques and had consistent performance under various maneuver conditions.

6. Conclusions

For LEO satellites to perform observation missions and ground contact, it is essential
to generate attitude profiles. Reference profiles for maneuvers between target pointings
are directly related to the mission performance and accuracy of the antenna position to the
ground contact. However, considerations, such as the initial and final boundary conditions
(angles and angular velocities), constraint conditions (maximum jerk, angular acceleration,
and angular rate), and throughput and upload capacity to be applied to the satellite must
be taken into account. Therefore, this study used a data-based learning model and an
optimization algorithm to develop a technique for generating reference profiles for the
maneuvering phase of LEO satellites. The proposed technique demonstrated effective
performance under various initial and final maneuvering conditions. In conclusion, it is
expected that the proposed technique will optimize the LEO mission design performance
and increase the satellite antenna pointing accuracy to the ground station.
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